[Mlir-commits] [mlir] 113bce0 - [mlir][tensor] Fold producer linalg transpose with consumer tensor pack (#75658)

llvmlistbot at llvm.org llvmlistbot at llvm.org
Wed Jan 10 06:55:32 PST 2024


Author: Prathamesh Tagore
Date: 2024-01-10T06:55:27-08:00
New Revision: 113bce0c79fe5cc2b949949c5d96b7f679524b6e

URL: https://github.com/llvm/llvm-project/commit/113bce0c79fe5cc2b949949c5d96b7f679524b6e
DIFF: https://github.com/llvm/llvm-project/commit/113bce0c79fe5cc2b949949c5d96b7f679524b6e.diff

LOG: [mlir][tensor] Fold producer linalg transpose with consumer tensor pack (#75658)

Successor to https://github.com/llvm/llvm-project/pull/74206 

Partial fix to https://github.com/openxla/iree/issues/15367

Added: 
    

Modified: 
    mlir/lib/Dialect/Tensor/Transforms/PackAndUnpackPatterns.cpp
    mlir/test/Dialect/Tensor/fold-into-pack-and-unpack.mlir

Removed: 
    


################################################################################
diff  --git a/mlir/lib/Dialect/Tensor/Transforms/PackAndUnpackPatterns.cpp b/mlir/lib/Dialect/Tensor/Transforms/PackAndUnpackPatterns.cpp
index cfd838e85c1b80..8ab69d8c59b41f 100644
--- a/mlir/lib/Dialect/Tensor/Transforms/PackAndUnpackPatterns.cpp
+++ b/mlir/lib/Dialect/Tensor/Transforms/PackAndUnpackPatterns.cpp
@@ -9,6 +9,7 @@
 #include "mlir/Dialect/Linalg/IR/Linalg.h"
 #include "mlir/Dialect/Tensor/IR/Tensor.h"
 #include "mlir/Dialect/Tensor/Transforms/Transforms.h"
+#include "mlir/Dialect/Utils/IndexingUtils.h"
 #include "mlir/IR/PatternMatch.h"
 #include "llvm/Support/Debug.h"
 
@@ -223,11 +224,52 @@ struct FoldProducerPackWithConsumerLinalgTransposeOp
     return success();
   }
 };
+
+/// Fold 'transpose' -> 'pack' into 'pack' since 'pack' already has transpose
+/// semantics.
+struct FoldConsumerPackWithProducerLinalgTransposeOp
+    : public OpRewritePattern<PackOp> {
+  using OpRewritePattern<PackOp>::OpRewritePattern;
+
+  LogicalResult matchAndRewrite(PackOp packOp,
+                                PatternRewriter &rewriter) const override {
+    auto transposeOp = packOp.getSource().getDefiningOp<linalg::TransposeOp>();
+
+    if (!transposeOp)
+      return failure();
+
+    auto transposePermutation = transposeOp.getPermutation();
+    auto outerDimsPerm = packOp.getOuterDimsPerm();
+    auto innerDimsPos = packOp.getInnerDimsPos();
+    SmallVector<int64_t> newInnerDimsPosVec;
+    SmallVector<int64_t> newOuterDimsPermVec =
+        llvm::to_vector(transposePermutation);
+
+    if (!outerDimsPerm.empty())
+      applyPermutationToVector(newOuterDimsPermVec, outerDimsPerm);
+
+    // Can't use applyPermutationToVector for newInnerDimsPosVec since input and
+    // permutation rank won't necessarily be equal in all cases.
+    for (auto dim : innerDimsPos)
+      newInnerDimsPosVec.push_back(transposePermutation[dim]);
+
+    Value output = packOp.createDestinationTensor(
+        rewriter, packOp.getLoc(), transposeOp.getOperand(0),
+        packOp.getMixedTiles(), newInnerDimsPosVec, newOuterDimsPermVec);
+
+    rewriter.replaceOpWithNewOp<PackOp>(
+        packOp, transposeOp.getOperand(0), output, newInnerDimsPosVec,
+        packOp.getMixedTiles(), packOp.getPaddingValue(), newOuterDimsPermVec);
+
+    return success();
+  }
+};
 } // namespace
 
 void populateFoldIntoPackAndUnpackPatterns(RewritePatternSet &patterns) {
   patterns.insert<FoldUnpackWithExtractSliceOp, FoldPadWithPackOp,
-                  FoldProducerPackWithConsumerLinalgTransposeOp>(
+                  FoldProducerPackWithConsumerLinalgTransposeOp,
+                  FoldConsumerPackWithProducerLinalgTransposeOp>(
       patterns.getContext());
 }
 

diff  --git a/mlir/test/Dialect/Tensor/fold-into-pack-and-unpack.mlir b/mlir/test/Dialect/Tensor/fold-into-pack-and-unpack.mlir
index e9e3ca9c0087f6..6003135b66b19d 100644
--- a/mlir/test/Dialect/Tensor/fold-into-pack-and-unpack.mlir
+++ b/mlir/test/Dialect/Tensor/fold-into-pack-and-unpack.mlir
@@ -345,3 +345,180 @@ func.func @tensor_pack_linalg_transpose_fold_dynamic_outer_dims_tile_dims_tile_s
 //      CHECK:     %[[PACK:.+]] = tensor.pack %[[ARG0]] outer_dims_perm = [2, 1, 3, 0] inner_dims_pos = [3, 1, 2] inner_tiles = [%[[ARG3]], %[[ARG1]], %[[ARG2]]] into %[[INIT]] : tensor<?x?x?x?xf32> -> tensor<?x?x?x?x?x?x?xf32>
 //      CHECK:     return %[[PACK]] : tensor<?x?x?x?x?x?x?xf32>
 //      CHECK:   }
+
+// -----
+
+func.func @linalg_transpose_tensor_pack_fold(%arg0: tensor<56x57x1x64xf32>) -> tensor<1x57x56x2x32xf32> {
+  %0 = tensor.empty() : tensor<1x56x57x64xf32>
+  %transposed = linalg.transpose
+    ins(%arg0 : tensor<56x57x1x64xf32>)
+    outs(%0 : tensor<1x56x57x64xf32>)
+    permutation = [2, 0, 1, 3]
+
+  %1 = tensor.empty() : tensor<1x57x56x2x32xf32>
+  %pack = tensor.pack %transposed
+    outer_dims_perm = [0, 2, 1, 3]
+    inner_dims_pos = [3]
+    inner_tiles = [32]
+    into %1 : tensor<1x56x57x64xf32> -> tensor<1x57x56x2x32xf32>
+  return %pack : tensor<1x57x56x2x32xf32>
+}
+//CHECK-LABEL: func @linalg_transpose_tensor_pack_fold(
+// CHECK-SAME:     %[[ARG0:.+]]: tensor<56x57x1x64xf32>)
+//      CHECK:   %[[INIT:.+]] = tensor.empty() : tensor<1x57x56x2x32xf32>
+//      CHECK:   %[[PACK:.+]] = tensor.pack %[[ARG0]]
+// CHECK-SAME:      outer_dims_perm = [2, 1, 0, 3]
+// CHECK-SAME:      inner_dims_pos = [3] inner_tiles = [32] 
+// CHECK-SAME:       into %[[INIT]]
+//      CHECK:   return %[[PACK]]
+
+// -----
+
+func.func @linalg_transpose_tensor_pack_fold_with_padding(%arg0: tensor<56x57x1x55xf32>, %padding: f32) -> tensor<1x57x56x2x32xf32> {
+  %0 = tensor.empty() : tensor<1x56x57x55xf32>
+  %transpose = linalg.transpose
+    ins(%arg0 : tensor<56x57x1x55xf32>)
+    outs(%0 : tensor<1x56x57x55xf32>)
+    permutation = [2, 0, 1, 3]
+  
+  %1 = tensor.empty() : tensor<1x57x56x2x32xf32>
+  %pack = tensor.pack %transpose padding_value(%padding : f32)
+    outer_dims_perm = [0, 2, 1, 3]
+    inner_dims_pos = [3]
+    inner_tiles = [32]
+    into %1 : tensor<1x56x57x55xf32> -> tensor<1x57x56x2x32xf32>
+  return %pack : tensor<1x57x56x2x32xf32>
+}
+//CHECK-LABEL: func @linalg_transpose_tensor_pack_fold_with_padding(
+// CHECK-SAME:     %[[ARG0:.+]]: tensor<56x57x1x55xf32>, %[[PADDING:.+]]: f32)
+//      CHECK:   %[[INIT:.+]] = tensor.empty() : tensor<1x57x56x2x32xf32>
+//      CHECK:   %[[PACK:.+]] = tensor.pack %[[ARG0]] padding_value(%[[PADDING]] : f32)
+// CHECK-SAME:      outer_dims_perm = [2, 1, 0, 3]
+// CHECK-SAME:      inner_dims_pos = [3] inner_tiles = [32] 
+// CHECK-SAME:       into %[[INIT]]
+//      CHECK:   return %[[PACK]]
+
+// -----
+
+func.func @linalg_transpose_tensor_pack_fold_no_outer_dims_perm(%arg0: tensor<56x57x1x64xf32>) -> tensor<1x56x57x2x32xf32> {
+  %0 = tensor.empty() : tensor<1x56x57x64xf32>
+  %transposed = linalg.transpose
+    ins(%arg0 : tensor<56x57x1x64xf32>)
+    outs(%0 : tensor<1x56x57x64xf32>)
+    permutation = [2, 0, 1, 3]
+  
+  %1 = tensor.empty() : tensor<1x56x57x2x32xf32>
+  %pack = tensor.pack %transposed
+    inner_dims_pos = [3]
+    inner_tiles = [32]
+    into %1 : tensor<1x56x57x64xf32> -> tensor<1x56x57x2x32xf32>
+  return %pack : tensor<1x56x57x2x32xf32>
+}
+//CHECK-LABEL: func @linalg_transpose_tensor_pack_fold_no_outer_dims_perm(
+// CHECK-SAME:     %[[ARG0:.+]]: tensor<56x57x1x64xf32>)
+//      CHECK:   %[[INIT:.+]] = tensor.empty() : tensor<1x56x57x2x32xf32>
+//      CHECK:   %[[PACK:.+]] = tensor.pack %[[ARG0]]
+// CHECK-SAME:      outer_dims_perm = [2, 0, 1, 3]
+// CHECK-SAME:      inner_dims_pos = [3] inner_tiles = [32] 
+// CHECK-SAME:       into %[[INIT]]
+//      CHECK:   return %[[PACK]]
+
+// -----
+
+func.func @linalg_transpose_tensor_pack_fold_complex_inner_dims_change(%arg0: tensor<25x30x35x40xf32>, %transpose_dest: tensor<35x40x25x30xf32>, %pack_dest: tensor<3x35x5x8x5x10x5xf32>) -> tensor<3x35x5x8x5x10x5xf32> {
+  %transposed = linalg.transpose
+    ins(%arg0 : tensor<25x30x35x40xf32>)
+    outs(%transpose_dest : tensor<35x40x25x30xf32>)
+    permutation = [2, 3, 0, 1]
+  
+  %pack = tensor.pack %transposed
+    outer_dims_perm = [3, 0, 2, 1]
+    inner_dims_pos = [1, 3, 2]
+    inner_tiles = [5, 10, 5]
+    into %pack_dest : tensor<35x40x25x30xf32> -> tensor<3x35x5x8x5x10x5xf32>
+  return %pack : tensor<3x35x5x8x5x10x5xf32>
+}
+//CHECK-LABEL:   func.func @linalg_transpose_tensor_pack_fold_complex_inner_dims_change(
+// CHECK-SAME:     %[[ARG0:.+]]: tensor<25x30x35x40xf32>, 
+// CHECK-SAME:     %[[ARG1:.+]]: tensor<35x40x25x30xf32>, 
+// CHECK-SAME:     %[[ARG2:.+]]: tensor<3x35x5x8x5x10x5xf32>) -> tensor<3x35x5x8x5x10x5xf32> {
+//      CHECK:     %[[VAL0:.+]] = tensor.empty() : tensor<3x35x5x8x5x10x5xf32>
+//      CHECK:     %[[PACK:.+]] = tensor.pack %[[ARG0]] 
+// CHECK-SAME:        outer_dims_perm = [1, 2, 0, 3] 
+// CHECK-SAME:        inner_dims_pos = [3, 1, 0] 
+// CHECK-SAME:        inner_tiles = [5, 10, 5] 
+// CHECK-SAME:         into %[[VAL0]] 
+//      CHECK:     return %[[PACK]]
+
+// -----
+
+func.func @linalg_transpose_tensor_pack_fold_dynamic_outer_dims_tile_dims_tile_sizes(%arg0: tensor<?x?x?x?xf32>, %transpose_dest: tensor<?x?x?x?xf32>, %pack_dest: tensor<?x?x?x?x?x?x?xf32>, %tile_p : index, %tile_q : index, %tile_r : index) -> tensor<?x?x?x?x?x?x?xf32> {
+  %transposed = linalg.transpose
+    ins(%arg0 : tensor<?x?x?x?xf32>)
+    outs(%transpose_dest : tensor<?x?x?x?xf32>)
+    permutation = [2, 3, 0, 1]
+  
+  %pack = tensor.pack %transposed
+    outer_dims_perm = [3, 0, 2, 1]
+    inner_dims_pos = [1, 3, 2]
+    inner_tiles = [%tile_p, %tile_q, %tile_r]
+    into %pack_dest : tensor<?x?x?x?xf32> -> tensor<?x?x?x?x?x?x?xf32>
+  return %pack : tensor<?x?x?x?x?x?x?xf32>
+}
+//      CHECK:   #[[map:.+]] = affine_map<()[s0, s1] -> (s0 ceildiv s1)>
+//CHECK-LABEL:   func.func @linalg_transpose_tensor_pack_fold_dynamic_outer_dims_tile_dims_tile_sizes(
+// CHECK-SAME:   %[[ARG0:.+]]: tensor<?x?x?x?xf32>, %[[ARG1:.+]]: tensor<?x?x?x?xf32>, 
+// CHECK-SAME:   %[[ARG2:.+]]: tensor<?x?x?x?x?x?x?xf32>, %[[ARG3:.+]]: index, %[[ARG4:.+]]: index, %[[ARG5:.+]]: index) -> tensor<?x?x?x?x?x?x?xf32> {
+//      CHECK:     %[[C0:.+]] = arith.constant 0 : index
+//      CHECK:     %[[C1:.+]] = arith.constant 1 : index
+//      CHECK:     %[[C2:.+]] = arith.constant 2 : index
+//      CHECK:     %[[C3:.+]] = arith.constant 3 : index
+//      CHECK:     %[[DIM:.+]] = tensor.dim %[[ARG0]], %[[C0]] : tensor<?x?x?x?xf32>
+//      CHECK:     %[[DIM0:.+]] = tensor.dim %[[ARG0]], %[[C1]] : tensor<?x?x?x?xf32>
+//      CHECK:     %[[DIM1:.+]] = tensor.dim %[[ARG0]], %[[C2]] : tensor<?x?x?x?xf32>
+//      CHECK:     %[[DIM2:.+]] = tensor.dim %[[ARG0]], %[[C3]] : tensor<?x?x?x?xf32>
+//      CHECK:     %[[VAL0:.+]] = affine.apply #[[map:.+]]()[%[[DIM2]], %[[ARG3]]]
+//      CHECK:     %[[VAL1:.+]] = affine.apply #[[map:.+]]()[%[[DIM0]], %[[ARG4]]]
+//      CHECK:     %[[VAL2:.+]] = affine.apply #[[map:.+]]()[%[[DIM]], %[[ARG5]]]
+//      CHECK:     %[[VAL3:.+]] = tensor.empty(%[[VAL1]], %[[DIM1]], %[[VAL2]], %[[VAL0]], %[[ARG3]], %[[ARG4]], %[[ARG5]]) : tensor<?x?x?x?x?x?x?xf32>
+//      CHECK:     %[[PACK:.+]] = tensor.pack %[[ARG0]] outer_dims_perm = [1, 2, 0, 3] inner_dims_pos = [3, 1, 0] inner_tiles = [%[[ARG3]], %[[ARG4]], %[[ARG5]]] into %[[VAL3]] : tensor<?x?x?x?xf32> -> tensor<?x?x?x?x?x?x?xf32>
+//      CHECK:     return %[[PACK]] : tensor<?x?x?x?x?x?x?xf32>
+
+// -----
+
+func.func @linalg_transpose_tensor_pack_multiple_tiles(%arg0: tensor<?x32x128xbf16>) -> tensor<32x?x64x16x2xbf16> {
+  %c0 = arith.constant 0 : index
+  %cst = arith.constant 0.000000e+00 : bf16
+  %dim = tensor.dim %arg0, %c0 : tensor<?x32x128xbf16>
+
+  %0 = tensor.empty(%dim) : tensor<32x128x?xbf16>
+  %transposed = linalg.transpose 
+    ins(%arg0 : tensor<?x32x128xbf16>) 
+    outs(%0 : tensor<32x128x?xbf16>) 
+    permutation = [1, 2, 0]
+
+  %2 = tensor.empty(%dim) : tensor<32x?x64x16x2xbf16>
+  %pack = tensor.pack %transposed 
+    padding_value(%cst : bf16) 
+    outer_dims_perm = [0, 2, 1] 
+    inner_dims_pos = [2, 1] 
+    inner_tiles = [16, 2] 
+    into %2 : tensor<32x128x?xbf16> -> tensor<32x?x64x16x2xbf16>
+  return %pack : tensor<32x?x64x16x2xbf16>
+}
+//      CHECK:   #[[map:.+]] = affine_map<()[s0] -> (s0 ceildiv 16)>
+//CHECK-LABEL:   func.func @linalg_transpose_tensor_pack_multiple_tiles(
+// CHECK-SAME:    %[[ARG0:.+]]: tensor<?x32x128xbf16>) -> tensor<32x?x64x16x2xbf16> {
+//      CHECK:   %[[C0:.+]] = arith.constant 0 : index
+//      CHECK:   %[[CST:.+]] = arith.constant 0.000000e+00 : bf16
+//      CHECK:   %[[DIM:.+]] = tensor.dim %[[ARG0]], %[[C0]] : tensor<?x32x128xbf16>
+//      CHECK:   %[[VAL0:.+]] = affine.apply #[[map:.+]]()[%[[DIM]]]
+//      CHECK:   %[[VAL1:.+]] = tensor.empty(%[[VAL0]]) : tensor<32x?x64x16x2xbf16>
+//      CHECK:   %[[PACK:.+]] = tensor.pack %[[ARG0]] 
+// CHECK-SAME:      padding_value(%[[CST]] : bf16) 
+// CHECK-SAME:      outer_dims_perm = [1, 0, 2] 
+// CHECK-SAME:      inner_dims_pos = [0, 2] 
+// CHECK-SAME:      inner_tiles = [16, 2] 
+// CHECK-SAME:      into %[[VAL1]] : tensor<?x32x128xbf16> -> tensor<32x?x64x16x2xbf16>
+//      CHECK:   return %[[PACK]] : tensor<32x?x64x16x2xbf16>
+//      CHECK:  }


        


More information about the Mlir-commits mailing list