[Mlir-commits] [mlir] [mlir][sparse] Migration to sparse_tensor.print (PR #83377)
Yinying Li
llvmlistbot at llvm.org
Wed Feb 28 21:13:40 PST 2024
https://github.com/yinying-lisa-li created https://github.com/llvm/llvm-project/pull/83377
Continuous efforts following #83357.
>From b5fd9d31f250a4a9f968c7c70ce97c9a9f6d1c56 Mon Sep 17 00:00:00 2001
From: Yinying Li <yinyingli at google.com>
Date: Thu, 29 Feb 2024 05:11:53 +0000
Subject: [PATCH] migration to sparse_tensor.print
---
.../SparseTensor/CPU/sparse_loose.mlir | 23 +-
.../SparseTensor/CPU/sparse_matmul.mlir | 237 ++++++++++--------
.../SparseTensor/CPU/sparse_matmul_slice.mlir | 84 +++----
.../SparseTensor/CPU/sparse_matrix_ops.mlir | 114 +++++----
4 files changed, 259 insertions(+), 199 deletions(-)
diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_loose.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_loose.mlir
index 228d4e5f6f8a1a..e1f062121b12f9 100644
--- a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_loose.mlir
+++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_loose.mlir
@@ -10,7 +10,7 @@
// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
-// DEFINE: %{run_opts} = -e entry -entry-point-result=void
+// DEFINE: %{run_opts} = -e main -entry-point-result=void
// DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs}
//
@@ -28,7 +28,7 @@
}>
module {
- func.func @entry() {
+ func.func @main() {
%c0 = arith.constant 0 : index
%f0 = arith.constant 0.0 : f64
%d = arith.constant dense<[[ 1.0, 2.0, 3.0, 4.0 ],
@@ -39,19 +39,14 @@ module {
%s = sparse_tensor.convert %d : tensor<5x4xf64> to tensor<5x4xf64, #CSR_hi>
//
- // CHECK: ( 0, 4, 4, 8, 8, 9, 9, 13 )
- // CHECK-NEXT: ( 0, 1, 2, 3, 0, 1, 2, 3, 2, 0, 1, 2, 3, 0, 1, 2, 3 )
- // CHECK-NEXT: ( 1, 2, 3, 4, 5, 6, 7, 8, 5.5, 9, 10, 11, 12, 13, 14, 15, 16 )
+ // CHECK: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 17
+ // CHECK-NEXT: pos[1] : ( 0, 4, 4, 8, 8, 9, 9, 13
+ // CHECK-NEXT: crd[1] : ( 0, 1, 2, 3, 0, 1, 2, 3, 2, 0, 1, 2, 3, 0, 1, 2, 3
+ // CHECK-NEXT: values : ( 1, 2, 3, 4, 5, 6, 7, 8, 5.5, 9, 10, 11, 12, 13, 14, 15, 16
+ // CHECK-NEXT: ----
//
- %pos = sparse_tensor.positions %s {level = 1 : index } : tensor<5x4xf64, #CSR_hi> to memref<?xindex>
- %vecp = vector.transfer_read %pos[%c0], %c0 : memref<?xindex>, vector<8xindex>
- vector.print %vecp : vector<8xindex>
- %crd = sparse_tensor.coordinates %s {level = 1 : index } : tensor<5x4xf64, #CSR_hi> to memref<?xindex>
- %vecc = vector.transfer_read %crd[%c0], %c0 : memref<?xindex>, vector<17xindex>
- vector.print %vecc : vector<17xindex>
- %val = sparse_tensor.values %s : tensor<5x4xf64, #CSR_hi> to memref<?xf64>
- %vecv = vector.transfer_read %val[%c0], %f0 : memref<?xf64>, vector<17xf64>
- vector.print %vecv : vector<17xf64>
+ sparse_tensor.print %s : tensor<5x4xf64, #CSR_hi>
// Release the resources.
bufferization.dealloc_tensor %s: tensor<5x4xf64, #CSR_hi>
diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_matmul.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_matmul.mlir
index fa0dbac269b926..863e1c62370e32 100644
--- a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_matmul.mlir
+++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_matmul.mlir
@@ -10,7 +10,7 @@
// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
-// DEFINE: %{run_opts} = -e entry -entry-point-result=void
+// DEFINE: %{run_opts} = -e main -entry-point-result=void
// DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs}
//
@@ -90,7 +90,7 @@ module {
//
// Main driver.
//
- func.func @entry() {
+ func.func @main() {
%c0 = arith.constant 0 : index
// Initialize various matrices, dense for stress testing,
@@ -140,33 +140,94 @@ module {
%b4 = sparse_tensor.convert %sb : tensor<8x4xf64> to tensor<8x4xf64, #DCSR>
//
- // Sanity check on stored entries before going into the computations.
- //
- // CHECK: 32
- // CHECK-NEXT: 32
- // CHECK-NEXT: 4
- // CHECK-NEXT: 4
- // CHECK-NEXT: 32
- // CHECK-NEXT: 32
- // CHECK-NEXT: 8
- // CHECK-NEXT: 8
- //
- %noea1 = sparse_tensor.number_of_entries %a1 : tensor<4x8xf64, #CSR>
- %noea2 = sparse_tensor.number_of_entries %a2 : tensor<4x8xf64, #DCSR>
- %noea3 = sparse_tensor.number_of_entries %a3 : tensor<4x8xf64, #CSR>
- %noea4 = sparse_tensor.number_of_entries %a4 : tensor<4x8xf64, #DCSR>
- %noeb1 = sparse_tensor.number_of_entries %b1 : tensor<8x4xf64, #CSR>
- %noeb2 = sparse_tensor.number_of_entries %b2 : tensor<8x4xf64, #DCSR>
- %noeb3 = sparse_tensor.number_of_entries %b3 : tensor<8x4xf64, #CSR>
- %noeb4 = sparse_tensor.number_of_entries %b4 : tensor<8x4xf64, #DCSR>
- vector.print %noea1 : index
- vector.print %noea2 : index
- vector.print %noea3 : index
- vector.print %noea4 : index
- vector.print %noeb1 : index
- vector.print %noeb2 : index
- vector.print %noeb3 : index
- vector.print %noeb4 : index
+ // Sanity check before going into the computations.
+ //
+ // CHECK: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 32
+ // CHECK-NEXT: pos[1] : ( 0, 8, 16, 24, 32
+ // CHECK-NEXT: crd[1] : ( 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7
+ // CHECK-NEXT: values : ( 1.1, 2.1, 3.1, 4.1, 5.1, 6.1, 7.1, 8.1, 1.2, 2.2, 3.2, 4.2, 5.2, 6.2, 7.2, 8.2, 1.3, 2.3, 3.3, 4.3, 5.3, 6.3, 7.3, 8.3, 1.4, 2.4, 3.4, 4.4, 5.4, 6.4, 7.4, 8.4
+ // CHECK-NEXT: ----
+ //
+ sparse_tensor.print %a1 : tensor<4x8xf64, #CSR>
+
+ //
+ // CHECK: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 32
+ // CHECK-NEXT: pos[0] : ( 0, 4
+ // CHECK-NEXT: crd[0] : ( 0, 1, 2, 3
+ // CHECK-NEXT: pos[1] : ( 0, 8, 16, 24, 32
+ // CHECK-NEXT: crd[1] : ( 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7
+ // CHECK-NEXT: values : ( 1.1, 2.1, 3.1, 4.1, 5.1, 6.1, 7.1, 8.1, 1.2, 2.2, 3.2, 4.2, 5.2, 6.2, 7.2, 8.2, 1.3, 2.3, 3.3, 4.3, 5.3, 6.3, 7.3, 8.3, 1.4, 2.4, 3.4, 4.4, 5.4, 6.4, 7.4, 8.4
+ // CHECK-NEXT: ----
+ //
+ sparse_tensor.print %a2 : tensor<4x8xf64, #DCSR>
+
+ //
+ // CHECK: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 4
+ // CHECK-NEXT: pos[1] : ( 0, 2, 2, 3, 4
+ // CHECK-NEXT: crd[1] : ( 1, 5, 1, 7
+ // CHECK-NEXT: values : ( 2.1, 6.1, 2.3, 1
+ // CHECK-NEXT: ----
+ //
+ sparse_tensor.print %a3 : tensor<4x8xf64, #CSR>
+
+ //
+ // CHECK: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 4
+ // CHECK-NEXT: pos[0] : ( 0, 3
+ // CHECK-NEXT: crd[0] : ( 0, 2, 3
+ // CHECK-NEXT: pos[1] : ( 0, 2, 3, 4
+ // CHECK-NEXT: crd[1] : ( 1, 5, 1, 7
+ // CHECK-NEXT: values : ( 2.1, 6.1, 2.3, 1
+ // CHECK-NEXT: ----
+ //
+ sparse_tensor.print %a4 : tensor<4x8xf64, #DCSR>
+
+ //
+ // CHECK: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 32
+ // CHECK-NEXT: pos[1] : ( 0, 4, 8, 12, 16, 20, 24, 28, 32
+ // CHECK-NEXT: crd[1] : ( 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3
+ // CHECK-NEXT: values : ( 10.1, 11.1, 12.1, 13.1, 10.2, 11.2, 12.2, 13.2, 10.3, 11.3, 12.3, 13.3, 10.4, 11.4, 12.4, 13.4, 10.5, 11.5, 12.5, 13.5, 10.6, 11.6, 12.6, 13.6, 10.7, 11.7, 12.7, 13.7, 10.8, 11.8, 12.8, 13.8
+ // CHECK-NEXT: ----
+ //
+ sparse_tensor.print %b1 : tensor<8x4xf64, #CSR>
+
+ //
+ // CHECK: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 32
+ // CHECK-NEXT: pos[0] : ( 0, 8
+ // CHECK-NEXT: crd[0] : ( 0, 1, 2, 3, 4, 5, 6, 7
+ // CHECK-NEXT: pos[1] : ( 0, 4, 8, 12, 16, 20, 24, 28, 32
+ // CHECK-NEXT: crd[1] : ( 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3
+ // CHECK-NEXT: values : ( 10.1, 11.1, 12.1, 13.1, 10.2, 11.2, 12.2, 13.2, 10.3, 11.3, 12.3, 13.3, 10.4, 11.4, 12.4, 13.4, 10.5, 11.5, 12.5, 13.5, 10.6, 11.6, 12.6, 13.6, 10.7, 11.7, 12.7, 13.7, 10.8, 11.8, 12.8, 13.8
+ // CHECK-NEXT: ----
+ //
+ sparse_tensor.print %b2 : tensor<8x4xf64, #DCSR>
+
+ //
+ // CHECK: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 8
+ // CHECK-NEXT: pos[1] : ( 0, 1, 2, 3, 4, 4, 5, 6, 8
+ // CHECK-NEXT: crd[1] : ( 3, 2, 1, 0, 1, 2, 2, 3
+ // CHECK-NEXT: values : ( 1, 2, 3, 4, 5, 6, 7, 8
+ // CHECK-NEXT: ----
+ //
+ sparse_tensor.print %b3 : tensor<8x4xf64, #CSR>
+
+ //
+ // CHECK: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 8
+ // CHECK-NEXT: pos[0] : ( 0, 7
+ // CHECK-NEXT: crd[0] : ( 0, 1, 2, 3, 5, 6, 7
+ // CHECK-NEXT: pos[1] : ( 0, 1, 2, 3, 4, 5, 6, 8
+ // CHECK-NEXT: crd[1] : ( 3, 2, 1, 0, 1, 2, 2, 3
+ // CHECK-NEXT: values : ( 1, 2, 3, 4, 5, 6, 7, 8
+ // CHECK-NEXT: ----
+ //
+ sparse_tensor.print %b4 : tensor<8x4xf64, #DCSR>
// Call kernels with dense.
%0 = call @matmul1(%da, %db, %zero)
@@ -208,24 +269,26 @@ module {
call @printMemrefF64(%u0) : (tensor<*xf64>) -> ()
//
- // CHECK: {{\[}}[388.76, 425.56, 462.36, 499.16],
- // CHECK-NEXT: [397.12, 434.72, 472.32, 509.92],
- // CHECK-NEXT: [405.48, 443.88, 482.28, 520.68],
- // CHECK-NEXT: [413.84, 453.04, 492.24, 531.44]]
+ // CHECK: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 16
+ // CHECK-NEXT: pos[1] : ( 0, 4, 8, 12, 16
+ // CHECK-NEXT: crd[1] : ( 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3
+ // CHECK-NEXT: values : ( 388.76, 425.56, 462.36, 499.16, 397.12, 434.72, 472.32, 509.92, 405.48, 443.88, 482.28, 520.68, 413.84, 453.04, 492.24, 531.44
+ // CHECK-NEXT: ----
//
- %c1 = sparse_tensor.convert %1 : tensor<4x4xf64, #CSR> to tensor<4x4xf64>
- %c1u = tensor.cast %c1 : tensor<4x4xf64> to tensor<*xf64>
- call @printMemrefF64(%c1u) : (tensor<*xf64>) -> ()
+ sparse_tensor.print %1 : tensor<4x4xf64, #CSR>
//
- // CHECK: {{\[}}[388.76, 425.56, 462.36, 499.16],
- // CHECK-NEXT: [397.12, 434.72, 472.32, 509.92],
- // CHECK-NEXT: [405.48, 443.88, 482.28, 520.68],
- // CHECK-NEXT: [413.84, 453.04, 492.24, 531.44]]
+ // CHECK: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 16
+ // CHECK-NEXT: pos[0] : ( 0, 4
+ // CHECK-NEXT: crd[0] : ( 0, 1, 2, 3
+ // CHECK-NEXT: pos[1] : ( 0, 4, 8, 12, 16
+ // CHECK-NEXT: crd[1] : ( 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3
+ // CHECK-NEXT: values : ( 388.76, 425.56, 462.36, 499.16, 397.12, 434.72, 472.32, 509.92, 405.48, 443.88, 482.28, 520.68, 413.84, 453.04, 492.24, 531.44
+ // CHECK-NEXT: ----
//
- %c2 = sparse_tensor.convert %2 : tensor<4x4xf64, #DCSR> to tensor<4x4xf64>
- %c2u = tensor.cast %c2 : tensor<4x4xf64> to tensor<*xf64>
- call @printMemrefF64(%c2u) : (tensor<*xf64>) -> ()
+ sparse_tensor.print %2 : tensor<4x4xf64, #DCSR>
//
// CHECK: {{\[}}[86.08, 94.28, 102.48, 110.68],
@@ -237,24 +300,26 @@ module {
call @printMemrefF64(%u3) : (tensor<*xf64>) -> ()
//
- // CHECK: {{\[}}[86.08, 94.28, 102.48, 110.68],
- // CHECK-NEXT: [0, 0, 0, 0],
- // CHECK-NEXT: [23.46, 25.76, 28.06, 30.36],
- // CHECK-NEXT: [10.8, 11.8, 12.8, 13.8]]
+ // CHECK: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 12
+ // CHECK-NEXT: pos[1] : ( 0, 4, 4, 8, 12
+ // CHECK-NEXT: crd[1] : ( 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3
+ // CHECK-NEXT: values : ( 86.08, 94.28, 102.48, 110.68, 23.46, 25.76, 28.06, 30.36, 10.8, 11.8, 12.8, 13.8
+ // CHECK-NEXT: ----
//
- %c4 = sparse_tensor.convert %4 : tensor<4x4xf64, #CSR> to tensor<4x4xf64>
- %c4u = tensor.cast %c4 : tensor<4x4xf64> to tensor<*xf64>
- call @printMemrefF64(%c4u) : (tensor<*xf64>) -> ()
+ sparse_tensor.print %4 : tensor<4x4xf64, #CSR>
//
- // CHECK: {{\[}}[86.08, 94.28, 102.48, 110.68],
- // CHECK-NEXT: [0, 0, 0, 0],
- // CHECK-NEXT: [23.46, 25.76, 28.06, 30.36],
- // CHECK-NEXT: [10.8, 11.8, 12.8, 13.8]]
+ // CHECK: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 12
+ // CHECK-NEXT: pos[0] : ( 0, 3
+ // CHECK-NEXT: crd[0] : ( 0, 2, 3
+ // CHECK-NEXT: pos[1] : ( 0, 4, 8, 12
+ // CHECK-NEXT: crd[1] : ( 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3
+ // CHECK-NEXT: values : ( 86.08, 94.28, 102.48, 110.68, 23.46, 25.76, 28.06, 30.36, 10.8, 11.8, 12.8, 13.8
+ // CHECK-NEXT: ----
//
- %c5 = sparse_tensor.convert %5 : tensor<4x4xf64, #DCSR> to tensor<4x4xf64>
- %c5u = tensor.cast %c5 : tensor<4x4xf64> to tensor<*xf64>
- call @printMemrefF64(%c5u) : (tensor<*xf64>) -> ()
+ sparse_tensor.print %5 : tensor<4x4xf64, #DCSR>
//
// CHECK: {{\[}}[0, 30.5, 4.2, 0],
@@ -266,46 +331,26 @@ module {
call @printMemrefF64(%u6) : (tensor<*xf64>) -> ()
//
- // CHECK: {{\[}}[0, 30.5, 4.2, 0],
- // CHECK-NEXT: [0, 0, 0, 0],
- // CHECK-NEXT: [0, 0, 4.6, 0],
- // CHECK-NEXT: [0, 0, 7, 8]]
+ // CHECK: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 5
+ // CHECK-NEXT: pos[1] : ( 0, 2, 2, 3, 5
+ // CHECK-NEXT: crd[1] : ( 1, 2, 2, 2, 3
+ // CHECK-NEXT: values : ( 30.5, 4.2, 4.6, 7, 8
+ // CHECK-NEXT: ----
//
- %c7 = sparse_tensor.convert %7 : tensor<4x4xf64, #CSR> to tensor<4x4xf64>
- %c7u = tensor.cast %c7 : tensor<4x4xf64> to tensor<*xf64>
- call @printMemrefF64(%c7u) : (tensor<*xf64>) -> ()
+ sparse_tensor.print %7 : tensor<4x4xf64, #CSR>
//
- // CHECK: {{\[}}[0, 30.5, 4.2, 0],
- // CHECK-NEXT: [0, 0, 0, 0],
- // CHECK-NEXT: [0, 0, 4.6, 0],
- // CHECK-NEXT: [0, 0, 7, 8]]
- //
- %c8 = sparse_tensor.convert %8 : tensor<4x4xf64, #DCSR> to tensor<4x4xf64>
- %c8u = tensor.cast %c8 : tensor<4x4xf64> to tensor<*xf64>
- call @printMemrefF64(%c8u) : (tensor<*xf64>) -> ()
-
- //
- // Sanity check on nonzeros.
- //
- // CHECK: [30.5, 4.2, 4.6, 7, 8{{.*}}]
- // CHECK: [30.5, 4.2, 4.6, 7, 8{{.*}}]
- //
- %val7 = sparse_tensor.values %7 : tensor<4x4xf64, #CSR> to memref<?xf64>
- %val8 = sparse_tensor.values %8 : tensor<4x4xf64, #DCSR> to memref<?xf64>
- call @printMemref1dF64(%val7) : (memref<?xf64>) -> ()
- call @printMemref1dF64(%val8) : (memref<?xf64>) -> ()
-
- //
- // Sanity check on stored entries after the computations.
- //
- // CHECK-NEXT: 5
- // CHECK-NEXT: 5
+ // CHECK: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 5
+ // CHECK-NEXT: pos[0] : ( 0, 3
+ // CHECK-NEXT: crd[0] : ( 0, 2, 3
+ // CHECK-NEXT: pos[1] : ( 0, 2, 3, 5
+ // CHECK-NEXT: crd[1] : ( 1, 2, 2, 2, 3
+ // CHECK-NEXT: values : ( 30.5, 4.2, 4.6, 7, 8
+ // CHECK-NEXT: ----
//
- %noe7 = sparse_tensor.number_of_entries %7 : tensor<4x4xf64, #CSR>
- %noe8 = sparse_tensor.number_of_entries %8 : tensor<4x4xf64, #DCSR>
- vector.print %noe7 : index
- vector.print %noe8 : index
+ sparse_tensor.print %8 : tensor<4x4xf64, #DCSR>
// Release the resources.
bufferization.dealloc_tensor %a1 : tensor<4x8xf64, #CSR>
@@ -316,12 +361,6 @@ module {
bufferization.dealloc_tensor %b2 : tensor<8x4xf64, #DCSR>
bufferization.dealloc_tensor %b3 : tensor<8x4xf64, #CSR>
bufferization.dealloc_tensor %b4 : tensor<8x4xf64, #DCSR>
- bufferization.dealloc_tensor %c1 : tensor<4x4xf64>
- bufferization.dealloc_tensor %c2 : tensor<4x4xf64>
- bufferization.dealloc_tensor %c4 : tensor<4x4xf64>
- bufferization.dealloc_tensor %c5 : tensor<4x4xf64>
- bufferization.dealloc_tensor %c7 : tensor<4x4xf64>
- bufferization.dealloc_tensor %c8 : tensor<4x4xf64>
bufferization.dealloc_tensor %0 : tensor<4x4xf64>
bufferization.dealloc_tensor %1 : tensor<4x4xf64, #CSR>
bufferization.dealloc_tensor %2 : tensor<4x4xf64, #DCSR>
diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_matmul_slice.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_matmul_slice.mlir
index 96c8a30ade8e42..a7184c044569ca 100644
--- a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_matmul_slice.mlir
+++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_matmul_slice.mlir
@@ -10,7 +10,7 @@
// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
-// DEFINE: %{run_opts} = -e entry -entry-point-result=void
+// DEFINE: %{run_opts} = -e main -entry-point-result=void
// DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs}
//
@@ -132,7 +132,7 @@ module {
//
// Main driver.
//
- func.func @entry() {
+ func.func @main() {
%c_0 = arith.constant 0 : index
%c_1 = arith.constant 1 : index
%c_2 = arith.constant 2 : index
@@ -170,14 +170,16 @@ module {
// DCSR test
//
- // CHECK: [0, 30.5, 4.2, 0],
- // CHECK-NEXT: [0, 0, 0, 0],
- // CHECK-NEXT: [0, 0, 4.6, 0],
- // CHECK-NEXT: [0, 0, 7, 8]
+ // CHECK: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 5
+ // CHECK-NEXT: pos[0] : ( 0, 3
+ // CHECK-NEXT: crd[0] : ( 0, 2, 3
+ // CHECK-NEXT: pos[1] : ( 0, 2, 3, 5
+ // CHECK-NEXT: crd[1] : ( 1, 2, 2, 2, 3
+ // CHECK-NEXT: values : ( 30.5, 4.2, 4.6, 7, 8
+ // CHECK-NEXT: ----
//
- %c2 = sparse_tensor.convert %2 : tensor<4x4xf64, #DCSR> to tensor<4x4xf64>
- %c2u = tensor.cast %c2 : tensor<4x4xf64> to tensor<*xf64>
- call @printMemrefF64(%c2u) : (tensor<*xf64>) -> ()
+ sparse_tensor.print %2 : tensor<4x4xf64, #DCSR>
%t1 = sparse_tensor.convert %sa : tensor<8x8xf64> to tensor<8x8xf64, #CSR>
%a1 = tensor.extract_slice %t1[0, 0][4, 8][1, 1] : tensor<8x8xf64, #CSR> to tensor<4x8xf64, #CSR_SLICE>
@@ -188,63 +190,64 @@ module {
// CSR test
//
- // CHECK: [0, 30.5, 4.2, 0],
- // CHECK-NEXT: [0, 0, 0, 0],
- // CHECK-NEXT: [0, 0, 4.6, 0],
- // CHECK-NEXT: [0, 0, 7, 8]
+ // CHECK: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 5
+ // CHECK-NEXT: pos[1] : ( 0, 2, 2, 3, 5
+ // CHECK-NEXT: crd[1] : ( 1, 2, 2, 2, 3
+ // CHECK-NEXT: values : ( 30.5, 4.2, 4.6, 7, 8
+ // CHECK-NEXT: ----
//
- %c3 = sparse_tensor.convert %3 : tensor<4x4xf64, #CSR> to tensor<4x4xf64>
- %c3u = tensor.cast %c3 : tensor<4x4xf64> to tensor<*xf64>
- call @printMemrefF64(%c3u) : (tensor<*xf64>) -> ()
+ sparse_tensor.print %3 : tensor<4x4xf64, #CSR>
+
// slice x slice
//
- // CHECK: [2.3, 0, 0, 0],
- // CHECK-NEXT: [6.9, 0, 0, 0],
- // CHECK-NEXT: [0, 0, 0, 0],
- // CHECK-NEXT: [12.6, 0, 0, 0]]
+ // CHECK: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 3
+ // CHECK-NEXT: pos[1] : ( 0, 1, 2, 2, 3
+ // CHECK-NEXT: crd[1] : ( 0, 0, 0
+ // CHECK-NEXT: values : ( 2.3, 6.9, 12.6
+ // CHECK-NEXT: ----
//
+ sparse_tensor.print %4 : tensor<4x4xf64, #CSR>
+
%s1 = tensor.extract_slice %tmp[0, 1][4, 4][2, 1] : tensor<8x8xf64, #DCSR> to tensor<4x4xf64, #DCSR_SLICE_1>
%s2 = tensor.extract_slice %b1[0, 0][4, 4][2, 1] : tensor<8x4xf64, #CSR> to tensor<4x4xf64, #CSR_SLICE_1>
%4 = call @matmul1(%s2, %s1)
: (tensor<4x4xf64, #CSR_SLICE_1>,
tensor<4x4xf64, #DCSR_SLICE_1>) -> tensor<4x4xf64, #CSR>
- %c4 = sparse_tensor.convert %4 : tensor<4x4xf64, #CSR> to tensor<4x4xf64>
- %c4u = tensor.cast %c4 : tensor<4x4xf64> to tensor<*xf64>
- call @printMemrefF64(%c4u) : (tensor<*xf64>) -> ()
// slice coo x slice coo
//
- // CHECK: [2.3, 0, 0, 0],
- // CHECK-NEXT: [6.9, 0, 0, 0],
- // CHECK-NEXT: [0, 0, 0, 0],
- // CHECK-NEXT: [12.6, 0, 0, 0]]
+ // CHECK: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 3
+ // CHECK-NEXT: pos[0] : ( 0, 3
+ // CHECK-NEXT: crd[0] : ( 0, 0, 1, 0, 3, 0
+ // CHECK-NEXT: values : ( 2.3, 6.9, 12.6
+ // CHECK-NEXT: ----
//
+ sparse_tensor.print %o_coo : tensor<4x4xf64, #COO>
%t1_coo = sparse_tensor.convert %sa : tensor<8x8xf64> to tensor<8x8xf64, #COO>
%b1_coo = sparse_tensor.convert %sb : tensor<8x4xf64> to tensor<8x4xf64, #COO>
%s2_coo = tensor.extract_slice %b1_coo[0, 0][4, 4][2, 1] : tensor<8x4xf64, #COO> to tensor<4x4xf64, #COO_SLICE_1>
%s1_coo = tensor.extract_slice %t1_coo[0, 1][4, 4][2, 1] : tensor<8x8xf64, #COO> to tensor<4x4xf64, #COO_SLICE_2>
%o_coo = call @matmul5(%s2_coo, %s1_coo) : (tensor<4x4xf64, #COO_SLICE_1>, tensor<4x4xf64, #COO_SLICE_2>) -> tensor<4x4xf64, #COO>
- %c4_coo = sparse_tensor.convert %o_coo : tensor<4x4xf64, #COO> to tensor<4x4xf64>
- %c4u_coo = tensor.cast %c4_coo : tensor<4x4xf64> to tensor<*xf64>
- call @printMemrefF64(%c4u_coo) : (tensor<*xf64>) -> ()
-
// slice x slice (same as above, but with dynamic stride information)
//
- // CHECK: [2.3, 0, 0, 0],
- // CHECK-NEXT: [6.9, 0, 0, 0],
- // CHECK-NEXT: [0, 0, 0, 0],
- // CHECK-NEXT: [12.6, 0, 0, 0]]
+ // CHECK: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 3
+ // CHECK-NEXT: pos[1] : ( 0, 1, 2, 2, 3
+ // CHECK-NEXT: crd[1] : ( 0, 0, 0
+ // CHECK-NEXT: values : ( 2.3, 6.9, 12.6
+ // CHECK-NEXT: ----
//
+ sparse_tensor.print %dyn_4 : tensor<4x4xf64, #CSR>
%s1_dyn = tensor.extract_slice %tmp[%c_0, %c_1][4, 4][%c_2, %c_1] : tensor<8x8xf64, #DCSR> to tensor<4x4xf64, #DCSR_SLICE_dyn>
%s2_dyn = tensor.extract_slice %b1[%c_0, %c_0][4, 4][%c_2, %c_1] : tensor<8x4xf64, #CSR> to tensor<4x4xf64, #CSR_SLICE_dyn>
%dyn_4 = call @matmul_dyn(%s2_dyn, %s1_dyn)
: (tensor<4x4xf64, #CSR_SLICE_dyn>,
tensor<4x4xf64, #DCSR_SLICE_dyn>) -> tensor<4x4xf64, #CSR>
- %c4_dyn = sparse_tensor.convert %dyn_4 : tensor<4x4xf64, #CSR> to tensor<4x4xf64>
- %c4u_dyn = tensor.cast %c4_dyn : tensor<4x4xf64> to tensor<*xf64>
- call @printMemrefF64(%c4u_dyn) : (tensor<*xf64>) -> ()
// sparse slices should generate the same result as dense slices
//
@@ -265,11 +268,6 @@ module {
call @printMemrefF64(%du) : (tensor<*xf64>) -> ()
// Releases resources.
- bufferization.dealloc_tensor %c2 : tensor<4x4xf64>
- bufferization.dealloc_tensor %c3 : tensor<4x4xf64>
- bufferization.dealloc_tensor %c4 : tensor<4x4xf64>
- bufferization.dealloc_tensor %c4_coo : tensor<4x4xf64>
- bufferization.dealloc_tensor %c4_dyn : tensor<4x4xf64>
bufferization.dealloc_tensor %d : tensor<4x4xf64>
bufferization.dealloc_tensor %b1 : tensor<8x4xf64, #CSR>
bufferization.dealloc_tensor %t1 : tensor<8x8xf64, #CSR>
diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_matrix_ops.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_matrix_ops.mlir
index 2cecc242034389..2cef46f4cb1546 100644
--- a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_matrix_ops.mlir
+++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_matrix_ops.mlir
@@ -10,7 +10,7 @@
// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
-// DEFINE: %{run_opts} = -e entry -entry-point-result=void
+// DEFINE: %{run_opts} = -e main -entry-point-result=void
// DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs}
//
@@ -61,8 +61,6 @@
}
module {
- func.func private @printMemrefF64(%ptr : tensor<*xf64>)
-
// Scales a sparse matrix into a new sparse matrix.
func.func @matrix_scale(%arga: tensor<?x?xf64, #DCSR>) -> tensor<?x?xf64, #DCSR> {
%s = arith.constant 2.0 : f64
@@ -129,17 +127,8 @@ module {
return %0 : tensor<?x?xf64, #DCSR>
}
- // Dump a sparse matrix.
- func.func @dump(%arg0: tensor<?x?xf64, #DCSR>) {
- %dm = sparse_tensor.convert %arg0 : tensor<?x?xf64, #DCSR> to tensor<?x?xf64>
- %u = tensor.cast %dm : tensor<?x?xf64> to tensor<*xf64>
- call @printMemrefF64(%u) : (tensor<*xf64>) -> ()
- bufferization.dealloc_tensor %dm : tensor<?x?xf64>
- return
- }
-
// Driver method to call and verify matrix kernels.
- func.func @entry() {
+ func.func @main() {
%c0 = arith.constant 0 : index
%d1 = arith.constant 1.1 : f64
@@ -170,37 +159,76 @@ module {
//
// Verify the results.
//
- // CHECK: {{\[}}[1, 2, 0, 0, 0, 0, 0, 0],
- // CHECK-NEXT: [0, 0, 0, 0, 0, 0, 0, 3],
- // CHECK-NEXT: [0, 0, 4, 0, 5, 0, 0, 6],
- // CHECK-NEXT: [7, 0, 8, 9, 0, 0, 0, 0]]
- // CHECK: {{\[}}[6, 0, 0, 0, 0, 0, 0, 5],
- // CHECK-NEXT: [4, 0, 0, 0, 0, 0, 3, 0],
- // CHECK-NEXT: [0, 2, 0, 0, 0, 0, 0, 1],
- // CHECK-NEXT: [0, 0, 0, 0, 0, 0, 0, 0]]
- // CHECK: {{\[}}[2, 4, 0, 0, 0, 0, 0, 0],
- // CHECK-NEXT: [0, 0, 0, 0, 0, 0, 0, 6],
- // CHECK-NEXT: [0, 0, 8, 0, 10, 0, 0, 12],
- // CHECK-NEXT: [14, 0, 16, 18, 0, 0, 0, 0]]
- // CHECK: {{\[}}[2, 4, 0, 0, 0, 0, 0, 0],
- // CHECK-NEXT: [0, 0, 0, 0, 0, 0, 0, 6],
- // CHECK-NEXT: [0, 0, 8, 0, 10, 0, 0, 12],
- // CHECK-NEXT: [14, 0, 16, 18, 0, 0, 0, 0]]
- // CHECK: {{\[}}[8, 4, 0, 0, 0, 0, 0, 5],
- // CHECK-NEXT: [4, 0, 0, 0, 0, 0, 3, 6],
- // CHECK-NEXT: [0, 2, 8, 0, 10, 0, 0, 13],
- // CHECK-NEXT: [14, 0, 16, 18, 0, 0, 0, 0]]
- // CHECK: {{\[}}[12, 0, 0, 0, 0, 0, 0, 0],
- // CHECK-NEXT: [0, 0, 0, 0, 0, 0, 0, 0],
- // CHECK-NEXT: [0, 0, 0, 0, 0, 0, 0, 12],
- // CHECK-NEXT: [0, 0, 0, 0, 0, 0, 0, 0]]
+ // CHECK: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 9
+ // CHECK-NEXT: pos[0] : ( 0, 4
+ // CHECK-NEXT: crd[0] : ( 0, 1, 2, 3
+ // CHECK-NEXT: pos[1] : ( 0, 2, 3, 6, 9
+ // CHECK-NEXT: crd[1] : ( 0, 1, 7, 2, 4, 7, 0, 2, 3
+ // CHECK-NEXT: values : ( 1, 2, 3, 4, 5, 6, 7, 8, 9
+ // CHECK-NEXT: ----
+ //
+ sparse_tensor.print %sm1 : tensor<?x?xf64, #DCSR>
+
+ //
+ // CHECK: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 6
+ // CHECK-NEXT: pos[0] : ( 0, 3
+ // CHECK-NEXT: crd[0] : ( 0, 1, 2
+ // CHECK-NEXT: pos[1] : ( 0, 2, 4, 6
+ // CHECK-NEXT: crd[1] : ( 0, 7, 0, 6, 1, 7
+ // CHECK-NEXT: values : ( 6, 5, 4, 3, 2, 1
+ // CHECK-NEXT: ----
+ //
+ sparse_tensor.print %sm2 : tensor<?x?xf64, #DCSR>
+
+ //
+ // CHECK: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 9
+ // CHECK-NEXT: pos[0] : ( 0, 4
+ // CHECK-NEXT: crd[0] : ( 0, 1, 2, 3
+ // CHECK-NEXT: pos[1] : ( 0, 2, 3, 6, 9
+ // CHECK-NEXT: crd[1] : ( 0, 1, 7, 2, 4, 7, 0, 2, 3
+ // CHECK-NEXT: values : ( 2, 4, 6, 8, 10, 12, 14, 16, 18
+ // CHECK-NEXT: ----
+ //
+ sparse_tensor.print %0 : tensor<?x?xf64, #DCSR>
+
+ //
+ // CHECK: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 9
+ // CHECK-NEXT: pos[0] : ( 0, 4
+ // CHECK-NEXT: crd[0] : ( 0, 1, 2, 3
+ // CHECK-NEXT: pos[1] : ( 0, 2, 3, 6, 9
+ // CHECK-NEXT: crd[1] : ( 0, 1, 7, 2, 4, 7, 0, 2, 3
+ // CHECK-NEXT: values : ( 2, 4, 6, 8, 10, 12, 14, 16, 18
+ // CHECK-NEXT: ----
+ //
+ sparse_tensor.print %1 : tensor<?x?xf64, #DCSR>
+
+ //
+ // CHECK: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 13
+ // CHECK-NEXT: pos[0] : ( 0, 4
+ // CHECK-NEXT: crd[0] : ( 0, 1, 2, 3
+ // CHECK-NEXT: pos[1] : ( 0, 3, 6, 10, 13
+ // CHECK-NEXT: crd[1] : ( 0, 1, 7, 0, 6, 7, 1, 2, 4, 7, 0, 2, 3
+ // CHECK-NEXT: values : ( 8, 4, 5, 4, 3, 6, 2, 8, 10, 13, 14, 16, 18
+ // CHECK-NEXT: ----
+ //
+ sparse_tensor.print %2 : tensor<?x?xf64, #DCSR>
+
+ //
+ // CHECK: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 2
+ // CHECK-NEXT: pos[0] : ( 0, 2
+ // CHECK-NEXT: crd[0] : ( 0, 2
+ // CHECK-NEXT: pos[1] : ( 0, 1, 2
+ // CHECK-NEXT: crd[1] : ( 0, 7
+ // CHECK-NEXT: values : ( 12, 12
+ // CHECK-NEXT: ----
//
- call @dump(%sm1) : (tensor<?x?xf64, #DCSR>) -> ()
- call @dump(%sm2) : (tensor<?x?xf64, #DCSR>) -> ()
- call @dump(%0) : (tensor<?x?xf64, #DCSR>) -> ()
- call @dump(%1) : (tensor<?x?xf64, #DCSR>) -> ()
- call @dump(%2) : (tensor<?x?xf64, #DCSR>) -> ()
- call @dump(%3) : (tensor<?x?xf64, #DCSR>) -> ()
+ sparse_tensor.print %3 : tensor<?x?xf64, #DCSR>
// Release the resources.
bufferization.dealloc_tensor %sm1 : tensor<?x?xf64, #DCSR>
More information about the Mlir-commits
mailing list