[Mlir-commits] [mlir] [mlir][math] Add math.acosh|asin|asinh|atanh op (PR #77463)
Vivek Khandelwal
llvmlistbot at llvm.org
Tue Jan 9 05:01:04 PST 2024
https://github.com/vivekkhandelwal1 created https://github.com/llvm/llvm-project/pull/77463
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424 at gmail.com>
>From 904e80037b4a8ac6ba673930808c3b7aae2ed312 Mon Sep 17 00:00:00 2001
From: Vivek Khandelwal <vivekkhandelwal1424 at gmail.com>
Date: Tue, 9 Jan 2024 12:04:00 +0000
Subject: [PATCH] [mlir][math] Add math.acosh|asin|asinh|atanh op
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424 at gmail.com>
---
mlir/include/mlir/Dialect/Math/IR/MathOps.td | 108 ++++++++++++
mlir/lib/Conversion/MathToLibm/MathToLibm.cpp | 4 +
mlir/lib/Dialect/Math/IR/MathOps.cpp | 72 ++++++++
.../MathToLibm/convert-to-libm.mlir | 166 ++++++++++++++++++
4 files changed, 350 insertions(+)
diff --git a/mlir/include/mlir/Dialect/Math/IR/MathOps.td b/mlir/include/mlir/Dialect/Math/IR/MathOps.td
index fdb9ec09ae3e7b..3f6d2d2e44783f 100644
--- a/mlir/include/mlir/Dialect/Math/IR/MathOps.td
+++ b/mlir/include/mlir/Dialect/Math/IR/MathOps.td
@@ -135,6 +135,87 @@ def Math_AbsIOp : Math_IntegerUnaryOp<"absi"> {
let hasFolder = 1;
}
+//===----------------------------------------------------------------------===//
+// AcoshOp
+//===----------------------------------------------------------------------===//
+
+def Math_AcoshOp : Math_FloatUnaryOp<"acosh">{
+ let summary = "Hyperbolic arcus cosine of the given value";
+ let description = [{
+ Syntax:
+
+ ```
+ operation ::= ssa-id `=` `math.acosh` ssa-use `:` type
+ ```
+
+ The `acosh` operation computes the arcus cosine of a given value. It takes
+ one operand of floating point type (i.e., scalar, tensor or vector) and returns
+ one result of the same type. It has no standard attributes.
+
+ Example:
+
+ ```mlir
+ // Hyperbolic arcus cosine of scalar value.
+ %a = math.acosh %b : f64
+ ```
+ }];
+ let hasFolder = 1;
+}
+
+//===----------------------------------------------------------------------===//
+// AsinOp
+//===----------------------------------------------------------------------===//
+
+def Math_AsinOp : Math_FloatUnaryOp<"asin">{
+ let summary = "arcus sine of the given value";
+ let description = [{
+ Syntax:
+
+ ```
+ operation ::= ssa-id `=` `math.asin` ssa-use `:` type
+ ```
+
+ The `asin` operation computes the arcus sine of a given value. It takes
+ one operand of floating point type (i.e., scalar, tensor or vector) and returns
+ one result of the same type. It has no standard attributes.
+
+ Example:
+
+ ```mlir
+ // Arcus sine of scalar value.
+ %a = math.asin %b : f64
+ ```
+ }];
+ let hasFolder = 1;
+}
+
+//===----------------------------------------------------------------------===//
+// AsinhOp
+//===----------------------------------------------------------------------===//
+
+def Math_AsinhOp : Math_FloatUnaryOp<"asinh">{
+ let summary = "hyperbolic arcus sine of the given value";
+ let description = [{
+ Syntax:
+
+ ```
+ operation ::= ssa-id `=` `math.asinh` ssa-use `:` type
+ ```
+
+ The `asinh` operation computes the hyperbolic arcus sine of a given value. It takes
+ one operand of floating point type (i.e., scalar, tensor or vector) and returns
+ one result of the same type. It has no standard attributes.
+
+ Example:
+
+ ```mlir
+ // Hyperbolic arcus sine of scalar value.
+ %a = math.asinh %b : f64
+ ```
+ }];
+ let hasFolder = 1;
+}
+
//===----------------------------------------------------------------------===//
// AtanOp
//===----------------------------------------------------------------------===//
@@ -156,6 +237,33 @@ def Math_AtanOp : Math_FloatUnaryOp<"atan">{
let hasFolder = 1;
}
+//===----------------------------------------------------------------------===//
+// AtanhOp
+//===----------------------------------------------------------------------===//
+
+def Math_AtanhOp : Math_FloatUnaryOp<"atanh">{
+ let summary = "hyperbolic arcus tangent of the given value";
+ let description = [{
+ Syntax:
+
+ ```
+ operation ::= ssa-id `=` `math.atanh` ssa-use `:` type
+ ```
+
+ The `atanh` operation computes the hyperbolic arcus tangent of a given value. It takes
+ one operand of floating point type (i.e., scalar, tensor or vector) and returns
+ one result of the same type. It has no standard attributes.
+
+ Example:
+
+ ```mlir
+ // Hyperbolic arcus tangent of scalar value.
+ %a = math.atanh %b : f64
+ ```
+ }];
+ let hasFolder = 1;
+}
+
//===----------------------------------------------------------------------===//
// Atan2Op
//===----------------------------------------------------------------------===//
diff --git a/mlir/lib/Conversion/MathToLibm/MathToLibm.cpp b/mlir/lib/Conversion/MathToLibm/MathToLibm.cpp
index 80eec9b2df7458..d1372576407f9a 100644
--- a/mlir/lib/Conversion/MathToLibm/MathToLibm.cpp
+++ b/mlir/lib/Conversion/MathToLibm/MathToLibm.cpp
@@ -163,8 +163,12 @@ void mlir::populateMathToLibmConversionPatterns(RewritePatternSet &patterns) {
MLIRContext *ctx = patterns.getContext();
populatePatternsForOp<math::AcosOp>(patterns, ctx, "acosf", "acos");
+ populatePatternsForOp<math::AcoshOp>(patterns, ctx, "acoshf", "acosh");
+ populatePatternsForOp<math::AsinOp>(patterns, ctx, "asinf", "asin");
+ populatePatternsForOp<math::AsinhOp>(patterns, ctx, "asinhf", "asinh");
populatePatternsForOp<math::Atan2Op>(patterns, ctx, "atan2f", "atan2");
populatePatternsForOp<math::AtanOp>(patterns, ctx, "atanf", "atan");
+ populatePatternsForOp<math::AtanhOp>(patterns, ctx, "atanhf", "atanh");
populatePatternsForOp<math::CbrtOp>(patterns, ctx, "cbrtf", "cbrt");
populatePatternsForOp<math::CeilOp>(patterns, ctx, "ceilf", "ceil");
populatePatternsForOp<math::CosOp>(patterns, ctx, "cosf", "cos");
diff --git a/mlir/lib/Dialect/Math/IR/MathOps.cpp b/mlir/lib/Dialect/Math/IR/MathOps.cpp
index bac46996fce73e..1690585e78c5da 100644
--- a/mlir/lib/Dialect/Math/IR/MathOps.cpp
+++ b/mlir/lib/Dialect/Math/IR/MathOps.cpp
@@ -59,6 +59,60 @@ OpFoldResult math::AcosOp::fold(FoldAdaptor adaptor) {
});
}
+//===----------------------------------------------------------------------===//
+// AcoshOp folder
+//===----------------------------------------------------------------------===//
+
+OpFoldResult math::AcoshOp::fold(FoldAdaptor adaptor) {
+ return constFoldUnaryOpConditional<FloatAttr>(
+ adaptor.getOperands(), [](const APFloat &a) -> std::optional<APFloat> {
+ switch (a.getSizeInBits(a.getSemantics())) {
+ case 64:
+ return APFloat(acosh(a.convertToDouble()));
+ case 32:
+ return APFloat(acoshf(a.convertToFloat()));
+ default:
+ return {};
+ }
+ });
+}
+
+//===----------------------------------------------------------------------===//
+// AsinOp folder
+//===----------------------------------------------------------------------===//
+
+OpFoldResult math::AsinOp::fold(FoldAdaptor adaptor) {
+ return constFoldUnaryOpConditional<FloatAttr>(
+ adaptor.getOperands(), [](const APFloat &a) -> std::optional<APFloat> {
+ switch (a.getSizeInBits(a.getSemantics())) {
+ case 64:
+ return APFloat(asin(a.convertToDouble()));
+ case 32:
+ return APFloat(asinf(a.convertToFloat()));
+ default:
+ return {};
+ }
+ });
+}
+
+//===----------------------------------------------------------------------===//
+// AsinhOp folder
+//===----------------------------------------------------------------------===//
+
+OpFoldResult math::AsinhOp::fold(FoldAdaptor adaptor) {
+ return constFoldUnaryOpConditional<FloatAttr>(
+ adaptor.getOperands(), [](const APFloat &a) -> std::optional<APFloat> {
+ switch (a.getSizeInBits(a.getSemantics())) {
+ case 64:
+ return APFloat(asinh(a.convertToDouble()));
+ case 32:
+ return APFloat(asinhf(a.convertToFloat()));
+ default:
+ return {};
+ }
+ });
+}
+
//===----------------------------------------------------------------------===//
// AtanOp folder
//===----------------------------------------------------------------------===//
@@ -77,6 +131,24 @@ OpFoldResult math::AtanOp::fold(FoldAdaptor adaptor) {
});
}
+//===----------------------------------------------------------------------===//
+// AtanhOp folder
+//===----------------------------------------------------------------------===//
+
+OpFoldResult math::AtanhOp::fold(FoldAdaptor adaptor) {
+ return constFoldUnaryOpConditional<FloatAttr>(
+ adaptor.getOperands(), [](const APFloat &a) -> std::optional<APFloat> {
+ switch (a.getSizeInBits(a.getSemantics())) {
+ case 64:
+ return APFloat(atanh(a.convertToDouble()));
+ case 32:
+ return APFloat(atanhf(a.convertToFloat()));
+ default:
+ return {};
+ }
+ });
+}
+
//===----------------------------------------------------------------------===//
// Atan2Op folder
//===----------------------------------------------------------------------===//
diff --git a/mlir/test/Conversion/MathToLibm/convert-to-libm.mlir b/mlir/test/Conversion/MathToLibm/convert-to-libm.mlir
index bfe084b6ca0ab6..ffc2939afe7ff7 100644
--- a/mlir/test/Conversion/MathToLibm/convert-to-libm.mlir
+++ b/mlir/test/Conversion/MathToLibm/convert-to-libm.mlir
@@ -2,8 +2,16 @@
// CHECK-DAG: @acos(f64) -> f64 attributes {llvm.readnone}
// CHECK-DAG: @acosf(f32) -> f32 attributes {llvm.readnone}
+// CHECK-DAG: @acosh(f64) -> f64 attributes {llvm.readnone}
+// CHECK-DAG: @acoshf(f32) -> f32 attributes {llvm.readnone}
+// CHECK-DAG: @asin(f64) -> f64 attributes {llvm.readnone}
+// CHECK-DAG: @asinf(f32) -> f32 attributes {llvm.readnone}
+// CHECK-DAG: @asinh(f64) -> f64 attributes {llvm.readnone}
+// CHECK-DAG: @asinhf(f32) -> f32 attributes {llvm.readnone}
// CHECK-DAG: @atan(f64) -> f64 attributes {llvm.readnone}
// CHECK-DAG: @atanf(f32) -> f32 attributes {llvm.readnone}
+// CHECK-DAG: @atanh(f64) -> f64 attributes {llvm.readnone}
+// CHECK-DAG: @atanhf(f32) -> f32 attributes {llvm.readnone}
// CHECK-DAG: @erf(f64) -> f64 attributes {llvm.readnone}
// CHECK-DAG: @erff(f32) -> f32 attributes {llvm.readnone}
// CHECK-DAG: @expm1(f64) -> f64 attributes {llvm.readnone}
@@ -70,6 +78,117 @@ func.func @acos_vec_caller(%float: vector<2xf32>, %double: vector<2xf64>) -> (ve
return %float_result, %double_result : vector<2xf32>, vector<2xf64>
}
+// CHECK-LABEL: func @acosh_caller
+// CHECK-SAME: %[[FLOAT:.*]]: f32
+// CHECK-SAME: %[[DOUBLE:.*]]: f64
+func.func @acosh_caller(%float: f32, %double: f64) -> (f32, f64) {
+ // CHECK-DAG: %[[FLOAT_RESULT:.*]] = call @acoshf(%[[FLOAT]]) : (f32) -> f32
+ %float_result = math.acosh %float : f32
+ // CHECK-DAG: %[[DOUBLE_RESULT:.*]] = call @acosh(%[[DOUBLE]]) : (f64) -> f64
+ %double_result = math.acosh %double : f64
+ // CHECK: return %[[FLOAT_RESULT]], %[[DOUBLE_RESULT]]
+ return %float_result, %double_result : f32, f64
+}
+
+// CHECK-LABEL: func @acosh_vec_caller(
+// CHECK-SAME: %[[VAL_0:.*]]: vector<2xf32>,
+// CHECK-SAME: %[[VAL_1:.*]]: vector<2xf64>) -> (vector<2xf32>, vector<2xf64>) {
+// CHECK-DAG: %[[CVF:.*]] = arith.constant dense<0.000000e+00> : vector<2xf32>
+// CHECK-DAG: %[[CVD:.*]] = arith.constant dense<0.000000e+00> : vector<2xf64>
+// CHECK: %[[IN0_F32:.*]] = vector.extract %[[VAL_0]][0] : f32 from vector<2xf32>
+// CHECK: %[[OUT0_F32:.*]] = call @acoshf(%[[IN0_F32]]) : (f32) -> f32
+// CHECK: %[[VAL_8:.*]] = vector.insert %[[OUT0_F32]], %[[CVF]] [0] : f32 into vector<2xf32>
+// CHECK: %[[IN1_F32:.*]] = vector.extract %[[VAL_0]][1] : f32 from vector<2xf32>
+// CHECK: %[[OUT1_F32:.*]] = call @acoshf(%[[IN1_F32]]) : (f32) -> f32
+// CHECK: %[[VAL_11:.*]] = vector.insert %[[OUT1_F32]], %[[VAL_8]] [1] : f32 into vector<2xf32>
+// CHECK: %[[IN0_F64:.*]] = vector.extract %[[VAL_1]][0] : f64 from vector<2xf64>
+// CHECK: %[[OUT0_F64:.*]] = call @acosh(%[[IN0_F64]]) : (f64) -> f64
+// CHECK: %[[VAL_14:.*]] = vector.insert %[[OUT0_F64]], %[[CVD]] [0] : f64 into vector<2xf64>
+// CHECK: %[[IN1_F64:.*]] = vector.extract %[[VAL_1]][1] : f64 from vector<2xf64>
+// CHECK: %[[OUT1_F64:.*]] = call @acosh(%[[IN1_F64]]) : (f64) -> f64
+// CHECK: %[[VAL_17:.*]] = vector.insert %[[OUT1_F64]], %[[VAL_14]] [1] : f64 into vector<2xf64>
+// CHECK: return %[[VAL_11]], %[[VAL_17]] : vector<2xf32>, vector<2xf64>
+// CHECK: }
+func.func @acosh_vec_caller(%float: vector<2xf32>, %double: vector<2xf64>) -> (vector<2xf32>, vector<2xf64>) {
+ %float_result = math.acosh %float : vector<2xf32>
+ %double_result = math.acosh %double : vector<2xf64>
+ return %float_result, %double_result : vector<2xf32>, vector<2xf64>
+}
+
+// CHECK-LABEL: func @asin_caller
+// CHECK-SAME: %[[FLOAT:.*]]: f32
+// CHECK-SAME: %[[DOUBLE:.*]]: f64
+func.func @asin_caller(%float: f32, %double: f64) -> (f32, f64) {
+ // CHECK-DAG: %[[FLOAT_RESULT:.*]] = call @asinf(%[[FLOAT]]) : (f32) -> f32
+ %float_result = math.asin %float : f32
+ // CHECK-DAG: %[[DOUBLE_RESULT:.*]] = call @asin(%[[DOUBLE]]) : (f64) -> f64
+ %double_result = math.asin %double : f64
+ // CHECK: return %[[FLOAT_RESULT]], %[[DOUBLE_RESULT]]
+ return %float_result, %double_result : f32, f64
+}
+
+// CHECK-LABEL: func @asin_vec_caller(
+// CHECK-SAME: %[[VAL_0:.*]]: vector<2xf32>,
+// CHECK-SAME: %[[VAL_1:.*]]: vector<2xf64>) -> (vector<2xf32>, vector<2xf64>) {
+// CHECK-DAG: %[[CVF:.*]] = arith.constant dense<0.000000e+00> : vector<2xf32>
+// CHECK-DAG: %[[CVD:.*]] = arith.constant dense<0.000000e+00> : vector<2xf64>
+// CHECK: %[[IN0_F32:.*]] = vector.extract %[[VAL_0]][0] : f32 from vector<2xf32>
+// CHECK: %[[OUT0_F32:.*]] = call @asinf(%[[IN0_F32]]) : (f32) -> f32
+// CHECK: %[[VAL_8:.*]] = vector.insert %[[OUT0_F32]], %[[CVF]] [0] : f32 into vector<2xf32>
+// CHECK: %[[IN1_F32:.*]] = vector.extract %[[VAL_0]][1] : f32 from vector<2xf32>
+// CHECK: %[[OUT1_F32:.*]] = call @asinf(%[[IN1_F32]]) : (f32) -> f32
+// CHECK: %[[VAL_11:.*]] = vector.insert %[[OUT1_F32]], %[[VAL_8]] [1] : f32 into vector<2xf32>
+// CHECK: %[[IN0_F64:.*]] = vector.extract %[[VAL_1]][0] : f64 from vector<2xf64>
+// CHECK: %[[OUT0_F64:.*]] = call @asin(%[[IN0_F64]]) : (f64) -> f64
+// CHECK: %[[VAL_14:.*]] = vector.insert %[[OUT0_F64]], %[[CVD]] [0] : f64 into vector<2xf64>
+// CHECK: %[[IN1_F64:.*]] = vector.extract %[[VAL_1]][1] : f64 from vector<2xf64>
+// CHECK: %[[OUT1_F64:.*]] = call @asin(%[[IN1_F64]]) : (f64) -> f64
+// CHECK: %[[VAL_17:.*]] = vector.insert %[[OUT1_F64]], %[[VAL_14]] [1] : f64 into vector<2xf64>
+// CHECK: return %[[VAL_11]], %[[VAL_17]] : vector<2xf32>, vector<2xf64>
+// CHECK: }
+func.func @asin_vec_caller(%float: vector<2xf32>, %double: vector<2xf64>) -> (vector<2xf32>, vector<2xf64>) {
+ %float_result = math.asin %float : vector<2xf32>
+ %double_result = math.asin %double : vector<2xf64>
+ return %float_result, %double_result : vector<2xf32>, vector<2xf64>
+}
+
+// CHECK-LABEL: func @asinh_caller
+// CHECK-SAME: %[[FLOAT:.*]]: f32
+// CHECK-SAME: %[[DOUBLE:.*]]: f64
+func.func @asinh_caller(%float: f32, %double: f64) -> (f32, f64) {
+ // CHECK-DAG: %[[FLOAT_RESULT:.*]] = call @asinhf(%[[FLOAT]]) : (f32) -> f32
+ %float_result = math.asinh %float : f32
+ // CHECK-DAG: %[[DOUBLE_RESULT:.*]] = call @asinh(%[[DOUBLE]]) : (f64) -> f64
+ %double_result = math.asinh %double : f64
+ // CHECK: return %[[FLOAT_RESULT]], %[[DOUBLE_RESULT]]
+ return %float_result, %double_result : f32, f64
+}
+
+// CHECK-LABEL: func @asinh_vec_caller(
+// CHECK-SAME: %[[VAL_0:.*]]: vector<2xf32>,
+// CHECK-SAME: %[[VAL_1:.*]]: vector<2xf64>) -> (vector<2xf32>, vector<2xf64>) {
+// CHECK-DAG: %[[CVF:.*]] = arith.constant dense<0.000000e+00> : vector<2xf32>
+// CHECK-DAG: %[[CVD:.*]] = arith.constant dense<0.000000e+00> : vector<2xf64>
+// CHECK: %[[IN0_F32:.*]] = vector.extract %[[VAL_0]][0] : f32 from vector<2xf32>
+// CHECK: %[[OUT0_F32:.*]] = call @asinhf(%[[IN0_F32]]) : (f32) -> f32
+// CHECK: %[[VAL_8:.*]] = vector.insert %[[OUT0_F32]], %[[CVF]] [0] : f32 into vector<2xf32>
+// CHECK: %[[IN1_F32:.*]] = vector.extract %[[VAL_0]][1] : f32 from vector<2xf32>
+// CHECK: %[[OUT1_F32:.*]] = call @asinhf(%[[IN1_F32]]) : (f32) -> f32
+// CHECK: %[[VAL_11:.*]] = vector.insert %[[OUT1_F32]], %[[VAL_8]] [1] : f32 into vector<2xf32>
+// CHECK: %[[IN0_F64:.*]] = vector.extract %[[VAL_1]][0] : f64 from vector<2xf64>
+// CHECK: %[[OUT0_F64:.*]] = call @asinh(%[[IN0_F64]]) : (f64) -> f64
+// CHECK: %[[VAL_14:.*]] = vector.insert %[[OUT0_F64]], %[[CVD]] [0] : f64 into vector<2xf64>
+// CHECK: %[[IN1_F64:.*]] = vector.extract %[[VAL_1]][1] : f64 from vector<2xf64>
+// CHECK: %[[OUT1_F64:.*]] = call @asinh(%[[IN1_F64]]) : (f64) -> f64
+// CHECK: %[[VAL_17:.*]] = vector.insert %[[OUT1_F64]], %[[VAL_14]] [1] : f64 into vector<2xf64>
+// CHECK: return %[[VAL_11]], %[[VAL_17]] : vector<2xf32>, vector<2xf64>
+// CHECK: }
+func.func @asinh_vec_caller(%float: vector<2xf32>, %double: vector<2xf64>) -> (vector<2xf32>, vector<2xf64>) {
+ %float_result = math.asinh %float : vector<2xf32>
+ %double_result = math.asinh %double : vector<2xf64>
+ return %float_result, %double_result : vector<2xf32>, vector<2xf64>
+}
+
// CHECK-LABEL: func @atan_caller
// CHECK-SAME: %[[FLOAT:.*]]: f32
// CHECK-SAME: %[[DOUBLE:.*]]: f64
@@ -117,6 +236,53 @@ func.func @atan_vec_caller(%float: vector<2xf32>, %double: vector<2xf64>) -> (ve
return %float_result, %double_result : vector<2xf32>, vector<2xf64>
}
+// CHECK-LABEL: func @atanh_caller
+// CHECK-SAME: %[[FLOAT:.*]]: f32
+// CHECK-SAME: %[[DOUBLE:.*]]: f64
+// CHECK-SAME: %[[HALF:.*]]: f16
+// CHECK-SAME: %[[BFLOAT:.*]]: bf16
+func.func @atanh_caller(%float: f32, %double: f64, %half: f16, %bfloat: bf16) -> (f32, f64, f16, bf16) {
+ // CHECK: %[[FLOAT_RESULT:.*]] = call @atanhf(%[[FLOAT]]) : (f32) -> f32
+ %float_result = math.atanh %float : f32
+ // CHECK: %[[DOUBLE_RESULT:.*]] = call @atanh(%[[DOUBLE]]) : (f64) -> f64
+ %double_result = math.atanh %double : f64
+ // CHECK: %[[HALF_PROMOTED:.*]] = arith.extf %[[HALF]] : f16 to f32
+ // CHECK: %[[HALF_CALL:.*]] = call @atanhf(%[[HALF_PROMOTED]]) : (f32) -> f32
+ // CHECK: %[[HALF_RESULT:.*]] = arith.truncf %[[HALF_CALL]] : f32 to f16
+ %half_result = math.atanh %half : f16
+ // CHECK: %[[BFLOAT_PROMOTED:.*]] = arith.extf %[[BFLOAT]] : bf16 to f32
+ // CHECK: %[[BFLOAT_CALL:.*]] = call @atanhf(%[[BFLOAT_PROMOTED]]) : (f32) -> f32
+ // CHECK: %[[BFLOAT_RESULT:.*]] = arith.truncf %[[BFLOAT_CALL]] : f32 to bf16
+ %bfloat_result = math.atanh %bfloat : bf16
+ // CHECK: return %[[FLOAT_RESULT]], %[[DOUBLE_RESULT]], %[[HALF_RESULT]], %[[BFLOAT_RESULT]]
+ return %float_result, %double_result, %half_result, %bfloat_result : f32, f64, f16, bf16
+}
+
+// CHECK-LABEL: func @atanh_vec_caller(
+// CHECK-SAME: %[[VAL_0:.*]]: vector<2xf32>,
+// CHECK-SAME: %[[VAL_1:.*]]: vector<2xf64>) -> (vector<2xf32>, vector<2xf64>) {
+// CHECK-DAG: %[[CVF:.*]] = arith.constant dense<0.000000e+00> : vector<2xf32>
+// CHECK-DAG: %[[CVD:.*]] = arith.constant dense<0.000000e+00> : vector<2xf64>
+// CHECK: %[[IN0_F32:.*]] = vector.extract %[[VAL_0]][0] : f32 from vector<2xf32>
+// CHECK: %[[OUT0_F32:.*]] = call @atanhf(%[[IN0_F32]]) : (f32) -> f32
+// CHECK: %[[VAL_8:.*]] = vector.insert %[[OUT0_F32]], %[[CVF]] [0] : f32 into vector<2xf32>
+// CHECK: %[[IN1_F32:.*]] = vector.extract %[[VAL_0]][1] : f32 from vector<2xf32>
+// CHECK: %[[OUT1_F32:.*]] = call @atanhf(%[[IN1_F32]]) : (f32) -> f32
+// CHECK: %[[VAL_11:.*]] = vector.insert %[[OUT1_F32]], %[[VAL_8]] [1] : f32 into vector<2xf32>
+// CHECK: %[[IN0_F64:.*]] = vector.extract %[[VAL_1]][0] : f64 from vector<2xf64>
+// CHECK: %[[OUT0_F64:.*]] = call @atanh(%[[IN0_F64]]) : (f64) -> f64
+// CHECK: %[[VAL_14:.*]] = vector.insert %[[OUT0_F64]], %[[CVD]] [0] : f64 into vector<2xf64>
+// CHECK: %[[IN1_F64:.*]] = vector.extract %[[VAL_1]][1] : f64 from vector<2xf64>
+// CHECK: %[[OUT1_F64:.*]] = call @atanh(%[[IN1_F64]]) : (f64) -> f64
+// CHECK: %[[VAL_17:.*]] = vector.insert %[[OUT1_F64]], %[[VAL_14]] [1] : f64 into vector<2xf64>
+// CHECK: return %[[VAL_11]], %[[VAL_17]] : vector<2xf32>, vector<2xf64>
+// CHECK: }
+func.func @atanh_vec_caller(%float: vector<2xf32>, %double: vector<2xf64>) -> (vector<2xf32>, vector<2xf64>) {
+ %float_result = math.atanh %float : vector<2xf32>
+ %double_result = math.atanh %double : vector<2xf64>
+ return %float_result, %double_result : vector<2xf32>, vector<2xf64>
+}
+
// CHECK-LABEL: func @tanh_caller
// CHECK-SAME: %[[FLOAT:.*]]: f32
// CHECK-SAME: %[[DOUBLE:.*]]: f64
More information about the Mlir-commits
mailing list