[Mlir-commits] [mlir] [mlir][sparse][gpu] migration to sparse_tensor.print (PR #83510)
Aart Bik
llvmlistbot at llvm.org
Thu Feb 29 16:46:23 PST 2024
https://github.com/aartbik created https://github.com/llvm/llvm-project/pull/83510
Continuous efforts #83357 for our sparse CUDA tests
>From eb9f8850ec5dcad3648a051547a3b39a9dbc7ba3 Mon Sep 17 00:00:00 2001
From: Aart Bik <ajcbik at google.com>
Date: Thu, 29 Feb 2024 16:45:41 -0800
Subject: [PATCH] [mlir][sparse][gpu] migration to sparse_tensor.print
Continuous efforts #83357 for our sparse CUDA tests
---
.../GPU/CUDA/sparse-gemm-lib.mlir | 24 ++++++----------
.../GPU/CUDA/sparse-matmul-lib.mlir | 28 ++++---------------
.../GPU/CUDA/sparse-sampled-matmul-lib.mlir | 23 +++++++++------
.../GPU/CUDA/sparse-sddmm-lib.mlir | 23 +++++++++------
4 files changed, 43 insertions(+), 55 deletions(-)
diff --git a/mlir/test/Integration/Dialect/SparseTensor/GPU/CUDA/sparse-gemm-lib.mlir b/mlir/test/Integration/Dialect/SparseTensor/GPU/CUDA/sparse-gemm-lib.mlir
index 73faf7d9b7b9a3..984b3614eded56 100644
--- a/mlir/test/Integration/Dialect/SparseTensor/GPU/CUDA/sparse-gemm-lib.mlir
+++ b/mlir/test/Integration/Dialect/SparseTensor/GPU/CUDA/sparse-gemm-lib.mlir
@@ -62,23 +62,15 @@ module {
tensor<8x8xf32, #CSR>) -> tensor<8x8xf32, #CSR>
//
- // Verify computed result (expected output, with only 20 nonzeros).
+ // Verify computed result.
//
- // CHECK: ( ( 1, 39, 52, 0, 0, 0, 45, 51 ),
- // CHECK-SAME: ( 0, 0, 0, 0, 0, 0, 0, 0 ),
- // CHECK-SAME: ( 0, 0, 16, 0, 0, 0, 0, 0 ),
- // CHECK-SAME: ( 0, 0, 0, 25, 0, 0, 0, 0 ),
- // CHECK-SAME: ( 0, 0, 0, 0, 36, 0, 0, 0 ),
- // CHECK-SAME: ( 0, 117, 158, 0, 0, 0, 135, 144 ),
- // CHECK-SAME: ( 0, 156, 318, 0, 0, 0, 301, 324 ),
- // CHECK-SAME: ( 0, 208, 430, 0, 0, 0, 405, 436 ) )
- // CHECK-NEXT: 20
- %d = sparse_tensor.convert %Ccsr : tensor<8x8xf32, #CSR> to tensor<8x8xf32>
- %v = vector.transfer_read %d[%c0, %c0], %f0: tensor<8x8xf32>, vector<8x8xf32>
- vector.print %v : vector<8x8xf32>
- %nnz = sparse_tensor.number_of_entries %Ccsr : tensor<8x8xf32, #CSR>
- %x = sparse_tensor.number_of_entries %Ccsr : tensor<8x8xf32, #CSR>
- vector.print %nnz : index
+ // CHECK: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 20
+ // CHECK-NEXT: pos[1] : ( 0, 5, 5, 6, 7, 8, 12, 16, 20,
+ // CHECK-NEXT: crd[1] : ( 0, 1, 2, 6, 7, 2, 3, 4, 1, 2, 6, 7, 1, 2, 6, 7, 1, 2, 6, 7,
+ // CHECK-NEXT: values : ( 1, 39, 52, 45, 51, 16, 25, 36, 117, 158, 135, 144, 156, 318, 301, 324, 208, 430, 405, 436,
+ // CHECK-NEXT: ----
+ sparse_tensor.print %Ccsr : tensor<8x8xf32, #CSR>
llvm.call @mgpuDestroySparseEnv(): () -> ()
return
diff --git a/mlir/test/Integration/Dialect/SparseTensor/GPU/CUDA/sparse-matmul-lib.mlir b/mlir/test/Integration/Dialect/SparseTensor/GPU/CUDA/sparse-matmul-lib.mlir
index 67b6e60ab5c869..0e7c75bc41aae2 100644
--- a/mlir/test/Integration/Dialect/SparseTensor/GPU/CUDA/sparse-matmul-lib.mlir
+++ b/mlir/test/Integration/Dialect/SparseTensor/GPU/CUDA/sparse-matmul-lib.mlir
@@ -66,32 +66,16 @@ module {
return %D: tensor<8x8xf32>
}
+ // Helper to dump dense tensor as series of vectors.
func.func @dump(%mat: tensor<8x8xf32>) {
%f0 = arith.constant 0.0 : f32
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
- %c2 = arith.constant 2 : index
- %c3 = arith.constant 3 : index
- %c4 = arith.constant 4 : index
- %c5 = arith.constant 5 : index
- %c6 = arith.constant 6 : index
- %c7 = arith.constant 7 : index
- %r0 = vector.transfer_read %mat[%c0,%c0], %f0 : tensor<8x8xf32>, vector<8xf32>
- vector.print %r0 : vector<8xf32>
- %r1 = vector.transfer_read %mat[%c1,%c0], %f0 : tensor<8x8xf32>, vector<8xf32>
- vector.print %r1 : vector<8xf32>
- %r2 = vector.transfer_read %mat[%c2,%c0], %f0 : tensor<8x8xf32>, vector<8xf32>
- vector.print %r2 : vector<8xf32>
- %r3 = vector.transfer_read %mat[%c3,%c0], %f0 : tensor<8x8xf32>, vector<8xf32>
- vector.print %r3 : vector<8xf32>
- %r4 = vector.transfer_read %mat[%c4,%c0], %f0 : tensor<8x8xf32>, vector<8xf32>
- vector.print %r4 : vector<8xf32>
- %r5 = vector.transfer_read %mat[%c5,%c0], %f0 : tensor<8x8xf32>, vector<8xf32>
- vector.print %r5 : vector<8xf32>
- %r6 = vector.transfer_read %mat[%c6,%c0], %f0 : tensor<8x8xf32>, vector<8xf32>
- vector.print %r6 : vector<8xf32>
- %r7 = vector.transfer_read %mat[%c7,%c0], %f0 : tensor<8x8xf32>, vector<8xf32>
- vector.print %r7 : vector<8xf32>
+ %c8 = arith.constant 8 : index
+ scf.for %i = %c0 to %c8 step %c1 {
+ %v = vector.transfer_read %mat[%i,%c0], %f0 : tensor<8x8xf32>, vector<8xf32>
+ vector.print %v : vector<8xf32>
+ }
return
}
diff --git a/mlir/test/Integration/Dialect/SparseTensor/GPU/CUDA/sparse-sampled-matmul-lib.mlir b/mlir/test/Integration/Dialect/SparseTensor/GPU/CUDA/sparse-sampled-matmul-lib.mlir
index 9b33f081512390..aad26556b00e1e 100644
--- a/mlir/test/Integration/Dialect/SparseTensor/GPU/CUDA/sparse-sampled-matmul-lib.mlir
+++ b/mlir/test/Integration/Dialect/SparseTensor/GPU/CUDA/sparse-sampled-matmul-lib.mlir
@@ -113,11 +113,13 @@ module {
//
// Print the result for verification.
//
- // CHECK: ( 11, 41.4, 42, 102.5, 93, 44.1, 164, 105.2, 255 )
- //
- %vm = sparse_tensor.values %0 : tensor<?x?xf32, #CSR> to memref<?xf32>
- %vv = vector.transfer_read %vm[%c0], %d0 : memref<?xf32>, vector<9xf32>
- vector.print %vv : vector<9xf32>
+ // CHECK: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 9
+ // CHECK-NEXT: pos[1] : ( 0, 2, 4, 5, 7, 9,
+ // CHECK-NEXT: crd[1] : ( 0, 3, 1, 4, 2, 0, 3, 1, 4,
+ // CHECK-NEXT: values : ( 11, 41.4, 42, 102.5, 93, 44.1, 164, 105.2, 255,
+ // CHECK-NEXT: ----
+ sparse_tensor.print %0 : tensor<?x?xf32, #CSR>
// Create a much sparser sampling matrix.
%t = arith.constant sparse<[[0,0], [0,1], [1,0], [3,4], [7,7]],
@@ -137,11 +139,14 @@ module {
//
// Print the result for verification.
//
- // CHECK: ( ( 17, 18, 0, 0, 0, 0, 0, 0 ), ( 19, 0, 0, 0, 0, 0, 0, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 0 ), ( 0, 0, 0, 0, 20, 0, 0, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 21 ) )
+ // CHECK: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 5
+ // CHECK-NEXT: pos[1] : ( 0, 2, 3, 3, 4, 4, 4, 4, 5,
+ // CHECK-NEXT: crd[1] : ( 0, 1, 0, 4, 7,
+ // CHECK-NEXT: values : ( 17, 18, 19, 20, 21,
+ // CHECK-NEXT: ----
//
- %d = sparse_tensor.convert %1 : tensor<?x?xf32, #CSR> to tensor<?x?xf32>
- %mm = vector.transfer_read %d[%c0, %c0], %d0 : tensor<?x?xf32>, vector<8x8xf32>
- vector.print %mm : vector<8x8xf32>
+ sparse_tensor.print %1 : tensor<?x?xf32, #CSR>
// Release the resources.
bufferization.dealloc_tensor %0 : tensor<?x?xf32, #CSR>
diff --git a/mlir/test/Integration/Dialect/SparseTensor/GPU/CUDA/sparse-sddmm-lib.mlir b/mlir/test/Integration/Dialect/SparseTensor/GPU/CUDA/sparse-sddmm-lib.mlir
index db5c154e5e438d..bd2c72271c613a 100644
--- a/mlir/test/Integration/Dialect/SparseTensor/GPU/CUDA/sparse-sddmm-lib.mlir
+++ b/mlir/test/Integration/Dialect/SparseTensor/GPU/CUDA/sparse-sddmm-lib.mlir
@@ -166,15 +166,22 @@ module {
// the result (which is why the block sparse version has actual results
// in the original zero positions).
//
- // CHECK: ( 5, 10, 24, 19, 53, 42, 55, 56 )
- // CHECK-NEXT: ( 5, 10, 8, 19, 24, 24, 40, 53, 42, 55, 56, 64 )
+ // CHECK: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 8
+ // CHECK-NEXT: pos[1] : ( 0, 3, 5, 7, 8,
+ // CHECK-NEXT: crd[1] : ( 0, 1, 4, 1, 5, 2, 3, 2,
+ // CHECK-NEXT: values : ( 5, 10, 24, 19, 53, 42, 55, 56,
+ // CHECK-NEXT: ----
//
- %v0 = sparse_tensor.values %0 : tensor<?x?xf32, #CSR> to memref<?xf32>
- %vv0 = vector.transfer_read %v0[%c0], %d0 : memref<?xf32>, vector<8xf32>
- vector.print %vv0 : vector<8xf32>
- %v1 = sparse_tensor.values %1 : tensor<?x?xf32, #BSR> to memref<?xf32>
- %vv1 = vector.transfer_read %v1[%c0], %d0 : memref<?xf32>, vector<12xf32>
- vector.print %vv1 : vector<12xf32>
+ // CHECK: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 12
+ // CHECK-NEXT: pos[1] : ( 0, 2, 3,
+ // CHECK-NEXT: crd[1] : ( 0, 2, 1,
+ // CHECK-NEXT: values : ( 5, 10, 8, 19, 24, 24, 40, 53, 42, 55, 56, 64,
+ // CHECK-NEXT: ----
+ //
+ sparse_tensor.print %0 : tensor<?x?xf32, #CSR>
+ sparse_tensor.print %1 : tensor<?x?xf32, #BSR>
// Release the resources.
bufferization.dealloc_tensor %0 : tensor<?x?xf32, #CSR>
More information about the Mlir-commits
mailing list