[Mlir-commits] [mlir] [mlir][Vectorizer] Added support to Vectorize tensor.unpack (PR #76087)

llvmlistbot at llvm.org llvmlistbot at llvm.org
Mon Feb 19 08:05:52 PST 2024


================
@@ -1559,6 +1558,111 @@ vectorizeAsTensorPackOp(RewriterBase &rewriter, tensor::PackOp packOp,
   return success();
 }
 
+/// Vectorize a `tensor::UnPackOp` to these 4 Ops:
+///   Vector::TransferReadOp - Reads a vector from the source tensor
+///   vector::TransposeOp - Transpose the Source tensor
+///   ShapeCastOp - Reshape the data based on the target.
+///   vector::TransferWriteOp. - Write the result vector back to the destination
+///   tensor
+static LogicalResult vectorizeAsUnpackOp(RewriterBase &rewriter,
+                                         tensor::UnPackOp unpackOp,
+                                         ArrayRef<int64_t> inputVectorSizes,
+                                         SmallVectorImpl<Value> &newResults) {
+
+  OpBuilder::InsertionGuard g(rewriter);
+  rewriter.setInsertionPoint(unpackOp);
+
+  RankedTensorType unpackTensorType = unpackOp.getSourceType();
+
+  ArrayRef<int64_t> innerDimPos = unpackOp.getInnerDimsPos();
+  ArrayRef<int64_t> innerTiles = unpackOp.getStaticInnerTiles();
+
+  SmallVector<int64_t> readMaskShape(inputVectorSizes.begin(),
+                                     inputVectorSizes.end());
+  ArrayRef<int64_t> outerDimsPerm = unpackOp.getOuterDimsPerm();
+  if (!outerDimsPerm.empty()) {
+    applyPermutationToVector(readMaskShape, outerDimsPerm);
+  }
+  ArrayRef<int64_t> sourceShape = unpackTensorType.getShape();
+  readMaskShape.append(sourceShape.begin() + inputVectorSizes.size(),
+                       sourceShape.end());
+
+  // ReadMask is the size of tensor used to read and apply mask. It is
+  // set like this: Let's say the vectorSize (VS) array is size 'N' and
+  // the sourceShape(SS) is 'M' where M >= N and InnerTileSizes (IT) of
+  // size M-N
+  // Thus:
+  // - initially: ReadMaskShape = vectorInputSizes
+  // - if outer_dims_perms is present: do that permutation on readMaskShape.
+  // - Append the remaining shape from SS
+  // - Divide all the readMaskShape locations pointed by innerDimPos
+  //   by the innerTileSize attribute value.
+  // E.g. let's say let's say unpackTensorType.getShape() = <8x8x32x16>
+  // inner Dim Pos = [0, 1] and Inner Tiles = [32, 16], vector_sizes are [512,
+  // 128] and outer_dims_perm is [1, 0] then read shape is:
+  //   ReadMaskShape(initial): [512, 128]
+  //   After applying outer_dims_perm: [128, 512]
+  //   After appending the rest of the sourceShape: [128, 512, 32, 16]
+  //   Final Value(after innerDim Adjustment): [128/32, 512/16, 32, 16]
+  //                                           = [4, 32, 32, 16]
+  for (auto [index, size] : enumerate(innerTiles)) {
+    readMaskShape[innerDimPos[index]] =
+        llvm::divideCeil(readMaskShape[innerDimPos[index]], size);
+  }
+
+  ReifiedRankedShapedTypeDims reifiedRetShapes;
+  LogicalResult status =
+      cast<ReifyRankedShapedTypeOpInterface>(unpackOp.getOperation())
+          .reifyResultShapes(rewriter, reifiedRetShapes);
+  if (status.failed()) {
+    LDBG("Unable to reify result shapes of " << unpackOp);
+    return failure();
+  }
+  Location loc = unpackOp->getLoc();
+
+  auto padValue = rewriter.create<arith::ConstantOp>(
+      loc, rewriter.getZeroAttr(unpackOp.getSourceType().getElementType()));
+
+  // Read result, mask if necessary. If transferReadOp shape is not equal
+  // to shape of source, then a mask is necessary.
+  Value readResult = createReadOrMaskedRead(
+      rewriter, loc, unpackOp.getSource(),
+      ArrayRef<int64_t>(readMaskShape.begin(), readMaskShape.end()), padValue);
+
+  PackingMetadata packMetadata;
+  SmallVector<int64_t> lastDimToInsertPosPerm = invertPermutationVector(
+      tensor::getUnPackInverseSrcPerm(unpackOp, packMetadata));
----------------
Max191 wrote:

I think this should not be the inverted permutation. One of the tests seems to have an incorrect transpose, and I think this is the reason for it.

https://github.com/llvm/llvm-project/pull/76087


More information about the Mlir-commits mailing list