[Mlir-commits] [mlir] [mlir][sparse] infer returned type for sparse_tensor.to_[buffer] ops (PR #83343)
Peiming Liu
llvmlistbot at llvm.org
Wed Feb 28 14:53:20 PST 2024
https://github.com/PeimingLiu updated https://github.com/llvm/llvm-project/pull/83343
>From f97cf1fe122c05491e114f3750fc9f1929166c27 Mon Sep 17 00:00:00 2001
From: Peiming Liu <peiming at google.com>
Date: Wed, 28 Feb 2024 21:37:45 +0000
Subject: [PATCH] [mlir][sparse] infer returned type for
sparse_tensor.to_[sparse_buffer] ops.
---
.../SparseTensor/IR/SparseTensorOps.td | 20 +-
.../SparseTensor/IR/SparseTensorDialect.cpp | 65 +++++++
.../Transforms/SparseTensorCodegen.cpp | 12 +-
.../Transforms/SparseTensorRewriting.cpp | 27 +--
.../SparseTensor/CPU/sparse_insert_3d.mlir | 171 ++++--------------
5 files changed, 132 insertions(+), 163 deletions(-)
diff --git a/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorOps.td b/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorOps.td
index 9007e4e98e3163..3a5447d29f866d 100644
--- a/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorOps.td
+++ b/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorOps.td
@@ -257,9 +257,10 @@ def SparseTensor_ReinterpretMapOp : SparseTensor_Op<"reinterpret_map", [NoMemory
let hasVerifier = 1;
}
-def SparseTensor_ToPositionsOp : SparseTensor_Op<"positions", [Pure]>,
+def SparseTensor_ToPositionsOp : SparseTensor_Op<"positions",
+ [Pure, DeclareOpInterfaceMethods<InferTypeOpInterface>]>,
Arguments<(ins AnySparseTensor:$tensor, LevelAttr:$level)>,
- Results<(outs AnyStridedMemRefOfRank<1>:$result)> {
+ Results<(outs AnyNon0RankedMemRef:$result)> {
let summary = "Extracts the `level`-th positions array of the `tensor`";
let description = [{
Returns the positions array of the tensor's storage at the given
@@ -283,9 +284,10 @@ def SparseTensor_ToPositionsOp : SparseTensor_Op<"positions", [Pure]>,
let hasVerifier = 1;
}
-def SparseTensor_ToCoordinatesOp : SparseTensor_Op<"coordinates", [Pure]>,
+def SparseTensor_ToCoordinatesOp : SparseTensor_Op<"coordinates",
+ [Pure, DeclareOpInterfaceMethods<InferTypeOpInterface>]>,
Arguments<(ins AnySparseTensor:$tensor, LevelAttr:$level)>,
- Results<(outs AnyStridedMemRefOfRank<1>:$result)> {
+ Results<(outs AnyNon0RankedMemRef:$result)> {
let summary = "Extracts the `level`-th coordinates array of the `tensor`";
let description = [{
Returns the coordinates array of the tensor's storage at the given
@@ -309,9 +311,10 @@ def SparseTensor_ToCoordinatesOp : SparseTensor_Op<"coordinates", [Pure]>,
let hasVerifier = 1;
}
-def SparseTensor_ToCoordinatesBufferOp : SparseTensor_Op<"coordinates_buffer", [Pure]>,
+def SparseTensor_ToCoordinatesBufferOp : SparseTensor_Op<"coordinates_buffer",
+ [Pure, DeclareOpInterfaceMethods<InferTypeOpInterface>]>,
Arguments<(ins AnySparseTensor:$tensor)>,
- Results<(outs AnyStridedMemRefOfRank<1>:$result)> {
+ Results<(outs AnyNon0RankedMemRef:$result)> {
let summary = "Extracts the linear coordinates array from a tensor";
let description = [{
Returns the linear coordinates array for a sparse tensor with
@@ -340,9 +343,10 @@ def SparseTensor_ToCoordinatesBufferOp : SparseTensor_Op<"coordinates_buffer", [
let hasVerifier = 1;
}
-def SparseTensor_ToValuesOp : SparseTensor_Op<"values", [Pure]>,
+def SparseTensor_ToValuesOp : SparseTensor_Op<"values",
+ [Pure, DeclareOpInterfaceMethods<InferTypeOpInterface>]>,
Arguments<(ins AnySparseTensor:$tensor)>,
- Results<(outs AnyStridedMemRefOfRank<1>:$result)> {
+ Results<(outs AnyNon0RankedMemRef:$result)> {
let summary = "Extracts numerical values array from a tensor";
let description = [{
Returns the values array of the sparse storage format for the given
diff --git a/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp b/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp
index 69c3413f35ea9c..232635ca84a47e 100644
--- a/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp
+++ b/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp
@@ -1445,6 +1445,38 @@ OpFoldResult ReinterpretMapOp::fold(FoldAdaptor adaptor) {
return {};
}
+template <typename ToBufferOp>
+static LogicalResult inferSparseBufferType(ValueRange ops, DictionaryAttr attr,
+ OpaqueProperties prop,
+ RegionRange region,
+ SmallVectorImpl<mlir::Type> &ret) {
+ typename ToBufferOp::Adaptor adaptor(ops, attr, prop, region);
+ SparseTensorType stt = getSparseTensorType(adaptor.getTensor());
+ Type elemTp = nullptr;
+ bool withStride = false;
+ if constexpr (std::is_same_v<ToBufferOp, ToPositionsOp>) {
+ elemTp = stt.getPosType();
+ } else if constexpr (std::is_same_v<ToBufferOp, ToCoordinatesOp> ||
+ std::is_same_v<ToBufferOp, ToCoordinatesBufferOp>) {
+ elemTp = stt.getCrdType();
+ if constexpr (std::is_same_v<ToBufferOp, ToCoordinatesOp>)
+ withStride = stt.getAoSCOOStart() <= adaptor.getLevel();
+ } else if constexpr (std::is_same_v<ToBufferOp, ToValuesOp>) {
+ elemTp = stt.getElementType();
+ }
+
+ assert(elemTp && "unhandled operation.");
+ SmallVector<int64_t> bufShape = stt.getBatchLvlShape();
+ bufShape.push_back(ShapedType::kDynamic);
+
+ auto layout = withStride ? StridedLayoutAttr::StridedLayoutAttr::get(
+ stt.getContext(), ShapedType::kDynamic,
+ {ShapedType::kDynamic})
+ : StridedLayoutAttr();
+ ret.emplace_back(MemRefType::get(bufShape, elemTp, layout));
+ return success();
+}
+
LogicalResult ToPositionsOp::verify() {
auto stt = getSparseTensorType(getTensor());
if (failed(lvlIsInBounds(getLevel(), getTensor())))
@@ -1454,6 +1486,14 @@ LogicalResult ToPositionsOp::verify() {
return success();
}
+LogicalResult
+ToPositionsOp::inferReturnTypes(MLIRContext *ctx, std::optional<Location> loc,
+ ValueRange ops, DictionaryAttr attr,
+ OpaqueProperties prop, RegionRange region,
+ SmallVectorImpl<mlir::Type> &ret) {
+ return inferSparseBufferType<ToPositionsOp>(ops, attr, prop, region, ret);
+}
+
LogicalResult ToCoordinatesOp::verify() {
auto stt = getSparseTensorType(getTensor());
if (failed(lvlIsInBounds(getLevel(), getTensor())))
@@ -1463,6 +1503,14 @@ LogicalResult ToCoordinatesOp::verify() {
return success();
}
+LogicalResult
+ToCoordinatesOp::inferReturnTypes(MLIRContext *ctx, std::optional<Location> loc,
+ ValueRange ops, DictionaryAttr attr,
+ OpaqueProperties prop, RegionRange region,
+ SmallVectorImpl<mlir::Type> &ret) {
+ return inferSparseBufferType<ToCoordinatesOp>(ops, attr, prop, region, ret);
+}
+
LogicalResult ToCoordinatesBufferOp::verify() {
auto stt = getSparseTensorType(getTensor());
if (stt.getAoSCOOStart() >= stt.getLvlRank())
@@ -1470,6 +1518,14 @@ LogicalResult ToCoordinatesBufferOp::verify() {
return success();
}
+LogicalResult ToCoordinatesBufferOp::inferReturnTypes(
+ MLIRContext *ctx, std::optional<Location> loc, ValueRange ops,
+ DictionaryAttr attr, OpaqueProperties prop, RegionRange region,
+ SmallVectorImpl<mlir::Type> &ret) {
+ return inferSparseBufferType<ToCoordinatesBufferOp>(ops, attr, prop, region,
+ ret);
+}
+
LogicalResult ToValuesOp::verify() {
auto stt = getSparseTensorType(getTensor());
auto mtp = getMemRefType(getResult());
@@ -1478,6 +1534,15 @@ LogicalResult ToValuesOp::verify() {
return success();
}
+LogicalResult ToValuesOp::inferReturnTypes(MLIRContext *ctx,
+ std::optional<Location> loc,
+ ValueRange ops, DictionaryAttr attr,
+ OpaqueProperties prop,
+ RegionRange region,
+ SmallVectorImpl<mlir::Type> &ret) {
+ return inferSparseBufferType<ToValuesOp>(ops, attr, prop, region, ret);
+}
+
LogicalResult ToSliceOffsetOp::verify() {
auto rank = getRankedTensorType(getSlice()).getRank();
if (rank <= getDim().getSExtValue() || getDim().getSExtValue() < 0)
diff --git a/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorCodegen.cpp b/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorCodegen.cpp
index d5eec4ae67e798..4e3393195813c3 100644
--- a/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorCodegen.cpp
+++ b/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorCodegen.cpp
@@ -1058,17 +1058,9 @@ class SparseToCoordinatesConverter
// Replace the requested coordinates access with corresponding field.
// The cast_op is inserted by type converter to intermix 1:N type
// conversion.
- Location loc = op.getLoc();
auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
- Value field = desc.getCrdMemRefOrView(rewriter, loc, op.getLevel());
-
- // Insert a cast to bridge the actual type to the user expected type. If the
- // actual type and the user expected type aren't compatible, the compiler or
- // the runtime will issue an error.
- Type resType = op.getResult().getType();
- if (resType != field.getType())
- field = rewriter.create<memref::CastOp>(loc, resType, field);
- rewriter.replaceOp(op, field);
+ rewriter.replaceOp(
+ op, desc.getCrdMemRefOrView(rewriter, op.getLoc(), op.getLevel()));
return success();
}
diff --git a/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorRewriting.cpp b/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorRewriting.cpp
index c95b7b015b3725..6ff21468e05764 100644
--- a/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorRewriting.cpp
+++ b/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorRewriting.cpp
@@ -618,10 +618,10 @@ struct PrintRewriter : public OpRewritePattern<PrintOp> {
rewriter.create<vector::PrintOp>(loc, nse);
// Use the "codegen" foreach loop construct to iterate over
// all typical sparse tensor components for printing.
- foreachFieldAndTypeInSparseTensor(stt, [&rewriter, &loc,
- &tensor](Type tp, FieldIndex,
- SparseTensorFieldKind kind,
- Level l, LevelType) {
+ foreachFieldAndTypeInSparseTensor(stt, [&rewriter, &loc, &tensor,
+ &stt](Type, FieldIndex,
+ SparseTensorFieldKind kind,
+ Level l, LevelType) {
switch (kind) {
case SparseTensorFieldKind::StorageSpec: {
break;
@@ -632,8 +632,8 @@ struct PrintRewriter : public OpRewritePattern<PrintOp> {
rewriter.create<vector::PrintOp>(
loc, lvl, vector::PrintPunctuation::NoPunctuation);
rewriter.create<vector::PrintOp>(loc, rewriter.getStringAttr("] : "));
- auto pos = rewriter.create<ToPositionsOp>(loc, tp, tensor, l);
- printContents(rewriter, loc, tp, pos);
+ auto pos = rewriter.create<ToPositionsOp>(loc, tensor, l);
+ printContents(rewriter, loc, pos);
break;
}
case SparseTensorFieldKind::CrdMemRef: {
@@ -642,15 +642,20 @@ struct PrintRewriter : public OpRewritePattern<PrintOp> {
rewriter.create<vector::PrintOp>(
loc, lvl, vector::PrintPunctuation::NoPunctuation);
rewriter.create<vector::PrintOp>(loc, rewriter.getStringAttr("] : "));
- auto crd = rewriter.create<ToCoordinatesOp>(loc, tp, tensor, l);
- printContents(rewriter, loc, tp, crd);
+ Value crd = nullptr;
+ // TODO: eliminates ToCoordinateBufferOp!
+ if (stt.getAoSCOOStart() == l)
+ crd = rewriter.create<ToCoordinatesBufferOp>(loc, tensor);
+ else
+ crd = rewriter.create<ToCoordinatesOp>(loc, tensor, l);
+ printContents(rewriter, loc, crd);
break;
}
case SparseTensorFieldKind::ValMemRef: {
rewriter.create<vector::PrintOp>(loc,
rewriter.getStringAttr("values : "));
- auto val = rewriter.create<ToValuesOp>(loc, tp, tensor);
- printContents(rewriter, loc, tp, val);
+ auto val = rewriter.create<ToValuesOp>(loc, tensor);
+ printContents(rewriter, loc, val);
break;
}
}
@@ -670,7 +675,7 @@ struct PrintRewriter : public OpRewritePattern<PrintOp> {
//
// Generates code to print:
// ( a0, a1, ... )
- static void printContents(PatternRewriter &rewriter, Location loc, Type tp,
+ static void printContents(PatternRewriter &rewriter, Location loc,
Value vec) {
// Open bracket.
rewriter.create<vector::PrintOp>(loc, vector::PrintPunctuation::Open);
diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_insert_3d.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_insert_3d.mlir
index c141df64c22e76..3a32ff28527001 100644
--- a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_insert_3d.mlir
+++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_insert_3d.mlir
@@ -45,91 +45,6 @@
module {
-
- func.func @dump(%arg0: tensor<5x4x3xf64, #TensorCSR>) {
- %c0 = arith.constant 0 : index
- %fu = arith.constant 99.0 : f64
- %p0 = sparse_tensor.positions %arg0 { level = 0 : index } : tensor<5x4x3xf64, #TensorCSR> to memref<?xindex>
- %i0 = sparse_tensor.coordinates %arg0 { level = 0 : index } : tensor<5x4x3xf64, #TensorCSR> to memref<?xindex>
- %p2 = sparse_tensor.positions %arg0 { level = 2 : index } : tensor<5x4x3xf64, #TensorCSR> to memref<?xindex>
- %i2 = sparse_tensor.coordinates %arg0 { level = 2 : index } : tensor<5x4x3xf64, #TensorCSR> to memref<?xindex>
- %v = sparse_tensor.values %arg0 : tensor<5x4x3xf64, #TensorCSR> to memref<?xf64>
- %vp0 = vector.transfer_read %p0[%c0], %c0: memref<?xindex>, vector<2xindex>
- vector.print %vp0 : vector<2xindex>
- %vi0 = vector.transfer_read %i0[%c0], %c0: memref<?xindex>, vector<2xindex>
- vector.print %vi0 : vector<2xindex>
- %vp2 = vector.transfer_read %p2[%c0], %c0: memref<?xindex>, vector<9xindex>
- vector.print %vp2 : vector<9xindex>
- %vi2 = vector.transfer_read %i2[%c0], %c0: memref<?xindex>, vector<5xindex>
- vector.print %vi2 : vector<5xindex>
- %vv = vector.transfer_read %v[%c0], %fu: memref<?xf64>, vector<5xf64>
- vector.print %vv : vector<5xf64>
- return
- }
-
- func.func @dump_row(%arg0: tensor<5x4x3xf64, #TensorRow>) {
- %c0 = arith.constant 0 : index
- %fu = arith.constant 99.0 : f64
- %p0 = sparse_tensor.positions %arg0 { level = 0 : index } : tensor<5x4x3xf64, #TensorRow> to memref<?xindex>
- %i0 = sparse_tensor.coordinates %arg0 { level = 0 : index } : tensor<5x4x3xf64, #TensorRow> to memref<?xindex>
- %p1 = sparse_tensor.positions %arg0 { level = 1 : index } : tensor<5x4x3xf64, #TensorRow> to memref<?xindex>
- %i1 = sparse_tensor.coordinates %arg0 { level = 1 : index } : tensor<5x4x3xf64, #TensorRow> to memref<?xindex>
- %v = sparse_tensor.values %arg0 : tensor<5x4x3xf64, #TensorRow> to memref<?xf64>
- %vp0 = vector.transfer_read %p0[%c0], %c0: memref<?xindex>, vector<2xindex>
- vector.print %vp0 : vector<2xindex>
- %vi0 = vector.transfer_read %i0[%c0], %c0: memref<?xindex>, vector<2xindex>
- vector.print %vi0 : vector<2xindex>
- %vp1 = vector.transfer_read %p1[%c0], %c0: memref<?xindex>, vector<3xindex>
- vector.print %vp1 : vector<3xindex>
- %vi1 = vector.transfer_read %i1[%c0], %c0: memref<?xindex>, vector<4xindex>
- vector.print %vi1 : vector<4xindex>
- %vv = vector.transfer_read %v[%c0], %fu: memref<?xf64>, vector<12xf64>
- vector.print %vv : vector<12xf64>
- return
- }
-
-func.func @dump_ccoo(%arg0: tensor<5x4x3xf64, #CCoo>) {
- %c0 = arith.constant 0 : index
- %fu = arith.constant 99.0 : f64
- %p0 = sparse_tensor.positions %arg0 { level = 0 : index } : tensor<5x4x3xf64, #CCoo> to memref<?xindex>
- %i0 = sparse_tensor.coordinates %arg0 { level = 0 : index } : tensor<5x4x3xf64, #CCoo> to memref<?xindex>
- %p1 = sparse_tensor.positions %arg0 { level = 1 : index } : tensor<5x4x3xf64, #CCoo> to memref<?xindex>
- %i1 = sparse_tensor.coordinates %arg0 { level = 1 : index } : tensor<5x4x3xf64, #CCoo> to memref<?xindex>
- %i2 = sparse_tensor.coordinates %arg0 { level = 2 : index } : tensor<5x4x3xf64, #CCoo> to memref<?xindex>
- %v = sparse_tensor.values %arg0 : tensor<5x4x3xf64, #CCoo> to memref<?xf64>
- %vp0 = vector.transfer_read %p0[%c0], %c0: memref<?xindex>, vector<2xindex>
- vector.print %vp0 : vector<2xindex>
- %vi0 = vector.transfer_read %i0[%c0], %c0: memref<?xindex>, vector<2xindex>
- vector.print %vi0 : vector<2xindex>
- %vp1 = vector.transfer_read %p1[%c0], %c0: memref<?xindex>, vector<3xindex>
- vector.print %vp1 : vector<3xindex>
- %vi1 = vector.transfer_read %i1[%c0], %c0: memref<?xindex>, vector<5xindex>
- vector.print %vi1 : vector<5xindex>
- %vi2 = vector.transfer_read %i2[%c0], %c0: memref<?xindex>, vector<5xindex>
- vector.print %vi2 : vector<5xindex>
- %vv = vector.transfer_read %v[%c0], %fu: memref<?xf64>, vector<5xf64>
- vector.print %vv : vector<5xf64>
- return
- }
-
-func.func @dump_dcoo(%arg0: tensor<5x4x3xf64, #DCoo>) {
- %c0 = arith.constant 0 : index
- %fu = arith.constant 99.0 : f64
- %p1 = sparse_tensor.positions %arg0 { level = 1 : index } : tensor<5x4x3xf64, #DCoo> to memref<?xindex>
- %i1 = sparse_tensor.coordinates %arg0 { level = 1 : index } : tensor<5x4x3xf64, #DCoo> to memref<?xindex>
- %i2 = sparse_tensor.coordinates %arg0 { level = 2 : index } : tensor<5x4x3xf64, #DCoo> to memref<?xindex>
- %v = sparse_tensor.values %arg0 : tensor<5x4x3xf64, #DCoo> to memref<?xf64>
- %vp1 = vector.transfer_read %p1[%c0], %c0: memref<?xindex>, vector<6xindex>
- vector.print %vp1 : vector<6xindex>
- %vi1 = vector.transfer_read %i1[%c0], %c0: memref<?xindex>, vector<5xindex>
- vector.print %vi1 : vector<5xindex>
- %vi2 = vector.transfer_read %i2[%c0], %c0: memref<?xindex>, vector<5xindex>
- vector.print %vi2 : vector<5xindex>
- %vv = vector.transfer_read %v[%c0], %fu: memref<?xf64>, vector<5xf64>
- vector.print %vv : vector<5xf64>
- return
-}
-
//
// Main driver.
//
@@ -145,13 +60,14 @@ func.func @dump_dcoo(%arg0: tensor<5x4x3xf64, #DCoo>) {
%f4 = arith.constant 4.4 : f64
%f5 = arith.constant 5.5 : f64
- //
- // CHECK: ( 0, 2 )
- // CHECK-NEXT: ( 3, 4 )
- // CHECK-NEXT: ( 0, 2, 2, 2, 3, 3, 3, 4, 5 )
- // CHECK-NEXT: ( 1, 2, 1, 2, 2 )
- // CHECK-NEXT: ( 1.1, 2.2, 3.3, 4.4, 5.5 )
- //
+ // CHECK: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 5
+ // CHECK-NEXT: pos[0] : ( 0, 2
+ // CHECK-NEXT: crd[0] : ( 3, 4
+ // CHECK-NEXT: pos[2] : ( 0, 2, 2, 2, 3, 3, 3, 4, 5
+ // CHECK-NEXT: crd[2] : ( 1, 2, 1, 2, 2
+ // CHECK-NEXT: values : ( 1.1, 2.2, 3.3, 4.4, 5.5
+ // CHECK-NEXT: ----
%tensora = tensor.empty() : tensor<5x4x3xf64, #TensorCSR>
%tensor1 = sparse_tensor.insert %f1 into %tensora[%c3, %c0, %c1] : tensor<5x4x3xf64, #TensorCSR>
%tensor2 = sparse_tensor.insert %f2 into %tensor1[%c3, %c0, %c2] : tensor<5x4x3xf64, #TensorCSR>
@@ -159,15 +75,16 @@ func.func @dump_dcoo(%arg0: tensor<5x4x3xf64, #DCoo>) {
%tensor4 = sparse_tensor.insert %f4 into %tensor3[%c4, %c2, %c2] : tensor<5x4x3xf64, #TensorCSR>
%tensor5 = sparse_tensor.insert %f5 into %tensor4[%c4, %c3, %c2] : tensor<5x4x3xf64, #TensorCSR>
%tensorm = sparse_tensor.load %tensor5 hasInserts : tensor<5x4x3xf64, #TensorCSR>
- call @dump(%tensorm) : (tensor<5x4x3xf64, #TensorCSR>) -> ()
-
- //
- // CHECK-NEXT: ( 0, 2 )
- // CHECK-NEXT: ( 3, 4 )
- // CHECK-NEXT: ( 0, 2, 4 )
- // CHECK-NEXT: ( 0, 3, 2, 3 )
- // CHECK-NEXT: ( 0, 1.1, 2.2, 0, 3.3, 0, 0, 0, 4.4, 0, 0, 5.5 )
- //
+ sparse_tensor.print %tensorm : tensor<5x4x3xf64, #TensorCSR>
+
+ // CHECK-NEXT: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 12
+ // CHECK-NEXT: pos[0] : ( 0, 2
+ // CHECK-NEXT: crd[0] : ( 3, 4
+ // CHECK-NEXT: pos[1] : ( 0, 2, 4
+ // CHECK-NEXT: crd[1] : ( 0, 3, 2, 3
+ // CHECK-NEXT: values : ( 0, 1.1, 2.2, 0, 3.3, 0, 0, 0, 4.4, 0, 0, 5.5
+ // CHECK-NEXT: ----
%rowa = tensor.empty() : tensor<5x4x3xf64, #TensorRow>
%row1 = sparse_tensor.insert %f1 into %rowa[%c3, %c0, %c1] : tensor<5x4x3xf64, #TensorRow>
%row2 = sparse_tensor.insert %f2 into %row1[%c3, %c0, %c2] : tensor<5x4x3xf64, #TensorRow>
@@ -175,15 +92,16 @@ func.func @dump_dcoo(%arg0: tensor<5x4x3xf64, #DCoo>) {
%row4 = sparse_tensor.insert %f4 into %row3[%c4, %c2, %c2] : tensor<5x4x3xf64, #TensorRow>
%row5 = sparse_tensor.insert %f5 into %row4[%c4, %c3, %c2] : tensor<5x4x3xf64, #TensorRow>
%rowm = sparse_tensor.load %row5 hasInserts : tensor<5x4x3xf64, #TensorRow>
- call @dump_row(%rowm) : (tensor<5x4x3xf64, #TensorRow>) -> ()
-
- //
- // CHECK: ( 0, 2 )
- // CHECK-NEXT: ( 3, 4 )
- // CHECK-NEXT: ( 0, 3, 5 )
- // CHECK-NEXT: ( 0, 0, 3, 2, 3 )
- // CHECK-NEXT: ( 1, 2, 1, 2, 2 )
- // CHECK-NEXT: ( 1.1, 2.2, 3.3, 4.4, 5.5 )
+ sparse_tensor.print %rowm : tensor<5x4x3xf64, #TensorRow>
+
+ // CHECK-NEXT: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 5
+ // CHECK-NEXT: pos[0] : ( 0, 2
+ // CHECK-NEXT: crd[0] : ( 3, 4
+ // CHECK-NEXT: pos[1] : ( 0, 3, 5
+ // CHECK-NEXT: crd[1] : ( 0, 1, 0, 2, 3, 1, 2, 2, 3, 2
+ // CHECK-NEXT: values : ( 1.1, 2.2, 3.3, 4.4, 5.5
+ // CHECK-NEXT: ----
%ccoo = tensor.empty() : tensor<5x4x3xf64, #CCoo>
%ccoo1 = sparse_tensor.insert %f1 into %ccoo[%c3, %c0, %c1] : tensor<5x4x3xf64, #CCoo>
%ccoo2 = sparse_tensor.insert %f2 into %ccoo1[%c3, %c0, %c2] : tensor<5x4x3xf64, #CCoo>
@@ -191,13 +109,14 @@ func.func @dump_dcoo(%arg0: tensor<5x4x3xf64, #DCoo>) {
%ccoo4 = sparse_tensor.insert %f4 into %ccoo3[%c4, %c2, %c2] : tensor<5x4x3xf64, #CCoo>
%ccoo5 = sparse_tensor.insert %f5 into %ccoo4[%c4, %c3, %c2] : tensor<5x4x3xf64, #CCoo>
%ccoom = sparse_tensor.load %ccoo5 hasInserts : tensor<5x4x3xf64, #CCoo>
- call @dump_ccoo(%ccoom) : (tensor<5x4x3xf64, #CCoo>) -> ()
-
- //
- // CHECK-NEXT: ( 0, 0, 0, 0, 3, 5 )
- // CHECK-NEXT: ( 0, 0, 3, 2, 3 )
- // CHECK-NEXT: ( 1, 2, 1, 2, 2 )
- // CHECK-NEXT: ( 1.1, 2.2, 3.3, 4.4, 5.5 )
+ sparse_tensor.print %ccoom : tensor<5x4x3xf64, #CCoo>
+
+ // CHECK-NEXT: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 5
+ // CHECK-NEXT: pos[1] : ( 0, 0, 0, 0, 3, 5
+ // CHECK-NEXT: crd[1] : ( 0, 1, 0, 2, 3, 1, 2, 2, 3, 2
+ // CHECK-NEXT: values : ( 1.1, 2.2, 3.3, 4.4, 5.5
+ // CHECK-NEXT: ----
%dcoo = tensor.empty() : tensor<5x4x3xf64, #DCoo>
%dcoo1 = sparse_tensor.insert %f1 into %dcoo[%c3, %c0, %c1] : tensor<5x4x3xf64, #DCoo>
%dcoo2 = sparse_tensor.insert %f2 into %dcoo1[%c3, %c0, %c2] : tensor<5x4x3xf64, #DCoo>
@@ -205,23 +124,7 @@ func.func @dump_dcoo(%arg0: tensor<5x4x3xf64, #DCoo>) {
%dcoo4 = sparse_tensor.insert %f4 into %dcoo3[%c4, %c2, %c2] : tensor<5x4x3xf64, #DCoo>
%dcoo5 = sparse_tensor.insert %f5 into %dcoo4[%c4, %c3, %c2] : tensor<5x4x3xf64, #DCoo>
%dcoom = sparse_tensor.load %dcoo5 hasInserts : tensor<5x4x3xf64, #DCoo>
- call @dump_dcoo(%dcoom) : (tensor<5x4x3xf64, #DCoo>) -> ()
-
- // NOE sanity check.
- //
- // CHECK-NEXT: 5
- // CHECK-NEXT: 12
- // CHECK-NEXT: 5
- // CHECK-NEXT: 5
- //
- %noe1 = sparse_tensor.number_of_entries %tensorm : tensor<5x4x3xf64, #TensorCSR>
- vector.print %noe1 : index
- %noe2 = sparse_tensor.number_of_entries %rowm : tensor<5x4x3xf64, #TensorRow>
- vector.print %noe2 : index
- %noe3 = sparse_tensor.number_of_entries %ccoom : tensor<5x4x3xf64, #CCoo>
- vector.print %noe3 : index
- %noe4 = sparse_tensor.number_of_entries %dcoom : tensor<5x4x3xf64, #DCoo>
- vector.print %noe4 : index
+ sparse_tensor.print %dcoom : tensor<5x4x3xf64, #DCoo>
// Release resources.
bufferization.dealloc_tensor %tensorm : tensor<5x4x3xf64, #TensorCSR>
More information about the Mlir-commits
mailing list