[Mlir-commits] [mlir] [mlir][linalg] Add pattern to propagate pack up through tensor.pad (PR #82035)
Quinn Dawkins
llvmlistbot at llvm.org
Fri Feb 16 11:55:46 PST 2024
https://github.com/qedawkins created https://github.com/llvm/llvm-project/pull/82035
This mirrors the existing pattern for pushing unpack down through
padding, restricting to cases where the padded dimensions aren't tiled
by the pack.
Additionally reformats the propagation test to make it easier to read. The
test reformatting change is kept as a separate PR for ease of review.
>From abe2d42442d2aad0f04be8a68ffbc292ce82f4f3 Mon Sep 17 00:00:00 2001
From: Quinn Dawkins <quinn at nod-labs.com>
Date: Fri, 16 Feb 2024 14:17:05 -0500
Subject: [PATCH 1/2] [mlir][linalg] Reformat data-layout-propagation test
---
.../Linalg/data-layout-propagation.mlir | 772 +++++++++---------
1 file changed, 386 insertions(+), 386 deletions(-)
diff --git a/mlir/test/Dialect/Linalg/data-layout-propagation.mlir b/mlir/test/Dialect/Linalg/data-layout-propagation.mlir
index 4c59c97aecc251..92459e117bbe32 100644
--- a/mlir/test/Dialect/Linalg/data-layout-propagation.mlir
+++ b/mlir/test/Dialect/Linalg/data-layout-propagation.mlir
@@ -21,28 +21,28 @@ func.func @dynamic_elem_pack(%arg0: tensor<?x?xf32>, %dest: tensor<?x?x8x2xf32>)
into %dest : tensor<?x?xf32> -> tensor<?x?x8x2xf32>
return %4 : tensor<?x?x8x2xf32>
}
-// CHECK-DAG: #[[MAP0:.+]] = affine_map<()[s0] -> (s0 ceildiv 8)>
-// CHECK-DAG: #[[MAP1:.+]] = affine_map<()[s0] -> (s0 ceildiv 2)>
-// CHECK-DAG: #[[MAP2:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
-// CHECK: func.func @dynamic_elem_pack
-// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
-// CHECK-SAME: %[[DEST:[a-zA-Z0-9]+]]
-// CHECK-DAG: %[[C0:.+]] = arith.constant 0 : index
-// CHECK-DAG: %[[C1:.+]] = arith.constant 1 : index
-// CHECK-DAG: %[[D0:.+]] = tensor.dim %[[ARG0]], %[[C0]]
-// CHECK-DAG: %[[D1:.+]] = tensor.dim %[[ARG0]], %[[C1]]
-// CHECK-DAG: %[[OUTER_D0:.+]] = affine.apply #[[MAP0]]()[%[[D0]]]
-// CHECK-DAG: %[[OUTER_D1:.+]] = affine.apply #[[MAP1]]()[%[[D1]]]
-// CHECK: %[[ARG0_EMPTY:.+]] = tensor.empty(%[[OUTER_D0]], %[[OUTER_D1]]) : tensor<?x?x8x2xf32>
-// CHECK: %[[PACK_ARG0:.+]] = tensor.pack %[[ARG0]]
-// CHECK-SAME: inner_dims_pos = [0, 1] inner_tiles = [8, 2]
-// CHECK-SAME: into %[[ARG0_EMPTY]]
-// CHECK: %[[ELEM:.+]] = linalg.generic
-// CHECK-SAME: indexing_maps = [#[[MAP2]], #[[MAP2]]]
-// CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "parallel"]
-// CHECK-SAME: ins(%[[PACK_ARG0]]
-// CHECK-SAME: outs(%[[DEST]]
-// CHECK: return %[[ELEM]] : tensor<?x?x8x2xf32>
+// CHECK-DAG: #[[$MAP0:.+]] = affine_map<()[s0] -> (s0 ceildiv 8)>
+// CHECK-DAG: #[[$MAP1:.+]] = affine_map<()[s0] -> (s0 ceildiv 2)>
+// CHECK-DAG: #[[$MAP2:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
+// CHECK-LABEL: func.func @dynamic_elem_pack
+// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
+// CHECK-SAME: %[[DEST:[a-zA-Z0-9]+]]
+// CHECK-DAG: %[[C0:.+]] = arith.constant 0 : index
+// CHECK-DAG: %[[C1:.+]] = arith.constant 1 : index
+// CHECK-DAG: %[[D0:.+]] = tensor.dim %[[ARG0]], %[[C0]]
+// CHECK-DAG: %[[D1:.+]] = tensor.dim %[[ARG0]], %[[C1]]
+// CHECK-DAG: %[[OUTER_D0:.+]] = affine.apply #[[$MAP0]]()[%[[D0]]]
+// CHECK-DAG: %[[OUTER_D1:.+]] = affine.apply #[[$MAP1]]()[%[[D1]]]
+// CHECK: %[[ARG0_EMPTY:.+]] = tensor.empty(%[[OUTER_D0]], %[[OUTER_D1]]) : tensor<?x?x8x2xf32>
+// CHECK: %[[PACK_ARG0:.+]] = tensor.pack %[[ARG0]]
+// CHECK-SAME: inner_dims_pos = [0, 1] inner_tiles = [8, 2]
+// CHECK-SAME: into %[[ARG0_EMPTY]]
+// CHECK: %[[ELEM:.+]] = linalg.generic
+// CHECK-SAME: indexing_maps = [#[[$MAP2]], #[[$MAP2]]]
+// CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "parallel"]
+// CHECK-SAME: ins(%[[PACK_ARG0]]
+// CHECK-SAME: outs(%[[DEST]]
+// CHECK: return %[[ELEM]] : tensor<?x?x8x2xf32>
// -----
@@ -62,20 +62,20 @@ func.func @elem_pack_transpose_inner_dims(%arg0: tensor<128x256xi32>, %dest: ten
into %dest : tensor<128x256xi32> -> tensor<4x16x16x32xi32>
return %pack : tensor<4x16x16x32xi32>
}
-// CHECK-DAG: #[[MAP:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
-// CHECK: func.func @elem_pack_transpose_inner_dims
-// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
-// CHECK-SAME: %[[DEST:[a-zA-Z0-9]+]]
-// CHECK: %[[ARG0_EMPTY:.+]] = tensor.empty() : tensor<4x16x16x32xi32>
-// CHECK: %[[PACK_ARG0:.+]] = tensor.pack %[[ARG0]]
-// CHECK-SAME: inner_dims_pos = [1, 0] inner_tiles = [16, 32]
-// CHECK-SAME: into %[[ARG0_EMPTY]]
-// CHECK: %[[ELEM:.+]] = linalg.generic
-// CHECK-SAME: indexing_maps = [#[[MAP]], #[[MAP]]]
-// CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "parallel"]
-// CHECK-SAME: ins(%[[PACK_ARG0]]
-// CHECK-SAME: outs(%[[DEST]]
-// CHECK: return %[[ELEM]] : tensor<4x16x16x32xi32>
+// CHECK-DAG: #[[$MAP:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
+// CHECK-LABEL: func.func @elem_pack_transpose_inner_dims
+// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
+// CHECK-SAME: %[[DEST:[a-zA-Z0-9]+]]
+// CHECK: %[[ARG0_EMPTY:.+]] = tensor.empty() : tensor<4x16x16x32xi32>
+// CHECK: %[[PACK_ARG0:.+]] = tensor.pack %[[ARG0]]
+// CHECK-SAME: inner_dims_pos = [1, 0] inner_tiles = [16, 32]
+// CHECK-SAME: into %[[ARG0_EMPTY]]
+// CHECK: %[[ELEM:.+]] = linalg.generic
+// CHECK-SAME: indexing_maps = [#[[$MAP]], #[[$MAP]]]
+// CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "parallel"]
+// CHECK-SAME: ins(%[[PACK_ARG0]]
+// CHECK-SAME: outs(%[[DEST]]
+// CHECK: return %[[ELEM]] : tensor<4x16x16x32xi32>
// -----
@@ -96,20 +96,20 @@ func.func @elem_pack_transpose_outer_dims(%arg0: tensor<128x256xi32>, %dest: ten
into %dest : tensor<128x256xi32> -> tensor<16x4x32x16xi32>
return %pack : tensor<16x4x32x16xi32>
}
-// CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
-// CHECK: func.func @elem_pack_transpose_outer_dims
-// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
-// CHECK-SAME: %[[DEST:[a-zA-Z0-9]+]]
-// CHECK: %[[ARG0_EMPTY:.+]] = tensor.empty() : tensor<16x4x32x16xi32>
-// CHECK: %[[PACK_ARG0:.+]] = tensor.pack %[[ARG0]]
-// CHECK-SAME: outer_dims_perm = [1, 0] inner_dims_pos = [0, 1] inner_tiles = [32, 16]
-// CHECK-SAME: into %[[ARG0_EMPTY]] : tensor<128x256xi32> -> tensor<16x4x32x16xi32>
-// CHECK: %[[ELEM:.+]] = linalg.generic
-// CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP0]]]
-// CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "parallel"]
-// CHECK-SAME: ins(%[[PACK_ARG0]]
-// CHECK-SAME: outs(%[[DEST]]
-// CHECK: return %[[ELEM]] : tensor<16x4x32x16xi32>
+// CHECK-DAG: #[[$MAP0:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
+// CHECK-LABEL: func.func @elem_pack_transpose_outer_dims
+// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
+// CHECK-SAME: %[[DEST:[a-zA-Z0-9]+]]
+// CHECK: %[[ARG0_EMPTY:.+]] = tensor.empty() : tensor<16x4x32x16xi32>
+// CHECK: %[[PACK_ARG0:.+]] = tensor.pack %[[ARG0]]
+// CHECK-SAME: outer_dims_perm = [1, 0] inner_dims_pos = [0, 1] inner_tiles = [32, 16]
+// CHECK-SAME: into %[[ARG0_EMPTY]] : tensor<128x256xi32> -> tensor<16x4x32x16xi32>
+// CHECK: %[[ELEM:.+]] = linalg.generic
+// CHECK-SAME: indexing_maps = [#[[$MAP0]], #[[$MAP0]]]
+// CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "parallel"]
+// CHECK-SAME: ins(%[[PACK_ARG0]]
+// CHECK-SAME: outs(%[[DEST]]
+// CHECK: return %[[ELEM]] : tensor<16x4x32x16xi32>
// -----
@@ -130,20 +130,20 @@ func.func @elem_pack_transpose_inner_and_outer_dims(%arg0: tensor<128x256xi32>,
into %dest : tensor<128x256xi32> -> tensor<16x4x16x32xi32>
return %pack : tensor<16x4x16x32xi32>
}
-// CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
-// CHECK: func.func @elem_pack_transpose_inner_and_outer_dims
-// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
-// CHECK-SAME: %[[DEST:[a-zA-Z0-9]+]]
-// CHECK: %[[ARG0_EMPTY:.+]] = tensor.empty() : tensor<16x4x16x32xi32>
-// CHECK: %[[PACK_ARG0:.+]] = tensor.pack %[[ARG0]]
-// CHECK-SAME: outer_dims_perm = [1, 0] inner_dims_pos = [1, 0] inner_tiles = [16, 32]
-// CHECK-SAME: into %[[ARG0_EMPTY]]
-// CHECK: %[[ELEM:.+]] = linalg.generic
-// CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP0]]]
-// CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "parallel"]
-// CHECK-SAME: ins(%[[PACK_ARG0]]
-// CHECK-SAME: outs(%[[DEST]]
-// CHECK: return %[[ELEM]] : tensor<16x4x16x32xi32>
+// CHECK-DAG: #[[$MAP0:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
+// CHECK-LABEL: func.func @elem_pack_transpose_inner_and_outer_dims
+// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
+// CHECK-SAME: %[[DEST:[a-zA-Z0-9]+]]
+// CHECK: %[[ARG0_EMPTY:.+]] = tensor.empty() : tensor<16x4x16x32xi32>
+// CHECK: %[[PACK_ARG0:.+]] = tensor.pack %[[ARG0]]
+// CHECK-SAME: outer_dims_perm = [1, 0] inner_dims_pos = [1, 0] inner_tiles = [16, 32]
+// CHECK-SAME: into %[[ARG0_EMPTY]]
+// CHECK: %[[ELEM:.+]] = linalg.generic
+// CHECK-SAME: indexing_maps = [#[[$MAP0]], #[[$MAP0]]]
+// CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "parallel"]
+// CHECK-SAME: ins(%[[PACK_ARG0]]
+// CHECK-SAME: outs(%[[DEST]]
+// CHECK: return %[[ELEM]] : tensor<16x4x16x32xi32>
// -----
@@ -169,34 +169,34 @@ func.func @dynamic_broadcast_pack(%arg0: tensor<?xf32>, %arg1: tensor<?xf32>, %d
into %dest : tensor<?x?xf32> -> tensor<?x?x8x2xf32>
return %4 : tensor<?x?x8x2xf32>
}
-// CHECK-DAG: #[[MAP0:.+]] = affine_map<()[s0] -> (s0 ceildiv 8)>
-// CHECK-DAG: #[[MAP1:.+]] = affine_map<()[s0] -> (s0 ceildiv 2)>
-// CHECK-DAG: #[[MAP2:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d2)>
-// CHECK-DAG: #[[MAP3:.+]] = affine_map<(d0, d1, d2, d3) -> (d1, d3)>
-// CHECK-DAG: #[[MAP4:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
-// CHECK: func.func @dynamic_broadcast_pack
-// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
-// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]
-// CHECK-SAME: %[[DEST:[a-zA-Z0-9]+]]
-// CHECK-DAG: %[[C0:.+]] = arith.constant 0 : index
-// CHECK-DAG: %[[D0:.+]] = tensor.dim %[[ARG0]], %[[C0]]
-// CHECK-DAG: %[[OUTER_D0:.+]] = affine.apply #[[MAP0]]()[%[[D0]]]
-// CHECK: %[[ARG0_EMPTY:.+]] = tensor.empty(%[[OUTER_D0]]) : tensor<?x8xf32>
-// CHECK: %[[PACK_ARG0:.+]] = tensor.pack %[[ARG0]]
-// CHECK-SAME: inner_dims_pos = [0] inner_tiles = [8]
-// CHECK-SAME: into %[[ARG0_EMPTY]]
-// CHECK-DAG: %[[D1:.+]] = tensor.dim %[[ARG1]], %[[C0]]
-// CHECK-DAG: %[[OUTER_D1:.+]] = affine.apply #[[MAP1]]()[%[[D1]]]
-// CHECK: %[[ARG1_EMPTY:.+]] = tensor.empty(%[[OUTER_D1]]) : tensor<?x2xf32>
-// CHECK: %[[PACK_ARG1:.+]] = tensor.pack %[[ARG1]]
-// CHECK-SAME: inner_dims_pos = [0] inner_tiles = [2]
-// CHECK-SAME: into %[[ARG1_EMPTY]]
-// CHECK: %[[ELEM:.+]] = linalg.generic
-// CHECK-SAME: indexing_maps = [#[[MAP2]], #[[MAP3]], #[[MAP4]]]
-// CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "parallel"]
-// CHECK-SAME: ins(%[[PACK_ARG0]], %[[PACK_ARG0]]
-// CHECK-SAME: outs(%[[DEST]]
-// CHECK: return %[[ELEM]] : tensor<?x?x8x2xf32>
+// CHECK-DAG: #[[$MAP0:.+]] = affine_map<()[s0] -> (s0 ceildiv 8)>
+// CHECK-DAG: #[[$MAP1:.+]] = affine_map<()[s0] -> (s0 ceildiv 2)>
+// CHECK-DAG: #[[$MAP2:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d2)>
+// CHECK-DAG: #[[$MAP3:.+]] = affine_map<(d0, d1, d2, d3) -> (d1, d3)>
+// CHECK-DAG: #[[$MAP4:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
+// CHECK-LABEL: func.func @dynamic_broadcast_pack
+// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
+// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]
+// CHECK-SAME: %[[DEST:[a-zA-Z0-9]+]]
+// CHECK-DAG: %[[C0:.+]] = arith.constant 0 : index
+// CHECK-DAG: %[[D0:.+]] = tensor.dim %[[ARG0]], %[[C0]]
+// CHECK-DAG: %[[OUTER_D0:.+]] = affine.apply #[[$MAP0]]()[%[[D0]]]
+// CHECK: %[[ARG0_EMPTY:.+]] = tensor.empty(%[[OUTER_D0]]) : tensor<?x8xf32>
+// CHECK: %[[PACK_ARG0:.+]] = tensor.pack %[[ARG0]]
+// CHECK-SAME: inner_dims_pos = [0] inner_tiles = [8]
+// CHECK-SAME: into %[[ARG0_EMPTY]]
+// CHECK-DAG: %[[D1:.+]] = tensor.dim %[[ARG1]], %[[C0]]
+// CHECK-DAG: %[[OUTER_D1:.+]] = affine.apply #[[$MAP1]]()[%[[D1]]]
+// CHECK: %[[ARG1_EMPTY:.+]] = tensor.empty(%[[OUTER_D1]]) : tensor<?x2xf32>
+// CHECK: %[[PACK_ARG1:.+]] = tensor.pack %[[ARG1]]
+// CHECK-SAME: inner_dims_pos = [0] inner_tiles = [2]
+// CHECK-SAME: into %[[ARG1_EMPTY]]
+// CHECK: %[[ELEM:.+]] = linalg.generic
+// CHECK-SAME: indexing_maps = [#[[$MAP2]], #[[$MAP3]], #[[$MAP4]]]
+// CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "parallel"]
+// CHECK-SAME: ins(%[[PACK_ARG0]], %[[PACK_ARG0]]
+// CHECK-SAME: outs(%[[DEST]]
+// CHECK: return %[[ELEM]] : tensor<?x?x8x2xf32>
// -----
@@ -215,19 +215,19 @@ func.func @elem_pack_transpose_inner_and_outer_dims2(%arg0: tensor<64xf32>, %des
%2 = tensor.pack %1 outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32] into %dest : tensor<1x56x57x64xf32> -> tensor<1x2x56x57x32xf32>
return %2 : tensor<1x2x56x57x32xf32>
}
-// CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d1, d4)>
-// CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)>
-// CHECK: func.func @elem_pack_transpose_inner_and_outer_dims2
-// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
-// CHECK-SAME: %[[DEST:[a-zA-Z0-9]+]]
-// CHECK: %[[ARG0_EMPTY:.+]] = tensor.empty() : tensor<2x32xf32>
-// CHECK: %[[PACKED_ARG0:.+]] = tensor.pack %[[ARG0]]
-// CHECK-SAME: inner_dims_pos = [0] inner_tiles = [32]
-// CHECK-SAME: into %[[ARG0_EMPTY]]
-// CHECK: %[[RES:.+]] = linalg.generic
-// CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP1]]]
-// CHECK-SAME: ins(%[[PACKED_ARG0]]
-// CHECK-SAME: outs(%[[DEST]]
+// CHECK-DAG: #[[$MAP0:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d1, d4)>
+// CHECK-DAG: #[[$MAP1:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)>
+// CHECK-LABEL: func.func @elem_pack_transpose_inner_and_outer_dims2
+// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
+// CHECK-SAME: %[[DEST:[a-zA-Z0-9]+]]
+// CHECK: %[[ARG0_EMPTY:.+]] = tensor.empty() : tensor<2x32xf32>
+// CHECK: %[[PACKED_ARG0:.+]] = tensor.pack %[[ARG0]]
+// CHECK-SAME: inner_dims_pos = [0] inner_tiles = [32]
+// CHECK-SAME: into %[[ARG0_EMPTY]]
+// CHECK: %[[RES:.+]] = linalg.generic
+// CHECK-SAME: indexing_maps = [#[[$MAP0]], #[[$MAP1]]]
+// CHECK-SAME: ins(%[[PACKED_ARG0]]
+// CHECK-SAME: outs(%[[DEST]]
// -----
@@ -253,27 +253,27 @@ func.func @transpose_pack(%arg0: tensor<100x128x200x256xi32>, %arg1: tensor<100x
into %dest : tensor<100x200x128x256xi32> -> tensor<100x200x4x16x16x32xi32>
return %4 : tensor<100x200x4x16x16x32xi32>
}
-// CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1, d2, d3, d4, d5)>
-// CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0)>
-// CHECK-DAG: #[[MAP2:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d1, d5)>
-// CHECK-DAG: #[[MAP3:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d2, d1, d3, d4, d5)>
-// CHECK: func.func @transpose_pack
-// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
-// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]
-// CHECK-SAME: %[[ARG2:[a-zA-Z0-9]+]]
-// CHECK-SAME: %[[DEST:[a-zA-Z0-9]+]]
-// CHECK: %[[ARG0_EMPTY:.+]] = tensor.empty() : tensor<100x4x200x16x16x32xi32>
-// CHECK: %[[PACKED_ARG0:.+]] = tensor.pack %[[ARG0]]
-// CHECK-SAME: inner_dims_pos = [3, 1] inner_tiles = [16, 32]
-// CHECK-SAME: into %[[ARG0_EMPTY]]
-// CHECK: %[[ARG2_EMPTY:.+]] = tensor.empty() : tensor<4x32xi32>
-// CHECK: %[[PACKED_ARG2:.+]] = tensor.pack %[[ARG2]]
-// CHECK-SAME: inner_dims_pos = [0] inner_tiles = [32]
-// CHECK-SAME: into %[[ARG2_EMPTY]]
-// CHECK: %[[RES:.+]] = linalg.generic
-// CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP1]], #[[MAP2]], #[[MAP3]]]
-// CHECK-SAME: ins(%[[PACKED_ARG0]], %[[ARG1]], %[[PACKED_ARG2]]
-// CHECK-SAME: outs(%[[DEST]]
+// CHECK-DAG: #[[$MAP0:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1, d2, d3, d4, d5)>
+// CHECK-DAG: #[[$MAP1:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0)>
+// CHECK-DAG: #[[$MAP2:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d1, d5)>
+// CHECK-DAG: #[[$MAP3:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d2, d1, d3, d4, d5)>
+// CHECK-LABEL: func.func @transpose_pack
+// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
+// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]
+// CHECK-SAME: %[[ARG2:[a-zA-Z0-9]+]]
+// CHECK-SAME: %[[DEST:[a-zA-Z0-9]+]]
+// CHECK: %[[ARG0_EMPTY:.+]] = tensor.empty() : tensor<100x4x200x16x16x32xi32>
+// CHECK: %[[PACKED_ARG0:.+]] = tensor.pack %[[ARG0]]
+// CHECK-SAME: inner_dims_pos = [3, 1] inner_tiles = [16, 32]
+// CHECK-SAME: into %[[ARG0_EMPTY]]
+// CHECK: %[[ARG2_EMPTY:.+]] = tensor.empty() : tensor<4x32xi32>
+// CHECK: %[[PACKED_ARG2:.+]] = tensor.pack %[[ARG2]]
+// CHECK-SAME: inner_dims_pos = [0] inner_tiles = [32]
+// CHECK-SAME: into %[[ARG2_EMPTY]]
+// CHECK: %[[RES:.+]] = linalg.generic
+// CHECK-SAME: indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP2]], #[[$MAP3]]]
+// CHECK-SAME: ins(%[[PACKED_ARG0]], %[[ARG1]], %[[PACKED_ARG2]]
+// CHECK-SAME: outs(%[[DEST]]
// -----
@@ -299,27 +299,27 @@ func.func @affine_constant_expr_pack(%arg0: tensor<100x128x200x256xi32>, %arg1:
into %dest : tensor<100x200x128x256xi32> -> tensor<100x200x4x16x16x32xi32>
return %4 : tensor<100x200x4x16x16x32xi32>
}
-// CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1, d2, d3, d4, d5)>
-// CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, 0, 0, 0)>
-// CHECK-DAG: #[[MAP2:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (0, d1, 0, 0, d5)>
-// CHECK-DAG: #[[MAP3:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d2, d1, d3, d4, d5)>
-// CHECK: func.func @affine_constant_expr_pack
-// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
-// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]
-// CHECK-SAME: %[[ARG2:[a-zA-Z0-9]+]]
-// CHECK-SAME: %[[DEST:[a-zA-Z0-9]+]]
-// CHECK: %[[ARG0_EMPTY:.+]] = tensor.empty() : tensor<100x4x200x16x16x32xi32>
-// CHECK: %[[PACKED_ARG0:.+]] = tensor.pack %[[ARG0]]
-// CHECK-SAME: inner_dims_pos = [3, 1] inner_tiles = [16, 32]
-// CHECK-SAME: into %[[ARG0_EMPTY]]
-// CHECK: %[[ARG2_EMPTY:.+]] = tensor.empty() : tensor<1x4x1x1x32xi32>
-// CHECK: %[[PACKED_ARG2:.+]] = tensor.pack %[[ARG2]]
-// CHECK-SAME: inner_dims_pos = [1] inner_tiles = [32]
-// CHECK-SAME: into %[[ARG2_EMPTY]]
-// CHECK: %[[RES:.+]] = linalg.generic
-// CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP1]], #[[MAP2]], #[[MAP3]]]
-// CHECK-SAME: ins(%[[PACKED_ARG0]], %[[ARG1]], %[[PACKED_ARG2]]
-// CHECK-SAME: outs(%[[DEST]]
+// CHECK-DAG: #[[$MAP0:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1, d2, d3, d4, d5)>
+// CHECK-DAG: #[[$MAP1:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, 0, 0, 0)>
+// CHECK-DAG: #[[$MAP2:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (0, d1, 0, 0, d5)>
+// CHECK-DAG: #[[$MAP3:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d2, d1, d3, d4, d5)>
+// CHECK-LABEL: func.func @affine_constant_expr_pack
+// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
+// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]
+// CHECK-SAME: %[[ARG2:[a-zA-Z0-9]+]]
+// CHECK-SAME: %[[DEST:[a-zA-Z0-9]+]]
+// CHECK: %[[ARG0_EMPTY:.+]] = tensor.empty() : tensor<100x4x200x16x16x32xi32>
+// CHECK: %[[PACKED_ARG0:.+]] = tensor.pack %[[ARG0]]
+// CHECK-SAME: inner_dims_pos = [3, 1] inner_tiles = [16, 32]
+// CHECK-SAME: into %[[ARG0_EMPTY]]
+// CHECK: %[[ARG2_EMPTY:.+]] = tensor.empty() : tensor<1x4x1x1x32xi32>
+// CHECK: %[[PACKED_ARG2:.+]] = tensor.pack %[[ARG2]]
+// CHECK-SAME: inner_dims_pos = [1] inner_tiles = [32]
+// CHECK-SAME: into %[[ARG2_EMPTY]]
+// CHECK: %[[RES:.+]] = linalg.generic
+// CHECK-SAME: indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP2]], #[[$MAP3]]]
+// CHECK-SAME: ins(%[[PACKED_ARG0]], %[[ARG1]], %[[PACKED_ARG2]]
+// CHECK-SAME: outs(%[[DEST]]
// -----
@@ -347,26 +347,26 @@ func.func @transpose_pack_with_outer_dims(%arg0: tensor<100x128x200x256xi32>, %a
return %4 : tensor<200x4x16x100x16x32xi32>
}
-// CHECK-DAG: #[[MAP:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1, d2, d3, d4, d5)>
-// CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d3)>
-// CHECK-DAG: #[[MAP2:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d1, d5)>
-// CHECK: func.func @transpose_pack_with_outer_dims
-// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
-// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]
-// CHECK-SAME: %[[ARG2:[a-zA-Z0-9]+]]
-// CHECK-SAME: %[[DEST:[a-zA-Z0-9]+]]
-// CHECK: %[[ARG0_EMPTY:.+]] = tensor.empty() : tensor<200x4x16x100x16x32xi32>
-// CHECK: %[[PACKED_ARG0:.+]] = tensor.pack %[[ARG0]]
-// CHECK-SAME: outer_dims_perm = [2, 1, 3, 0] inner_dims_pos = [3, 1] inner_tiles = [16, 32]
-// CHECK-SAME: into %[[ARG0_EMPTY]]
-// CHECK: %[[ARG2_EMPTY:.+]] = tensor.empty() : tensor<4x32xi32>
-// CHECK: %[[PACKED_ARG2:.+]] = tensor.pack %[[ARG2]]
-// CHECK-SAME: inner_dims_pos = [0] inner_tiles = [32]
-// CHECK-SAME: into %[[ARG2_EMPTY]]
-// CHECK: %[[RES:.+]] = linalg.generic
-// CHECK-SAME: indexing_maps = [#[[MAP]], #[[MAP1]], #[[MAP2]], #[[MAP]]]
-// CHECK-SAME: ins(%[[PACKED_ARG0]], %[[ARG1]], %[[PACKED_ARG2]]
-// CHECK-SAME: outs(%[[DEST]]
+// CHECK-DAG: #[[$MAP:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1, d2, d3, d4, d5)>
+// CHECK-DAG: #[[$MAP1:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d3)>
+// CHECK-DAG: #[[$MAP2:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d1, d5)>
+// CHECK-LABEL: func.func @transpose_pack_with_outer_dims
+// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
+// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]
+// CHECK-SAME: %[[ARG2:[a-zA-Z0-9]+]]
+// CHECK-SAME: %[[DEST:[a-zA-Z0-9]+]]
+// CHECK: %[[ARG0_EMPTY:.+]] = tensor.empty() : tensor<200x4x16x100x16x32xi32>
+// CHECK: %[[PACKED_ARG0:.+]] = tensor.pack %[[ARG0]]
+// CHECK-SAME: outer_dims_perm = [2, 1, 3, 0] inner_dims_pos = [3, 1] inner_tiles = [16, 32]
+// CHECK-SAME: into %[[ARG0_EMPTY]]
+// CHECK: %[[ARG2_EMPTY:.+]] = tensor.empty() : tensor<4x32xi32>
+// CHECK: %[[PACKED_ARG2:.+]] = tensor.pack %[[ARG2]]
+// CHECK-SAME: inner_dims_pos = [0] inner_tiles = [32]
+// CHECK-SAME: into %[[ARG2_EMPTY]]
+// CHECK: %[[RES:.+]] = linalg.generic
+// CHECK-SAME: indexing_maps = [#[[$MAP]], #[[$MAP1]], #[[$MAP2]], #[[$MAP]]]
+// CHECK-SAME: ins(%[[PACKED_ARG0]], %[[ARG1]], %[[PACKED_ARG2]]
+// CHECK-SAME: outs(%[[DEST]]
// -----
@@ -388,22 +388,22 @@ func.func @elem_pack_transpose_outer_dims(%arg0: tensor<128x256xi32>, %init: ten
return %pack : tensor<16x4x32x16xi32>
}
-// CHECK: #[[MAP:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
-// CHECK: func.func @elem_pack_transpose_outer_dims
-// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
-// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]
-// CHECK: %[[ARG1_EMPTY:.+]] = tensor.empty() : tensor<16x4x32x16xi32>
-// CHECK: %[[PACKED_ARG1:.+]] = tensor.pack %[[ARG1]]
-// CHECK-SAME: outer_dims_perm = [1, 0] inner_dims_pos = [0, 1] inner_tiles = [32, 16]
-// CHECK-SAME: into %[[ARG1_EMPTY]]
-// CHECK: %[[ARG0_EMPTY:.+]] = tensor.empty() : tensor<16x4x32x16xi32>
-// CHECK: %[[PACKED_ARG0:.+]] = tensor.pack %[[ARG0]]
-// CHECK-SAME: outer_dims_perm = [1, 0] inner_dims_pos = [0, 1] inner_tiles = [32, 16]
-// CHECK-SAME: into %[[ARG0_EMPTY]]
-// CHECK: %[[RES:.+]] = linalg.generic
-// CHECK-SAME: indexing_maps = [#[[MAP]], #[[MAP]]]
-// CHECK-SAME: ins(%[[PACKED_ARG0]]
-// CHECK-SAME: outs(%[[PACKED_ARG1]]
+// CHECK: #[[$MAP:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
+// CHECK-LABEL: func.func @elem_pack_transpose_outer_dims
+// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
+// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]
+// CHECK: %[[ARG1_EMPTY:.+]] = tensor.empty() : tensor<16x4x32x16xi32>
+// CHECK: %[[PACKED_ARG1:.+]] = tensor.pack %[[ARG1]]
+// CHECK-SAME: outer_dims_perm = [1, 0] inner_dims_pos = [0, 1] inner_tiles = [32, 16]
+// CHECK-SAME: into %[[ARG1_EMPTY]]
+// CHECK: %[[ARG0_EMPTY:.+]] = tensor.empty() : tensor<16x4x32x16xi32>
+// CHECK: %[[PACKED_ARG0:.+]] = tensor.pack %[[ARG0]]
+// CHECK-SAME: outer_dims_perm = [1, 0] inner_dims_pos = [0, 1] inner_tiles = [32, 16]
+// CHECK-SAME: into %[[ARG0_EMPTY]]
+// CHECK: %[[RES:.+]] = linalg.generic
+// CHECK-SAME: indexing_maps = [#[[$MAP]], #[[$MAP]]]
+// CHECK-SAME: ins(%[[PACKED_ARG0]]
+// CHECK-SAME: outs(%[[PACKED_ARG1]]
// -----
@@ -420,23 +420,23 @@ func.func @unpack_on_output(%arg0: tensor<12x2x56x56x32xf32>) -> tensor<12x56x56
return %2 : tensor<12x56x56x64xf32>
}
-// CHECK: #[[MAP:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)>
-// CHECK: func.func @unpack_on_output
-// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
-// CHECK: %[[ARG0_EMPTY_UNPACK:.+]] = tensor.empty() : tensor<12x56x56x64xf32>
-// CHECK: %[[UNPACKED_ARG0:.+]] = tensor.unpack %[[ARG0]]
-// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
-// CHECK-SAME: into %[[ARG0_EMPTY_UNPACK]]
-// CHECK: %[[ARG0_EMPTY_PACK:.+]] = tensor.empty() : tensor<12x2x56x56x32xf32>
-// CHECK: %[[PACKED_ARG0:.+]] = tensor.pack %[[UNPACKED_ARG0]]
-// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
-// CHECK-SAME: into %[[ARG0_EMPTY_PACK]]
-// CHECK: %[[RES:.+]] = linalg.generic
-// CHECK-SAME: indexing_maps = [#[[MAP]]]
-// CHECK-SAME: outs(%[[PACKED_ARG0]]
-// CHECK: %[[UNPACK:.+]] = tensor.unpack %[[RES]]
-// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
-// CHECK-SAME: into %[[ARG0_EMPTY_UNPACK]]
+// CHECK: #[[$MAP:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)>
+// CHECK-LABEL: func.func @unpack_on_output
+// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
+// CHECK: %[[ARG0_EMPTY_UNPACK:.+]] = tensor.empty() : tensor<12x56x56x64xf32>
+// CHECK: %[[UNPACKED_ARG0:.+]] = tensor.unpack %[[ARG0]]
+// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
+// CHECK-SAME: into %[[ARG0_EMPTY_UNPACK]]
+// CHECK: %[[ARG0_EMPTY_PACK:.+]] = tensor.empty() : tensor<12x2x56x56x32xf32>
+// CHECK: %[[PACKED_ARG0:.+]] = tensor.pack %[[UNPACKED_ARG0]]
+// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
+// CHECK-SAME: into %[[ARG0_EMPTY_PACK]]
+// CHECK: %[[RES:.+]] = linalg.generic
+// CHECK-SAME: indexing_maps = [#[[$MAP]]]
+// CHECK-SAME: outs(%[[PACKED_ARG0]]
+// CHECK: %[[UNPACK:.+]] = tensor.unpack %[[RES]]
+// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
+// CHECK-SAME: into %[[ARG0_EMPTY_UNPACK]]
// -----
@@ -453,29 +453,29 @@ func.func @unpack_on_input(%arg0: tensor<12x2x56x56x32xf32>, %init: tensor<12x56
return %2 : tensor<12x56x56x64xf32>
}
-// CHECK: #[[MAP:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)>
-// CHECK: func.func @unpack_on_input
-// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
-// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]
-// CHECK: %[[ARG0_UNPACK_EMPTY:.+]] = tensor.empty() : tensor<12x56x56x64xf32>
-// CHECK: %[[UNPACKED_ARG0:.+]] = tensor.unpack %[[ARG0]]
-// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
-// CHECK-SAME: into %[[ARG0_UNPACK_EMPTY]]
-// CHECK: %[[ARG1_PACK_EMPTY:.+]] = tensor.empty() : tensor<12x2x56x56x32xf32>
-// CHECK: %[[ARG1_PACK:.+]] = tensor.pack %[[ARG1]]
-// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
-// CHECK-SAME: into %[[ARG1_PACK_EMPTY]]
-// CHECK: %[[ARG0_PACK_EMPTY:.+]] = tensor.empty() : tensor<12x2x56x56x32xf32>
-// CHECK: %[[ARG0_PACK:.+]] = tensor.pack %[[UNPACKED_ARG0]]
-// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
-// CHECK-SAME: into %[[ARG0_PACK_EMPTY]]
-// CHECK: %[[RES:.+]] = linalg.generic
-// CHECK-SAME: indexing_maps = [#[[MAP]], #[[MAP]]]
-// CHECK-SAME: ins(%[[ARG0_PACK]]
-// CHECK-SAME: outs(%[[ARG1_PACK]]
-// CHECK: %[[UNPACK:.+]] = tensor.unpack %[[RES]]
-// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
-// CHECK-SAME: into %[[ARG0_UNPACK_EMPTY]]
+// CHECK: #[[$MAP:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)>
+// CHECK-LABEL: func.func @unpack_on_input
+// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
+// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]
+// CHECK: %[[ARG0_UNPACK_EMPTY:.+]] = tensor.empty() : tensor<12x56x56x64xf32>
+// CHECK: %[[UNPACKED_ARG0:.+]] = tensor.unpack %[[ARG0]]
+// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
+// CHECK-SAME: into %[[ARG0_UNPACK_EMPTY]]
+// CHECK: %[[ARG1_PACK_EMPTY:.+]] = tensor.empty() : tensor<12x2x56x56x32xf32>
+// CHECK: %[[ARG1_PACK:.+]] = tensor.pack %[[ARG1]]
+// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
+// CHECK-SAME: into %[[ARG1_PACK_EMPTY]]
+// CHECK: %[[ARG0_PACK_EMPTY:.+]] = tensor.empty() : tensor<12x2x56x56x32xf32>
+// CHECK: %[[ARG0_PACK:.+]] = tensor.pack %[[UNPACKED_ARG0]]
+// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
+// CHECK-SAME: into %[[ARG0_PACK_EMPTY]]
+// CHECK: %[[RES:.+]] = linalg.generic
+// CHECK-SAME: indexing_maps = [#[[$MAP]], #[[$MAP]]]
+// CHECK-SAME: ins(%[[ARG0_PACK]]
+// CHECK-SAME: outs(%[[ARG1_PACK]]
+// CHECK: %[[UNPACK:.+]] = tensor.unpack %[[RES]]
+// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
+// CHECK-SAME: into %[[ARG0_UNPACK_EMPTY]]
// -----
@@ -492,30 +492,30 @@ func.func @unpack_element_type_change(%arg0: tensor<12x2x56x56x32xf32>, %init: t
return %2 : tensor<12x56x56x64xf16>
}
-// CHECK: #[[MAP:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)>
-// CHECK: func.func @unpack_element_type_change
-// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
-// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]
-// CHECK: %[[ARG0_UNPACK_EMPTY:.+]] = tensor.empty() : tensor<12x56x56x64xf32>
-// CHECK: %[[UNPACKED_ARG0:.+]] = tensor.unpack %[[ARG0]]
-// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
-// CHECK-SAME: into %[[ARG0_UNPACK_EMPTY]]
-// CHECK: %[[ARG1_PACK_EMPTY:.+]] = tensor.empty() : tensor<12x2x56x56x32xf16>
-// CHECK: %[[ARG1_PACK:.+]] = tensor.pack %[[ARG1]]
-// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
-// CHECK-SAME: into %[[ARG1_PACK_EMPTY]]
-// CHECK: %[[ARG0_PACK_EMPTY:.+]] = tensor.empty() : tensor<12x2x56x56x32xf32>
-// CHECK: %[[ARG0_PACK:.+]] = tensor.pack %[[UNPACKED_ARG0]]
-// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
-// CHECK-SAME: into %[[ARG0_PACK_EMPTY]]
-// CHECK: %[[RES:.+]] = linalg.generic
-// CHECK-SAME: indexing_maps = [#[[MAP]], #[[MAP]]]
-// CHECK-SAME: ins(%[[ARG0_PACK]]
-// CHECK-SAME: outs(%[[ARG1_PACK]]
-// CHECK: %[[ARG0_NEW_EMPTY_UNPACK:.+]] = tensor.empty() : tensor<12x56x56x64xf16>
-// CHECK: %[[UNPACK:.+]] = tensor.unpack %[[RES]]
-// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
-// CHECK-SAME: into %[[ARG0_NEW_EMPTY_UNPACK]]
+// CHECK: #[[$MAP:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)>
+// CHECK-LABEL: func.func @unpack_element_type_change
+// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
+// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]
+// CHECK: %[[ARG0_UNPACK_EMPTY:.+]] = tensor.empty() : tensor<12x56x56x64xf32>
+// CHECK: %[[UNPACKED_ARG0:.+]] = tensor.unpack %[[ARG0]]
+// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
+// CHECK-SAME: into %[[ARG0_UNPACK_EMPTY]]
+// CHECK: %[[ARG1_PACK_EMPTY:.+]] = tensor.empty() : tensor<12x2x56x56x32xf16>
+// CHECK: %[[ARG1_PACK:.+]] = tensor.pack %[[ARG1]]
+// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
+// CHECK-SAME: into %[[ARG1_PACK_EMPTY]]
+// CHECK: %[[ARG0_PACK_EMPTY:.+]] = tensor.empty() : tensor<12x2x56x56x32xf32>
+// CHECK: %[[ARG0_PACK:.+]] = tensor.pack %[[UNPACKED_ARG0]]
+// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
+// CHECK-SAME: into %[[ARG0_PACK_EMPTY]]
+// CHECK: %[[RES:.+]] = linalg.generic
+// CHECK-SAME: indexing_maps = [#[[$MAP]], #[[$MAP]]]
+// CHECK-SAME: ins(%[[ARG0_PACK]]
+// CHECK-SAME: outs(%[[ARG1_PACK]]
+// CHECK: %[[ARG0_NEW_EMPTY_UNPACK:.+]] = tensor.empty() : tensor<12x56x56x64xf16>
+// CHECK: %[[UNPACK:.+]] = tensor.unpack %[[RES]]
+// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
+// CHECK-SAME: into %[[ARG0_NEW_EMPTY_UNPACK]]
// -----
@@ -533,29 +533,29 @@ func.func @forward_tensor_empty(%arg0: tensor<12x2x56x56x32xf32>) -> tensor<12x5
return %2 : tensor<12x56x56x64xf32>
}
-// CHECK: #[[MAP:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)>
-// CHECK: func.func @forward_tensor_empty
-// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
-// CHECK: %[[ARG0_UNPACK_EMPTY:.+]] = tensor.empty() : tensor<12x56x56x64xf32>
-// CHECK: %[[UNPACKED_ARG0:.+]] = tensor.unpack %[[ARG0]]
-// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
-// CHECK-SAME: into %[[ARG0_UNPACK_EMPTY]]
-// CHECK: %[[DEST:.+]] = tensor.empty() : tensor<12x2x56x56x32xf32>
-// CHECK: %[[ARG0_PACK_EMPTY:.+]] = tensor.empty() : tensor<12x2x56x56x32xf32>
-// CHECK: %[[PACKED_ARG0:.+]] = tensor.pack %[[UNPACKED_ARG0]]
-// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
-// CHECK-SAME: into %[[ARG0_PACK_EMPTY]]
-// CHECK: %[[RES:.+]] = linalg.generic
-// CHECK-SAME: indexing_maps = [#[[MAP]], #[[MAP]]]
-// CHECK-SAME: ins(%[[PACKED_ARG0]]
-// CHECK-SAME: outs(%[[DEST]]
-// CHECK: %[[UNPACKED:.+]] = tensor.unpack %[[RES]]
-// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
-// CHECK-SAME: into %[[ARG0_UNPACK_EMPTY]]
+// CHECK: #[[$MAP:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)>
+// CHECK-LABEL: func.func @forward_tensor_empty
+// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
+// CHECK: %[[ARG0_UNPACK_EMPTY:.+]] = tensor.empty() : tensor<12x56x56x64xf32>
+// CHECK: %[[UNPACKED_ARG0:.+]] = tensor.unpack %[[ARG0]]
+// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
+// CHECK-SAME: into %[[ARG0_UNPACK_EMPTY]]
+// CHECK: %[[DEST:.+]] = tensor.empty() : tensor<12x2x56x56x32xf32>
+// CHECK: %[[ARG0_PACK_EMPTY:.+]] = tensor.empty() : tensor<12x2x56x56x32xf32>
+// CHECK: %[[PACKED_ARG0:.+]] = tensor.pack %[[UNPACKED_ARG0]]
+// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
+// CHECK-SAME: into %[[ARG0_PACK_EMPTY]]
+// CHECK: %[[RES:.+]] = linalg.generic
+// CHECK-SAME: indexing_maps = [#[[$MAP]], #[[$MAP]]]
+// CHECK-SAME: ins(%[[PACKED_ARG0]]
+// CHECK-SAME: outs(%[[DEST]]
+// CHECK: %[[UNPACKED:.+]] = tensor.unpack %[[RES]]
+// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
+// CHECK-SAME: into %[[ARG0_UNPACK_EMPTY]]
// -----
-func.func @pad_valid_propagation(%arg0: tensor<1x2x56x56x32xf32>) -> tensor<1x58x58x64xf32> {
+func.func @pad_valid_unpack_propagation(%arg0: tensor<1x2x56x56x32xf32>) -> tensor<1x58x58x64xf32> {
%cst = arith.constant 0.000000e+00 : f32
%0 = tensor.empty() : tensor<1x56x56x64xf32>
%1 = tensor.unpack %arg0 outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32] into %0 : tensor<1x2x56x56x32xf32> -> tensor<1x56x56x64xf32>
@@ -566,18 +566,18 @@ func.func @pad_valid_propagation(%arg0: tensor<1x2x56x56x32xf32>) -> tensor<1x58
return %padded : tensor<1x58x58x64xf32>
}
-// CHECK: func.func @pad_valid_propagation(
-// CHECK-SAME: %[[ARG0:.+]]: tensor<1x2x56x56x32xf32>)
-// CHECK: %[[CST:.+]] = arith.constant 0.000000e+00 : f32
-// CHECK: %[[PADDED:.+]] = tensor.pad %[[ARG0]] low[0, 0, 1, 1, 0] high[0, 0, 1, 1, 0]
-// CHECK: %[[EMPTY:.+]] = tensor.empty() : tensor<1x58x58x64xf32>
-// CHECK: %[[UNPACK:.+]] = tensor.unpack %[[PADDED]]
-// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
-// CHECK-SAME: into %[[EMPTY]] : tensor<1x2x58x58x32xf32> -> tensor<1x58x58x64xf32>
+// CHECK-LABEL: func.func @pad_valid_unpack_propagation(
+// CHECK-SAME: %[[ARG0:.+]]: tensor<1x2x56x56x32xf32>)
+// CHECK: %[[CST:.+]] = arith.constant 0.000000e+00 : f32
+// CHECK: %[[PADDED:.+]] = tensor.pad %[[ARG0]] low[0, 0, 1, 1, 0] high[0, 0, 1, 1, 0]
+// CHECK: %[[EMPTY:.+]] = tensor.empty() : tensor<1x58x58x64xf32>
+// CHECK: %[[UNPACK:.+]] = tensor.unpack %[[PADDED]]
+// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
+// CHECK-SAME: into %[[EMPTY]] : tensor<1x2x58x58x32xf32> -> tensor<1x58x58x64xf32>
// -----
-func.func @pad_valid_propagation(%arg0: tensor<1x2x56x56x32xf32>) -> tensor<2x58x58x64xf32> {
+func.func @pad_valid_unpack_propagation(%arg0: tensor<1x2x56x56x32xf32>) -> tensor<2x58x58x64xf32> {
%cst = arith.constant 0.000000e+00 : f32
%0 = tensor.empty() : tensor<1x56x56x64xf32>
%1 = tensor.unpack %arg0 outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32] into %0 : tensor<1x2x56x56x32xf32> -> tensor<1x56x56x64xf32>
@@ -588,14 +588,14 @@ func.func @pad_valid_propagation(%arg0: tensor<1x2x56x56x32xf32>) -> tensor<2x58
return %padded : tensor<2x58x58x64xf32>
}
-// CHECK: func.func @pad_valid_propagation(
-// CHECK-SAME: %[[ARG0:.+]]: tensor<1x2x56x56x32xf32>)
-// CHECK: %[[CST:.+]] = arith.constant 0.000000e+00 : f32
-// CHECK: %[[PADDED:.+]] = tensor.pad %[[ARG0]] low[1, 0, 1, 1, 0] high[0, 0, 1, 1, 0]
-// CHECK: %[[EMPTY:.+]] = tensor.empty() : tensor<2x58x58x64xf32>
-// CHECK: %[[UNPACK:.+]] = tensor.unpack %[[PADDED]]
-// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
-// CHECK-SAME: into %[[EMPTY]] : tensor<2x2x58x58x32xf32> -> tensor<2x58x58x64xf32>
+// CHECK-LABEL: func.func @pad_valid_unpack_propagation(
+// CHECK-SAME: %[[ARG0:.+]]: tensor<1x2x56x56x32xf32>)
+// CHECK: %[[CST:.+]] = arith.constant 0.000000e+00 : f32
+// CHECK: %[[PADDED:.+]] = tensor.pad %[[ARG0]] low[1, 0, 1, 1, 0] high[0, 0, 1, 1, 0]
+// CHECK: %[[EMPTY:.+]] = tensor.empty() : tensor<2x58x58x64xf32>
+// CHECK: %[[UNPACK:.+]] = tensor.unpack %[[PADDED]]
+// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
+// CHECK-SAME: into %[[EMPTY]] : tensor<2x2x58x58x32xf32> -> tensor<2x58x58x64xf32>
// -----
@@ -610,14 +610,14 @@ func.func @pad_along_unpacked_dim(%arg0: tensor<1x2x56x56x32xf32>) -> tensor<1x5
return %padded : tensor<1x58x58x66xf32>
}
-// CHECK: func.func @pad_along_unpacked_dim(
-// CHECK: %[[ARG0:.+]]: tensor<1x2x56x56x32xf32>)
-// CHECK: %[[CST:.+]] = arith.constant 0.000000e+00 : f32
-// CHECK: %[[EMPTY:.+]] = tensor.empty() : tensor<1x56x56x64xf32>
-// CHECK: %[[UNPACK:.+]] = tensor.unpack %[[ARG0]]
-// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
-// CHECK-SAME: into %[[EMPTY]] : tensor<1x2x56x56x32xf32> -> tensor<1x56x56x64xf32>
-// CHECK: %[[PADDED:.+]] = tensor.pad %[[UNPACK]] low[0, 1, 1, 1] high[0, 1, 1, 1]
+// CHECK-LABEL: func.func @pad_along_unpacked_dim(
+// CHECK: %[[ARG0:.+]]: tensor<1x2x56x56x32xf32>)
+// CHECK: %[[CST:.+]] = arith.constant 0.000000e+00 : f32
+// CHECK: %[[EMPTY:.+]] = tensor.empty() : tensor<1x56x56x64xf32>
+// CHECK: %[[UNPACK:.+]] = tensor.unpack %[[ARG0]]
+// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
+// CHECK-SAME: into %[[EMPTY]] : tensor<1x2x56x56x32xf32> -> tensor<1x56x56x64xf32>
+// CHECK: %[[PADDED:.+]] = tensor.pad %[[UNPACK]] low[0, 1, 1, 1] high[0, 1, 1, 1]
// -----
@@ -639,16 +639,16 @@ func.func @would_break_dominance(%arg0: tensor<128x256xi32>) -> tensor<4x16x16x3
return %pack : tensor<4x16x16x32xi32>
}
-// CHECK: func.func @would_break_dominance(
-// CHECK-SAME: %[[ARG0:.+]]: tensor<128x256xi32>)
-// CHECK: %[[EMPTY:.+]] = tensor.empty() : tensor<128x256xi32>
-// CHECK-NEXT: %[[GEN:.+]] = linalg.generic
-// CHECK-SAME: ins(%[[ARG0]]
-// CHECK-SAME: outs(%[[EMPTY]]
-// CHECK: %[[ALLOC:.+]] = bufferization.alloc_tensor() : tensor<4x16x16x32xi32>
-// CHECK-NEXT: %{{.+}} = tensor.pack %[[GEN]]
-// CHECK-SAME: inner_dims_pos = [1, 0] inner_tiles = [16, 32]
-// CHECK-SAME: into %[[ALLOC]]
+// CHECK-LABEL: func.func @would_break_dominance(
+// CHECK-SAME: %[[ARG0:.+]]: tensor<128x256xi32>)
+// CHECK: %[[EMPTY:.+]] = tensor.empty() : tensor<128x256xi32>
+// CHECK-NEXT: %[[GEN:.+]] = linalg.generic
+// CHECK-SAME: ins(%[[ARG0]]
+// CHECK-SAME: outs(%[[EMPTY]]
+// CHECK: %[[ALLOC:.+]] = bufferization.alloc_tensor() : tensor<4x16x16x32xi32>
+// CHECK-NEXT: %{{.+}} = tensor.pack %[[GEN]]
+// CHECK-SAME: inner_dims_pos = [1, 0] inner_tiles = [16, 32]
+// CHECK-SAME: into %[[ALLOC]]
// -----
@@ -666,16 +666,16 @@ func.func @scalar_tensor(%arg0 : tensor<f32>) -> tensor<1x32x7x7x32xf32> {
return %pack : tensor<1x32x7x7x32xf32>
}
-// CHECK: #[[MAP:.+]] = affine_map<(d0, d1, d2, d3, d4) -> ()>
-// CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)>
-// CHECK: func.func @scalar_tensor
-// CHECK-SAME: %[[ARG0:.+]]: tensor<f32>)
-// CHECK: %[[EMPTY:.+]] = tensor.empty() : tensor<1x32x7x7x32xf32>
-// CHECK: linalg.generic
-// CHECK-SAME: indexing_maps = [#[[MAP]], #[[MAP1]]]
-// CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "parallel", "parallel"]
-// CHECK-SAME: ins(%[[ARG0]]
-// CHECK-SAME: outs(%[[EMPTY]]
+// CHECK-DAG: #[[$MAP:.+]] = affine_map<(d0, d1, d2, d3, d4) -> ()>
+// CHECK-DAG: #[[$MAP1:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)>
+// CHECK-LABEL: func.func @scalar_tensor
+// CHECK-SAME: %[[ARG0:.+]]: tensor<f32>)
+// CHECK: %[[EMPTY:.+]] = tensor.empty() : tensor<1x32x7x7x32xf32>
+// CHECK: linalg.generic
+// CHECK-SAME: indexing_maps = [#[[$MAP]], #[[$MAP1]]]
+// CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "parallel", "parallel"]
+// CHECK-SAME: ins(%[[ARG0]]
+// CHECK-SAME: outs(%[[EMPTY]]
// -----
@@ -692,15 +692,15 @@ func.func @unpack_empty_inner_dims(%arg0: tensor<12x64x56x56xf32>) -> tensor<12x
return %2 : tensor<12x56x56x64xf32>
}
-// CHECK: func.func @unpack_empty_inner_dims
-// CHECK: %[[UNPACKED_ARG0:.+]] = tensor.unpack
-// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [] inner_tiles = []
-// CHECK: %[[PACKED_ARG0:.+]] = tensor.pack %[[UNPACKED_ARG0]]
-// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [] inner_tiles = []
-// CHECK: %[[RES:.+]] = linalg.generic
-// CHECK-SAME: ins(%[[PACKED_ARG0]]
-// CHECK: %[[UNPACKED:.+]] = tensor.unpack %[[RES]]
-// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [] inner_tiles = []
+// CHECK-LABEL: func.func @unpack_empty_inner_dims
+// CHECK: %[[UNPACKED_ARG0:.+]] = tensor.unpack
+// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [] inner_tiles = []
+// CHECK: %[[PACKED_ARG0:.+]] = tensor.pack %[[UNPACKED_ARG0]]
+// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [] inner_tiles = []
+// CHECK: %[[RES:.+]] = linalg.generic
+// CHECK-SAME: ins(%[[PACKED_ARG0]]
+// CHECK: %[[UNPACKED:.+]] = tensor.unpack %[[RES]]
+// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [] inner_tiles = []
// -----
@@ -722,25 +722,25 @@ func.func @reduction_pack_transpose_inner_dims(%arg0: tensor<128x256x32xi32>,
into %dest : tensor<128x256xi32> -> tensor<4x16x16x32xi32>
return %pack : tensor<4x16x16x32xi32>
}
-// CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)>
-// CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d3, d4)>
-// CHECK: func.func @reduction_pack_transpose_inner_dims
-// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
-// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]
-// CHECK: %[[ARG1_EMPTY:.+]] = tensor.empty() : tensor<4x16x16x32xi32>
-// CHECK: %[[PACK_ARG1:.+]] = tensor.pack %[[ARG1]]
-// CHECK-SME: inner_dims_pos = [1, 0] inner_tiles = [16, 32]
-// CHECK-SAME: into %[[ARG1_EMPTY]]
-// CHECK: %[[ARG0_EMPTY:.+]] = tensor.empty() : tensor<4x16x32x16x32xi32>
-// CHECK: %[[PACK_ARG0:.+]] = tensor.pack %[[ARG0]]
-// CHECK-SAME: inner_dims_pos = [1, 0] inner_tiles = [16, 32]
-// CHECK-SAME: into %[[ARG0_EMPTY]]
-// CHECK: %[[RED:.+]] = linalg.generic
-// CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP1]]]
-// CHECK-SAME: iterator_types = ["parallel", "parallel", "reduction", "parallel", "parallel"]
-// CHECK-SAME: ins(%[[PACK_ARG0]]
-// CHECK-SAME: outs(%[[PACK_ARG1]]
-// CHECK: return %[[RED]] : tensor<4x16x16x32xi32>
+// CHECK-DAG: #[[$MAP0:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)>
+// CHECK-DAG: #[[$MAP1:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d3, d4)>
+// CHECK-LABEL: func.func @reduction_pack_transpose_inner_dims
+// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
+// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]
+// CHECK: %[[ARG1_EMPTY:.+]] = tensor.empty() : tensor<4x16x16x32xi32>
+// CHECK: %[[PACK_ARG1:.+]] = tensor.pack %[[ARG1]]
+// CHECK-SME: inner_dims_pos = [1, 0] inner_tiles = [16, 32]
+// CHECK-SAME: into %[[ARG1_EMPTY]]
+// CHECK: %[[ARG0_EMPTY:.+]] = tensor.empty() : tensor<4x16x32x16x32xi32>
+// CHECK: %[[PACK_ARG0:.+]] = tensor.pack %[[ARG0]]
+// CHECK-SAME: inner_dims_pos = [1, 0] inner_tiles = [16, 32]
+// CHECK-SAME: into %[[ARG0_EMPTY]]
+// CHECK: %[[RED:.+]] = linalg.generic
+// CHECK-SAME: indexing_maps = [#[[$MAP0]], #[[$MAP1]]]
+// CHECK-SAME: iterator_types = ["parallel", "parallel", "reduction", "parallel", "parallel"]
+// CHECK-SAME: ins(%[[PACK_ARG0]]
+// CHECK-SAME: outs(%[[PACK_ARG1]]
+// CHECK: return %[[RED]] : tensor<4x16x16x32xi32>
// -----
@@ -770,31 +770,31 @@ func.func @reduction_pack_with_outer_dims(%arg0: tensor<100x128x200x256xi32>, %a
return %4 : tensor<4x16x100x16x32xi32>
}
-// CHECK-DAG: #[[MAP:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1, d2, d3, d4, d5)>
-// CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d3)>
-// CHECK-DAG: #[[MAP2:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d5)>
-// CHECK-DAG: #[[MAP3:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1, d3, d4, d5)>
-// CHECK: func.func @reduction_pack_with_outer_dims
-// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
-// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]
-// CHECK-SAME: %[[ARG2:[a-zA-Z0-9]+]]
-// CHECK-SAME: %[[ARG3:[a-zA-Z0-9]+]]
-// CHECK: %[[ARG3_EMPTY:.+]] = tensor.empty() : tensor<4x16x100x16x32xi32>
-// CHECK: %[[PACKED_ARG3:.+]] = tensor.pack %[[ARG3]]
-// CHECK-SAME: outer_dims_perm = [1, 2, 0] inner_dims_pos = [2, 1] inner_tiles = [16, 32]
-// CHECK-SAME: into %[[ARG3_EMPTY]]
-// CHECK: %[[ARG0_EMPTY:.+]] = tensor.empty() : tensor<4x16x200x100x16x32xi32>
-// CHECK: %[[PACKED_ARG0:.+]] = tensor.pack %[[ARG0]]
-// CHECK-SAME: outer_dims_perm = [1, 3, 2, 0] inner_dims_pos = [3, 1] inner_tiles = [16, 32]
-// CHECK-SAME: into %[[ARG0_EMPTY]]
-// CHECK: %[[ARG2_EMPTY:.+]] = tensor.empty() : tensor<4x32xi32>
-// CHECK: %[[PACKED_ARG2:.+]] = tensor.pack %[[ARG2]]
-// CHECK-SAME: inner_dims_pos = [0] inner_tiles = [32]
-// CHECK-SAME: into %[[ARG2_EMPTY]]
-// CHECK: %[[RES:.+]] = linalg.generic
-// CHECK-SAME: indexing_maps = [#[[MAP]], #[[MAP1]], #[[MAP2]], #[[MAP3]]]
-// CHECK-SAME: ins(%[[PACKED_ARG0]], %[[ARG1]], %[[PACKED_ARG2]]
-// CHECK-SAME: outs(%[[PACKED_ARG3]]
+// CHECK-DAG: #[[$MAP:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1, d2, d3, d4, d5)>
+// CHECK-DAG: #[[$MAP1:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d3)>
+// CHECK-DAG: #[[$MAP2:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d5)>
+// CHECK-DAG: #[[$MAP3:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1, d3, d4, d5)>
+// CHECK-LABEL: func.func @reduction_pack_with_outer_dims
+// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
+// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]
+// CHECK-SAME: %[[ARG2:[a-zA-Z0-9]+]]
+// CHECK-SAME: %[[ARG3:[a-zA-Z0-9]+]]
+// CHECK: %[[ARG3_EMPTY:.+]] = tensor.empty() : tensor<4x16x100x16x32xi32>
+// CHECK: %[[PACKED_ARG3:.+]] = tensor.pack %[[ARG3]]
+// CHECK-SAME: outer_dims_perm = [1, 2, 0] inner_dims_pos = [2, 1] inner_tiles = [16, 32]
+// CHECK-SAME: into %[[ARG3_EMPTY]]
+// CHECK: %[[ARG0_EMPTY:.+]] = tensor.empty() : tensor<4x16x200x100x16x32xi32>
+// CHECK: %[[PACKED_ARG0:.+]] = tensor.pack %[[ARG0]]
+// CHECK-SAME: outer_dims_perm = [1, 3, 2, 0] inner_dims_pos = [3, 1] inner_tiles = [16, 32]
+// CHECK-SAME: into %[[ARG0_EMPTY]]
+// CHECK: %[[ARG2_EMPTY:.+]] = tensor.empty() : tensor<4x32xi32>
+// CHECK: %[[PACKED_ARG2:.+]] = tensor.pack %[[ARG2]]
+// CHECK-SAME: inner_dims_pos = [0] inner_tiles = [32]
+// CHECK-SAME: into %[[ARG2_EMPTY]]
+// CHECK: %[[RES:.+]] = linalg.generic
+// CHECK-SAME: indexing_maps = [#[[$MAP]], #[[$MAP1]], #[[$MAP2]], #[[$MAP3]]]
+// CHECK-SAME: ins(%[[PACKED_ARG0]], %[[ARG1]], %[[PACKED_ARG2]]
+// CHECK-SAME: outs(%[[PACKED_ARG3]]
// -----
@@ -818,24 +818,24 @@ func.func @unpack_different_destination_shape(%arg0: tensor<1x1x1080x1920x16xi32
} -> tensor<16x540x960xi32>
return %pool : tensor<16x540x960xi32>
}
-// CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d0, d1, d2 * 2 + d4, d3 * 2 + d5, d6)>
-// CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d4, d5)>
-// CHECK-DAG: #[[MAP2:.+]] = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d1, d2, d3, d6)>
-// CHECK: func.func @unpack_different_destination_shape
-// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
-// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]
-// CHECK: %[[INIT:.+]] = tensor.empty() : tensor<1x540x960x16xi32>
-// CHECK: %[[PACK_EMPTY:.+]] = tensor.empty() : tensor<1x1x1080x1920x16xi32>
-// CHECK: %[[PACK_ARG0:.+]] = tensor.pack
-// CHECK-SAME: inner_dims_pos = [1] inner_tiles = [16]
-// CHECK-SAME: into %[[PACK_EMPTY]]
-// CHECK: %[[POOL:.+]] = linalg.generic
-// CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP1]], #[[MAP2]]]
-// CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "parallel", "reduction", "reduction", "parallel"]
-// CHECK-SAME: ins(%[[PACK_ARG0]], %[[ARG1]]
-// CHECK-SAME: outs(%[[INIT]]
-// CHECK: %[[UNPACK_NEW_DEST:.+]] = tensor.empty() : tensor<16x540x960xi32>
-// CHECK: %[[UNPACK:.+]] = tensor.unpack %[[POOL]]
-// CHECK-SAME: inner_dims_pos = [0] inner_tiles = [16]
-// CHECK-SAME: into %[[UNPACK_NEW_DEST]]
-// CHECK: return %[[UNPACK]] : tensor<16x540x960xi32>
+// CHECK-DAG: #[[$MAP0:.+]] = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d0, d1, d2 * 2 + d4, d3 * 2 + d5, d6)>
+// CHECK-DAG: #[[$MAP1:.+]] = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d4, d5)>
+// CHECK-DAG: #[[$MAP2:.+]] = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d1, d2, d3, d6)>
+// CHECK-LABEL: func.func @unpack_different_destination_shape
+// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
+// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]
+// CHECK: %[[INIT:.+]] = tensor.empty() : tensor<1x540x960x16xi32>
+// CHECK: %[[PACK_EMPTY:.+]] = tensor.empty() : tensor<1x1x1080x1920x16xi32>
+// CHECK: %[[PACK_ARG0:.+]] = tensor.pack
+// CHECK-SAME: inner_dims_pos = [1] inner_tiles = [16]
+// CHECK-SAME: into %[[PACK_EMPTY]]
+// CHECK: %[[POOL:.+]] = linalg.generic
+// CHECK-SAME: indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP2]]]
+// CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "parallel", "reduction", "reduction", "parallel"]
+// CHECK-SAME: ins(%[[PACK_ARG0]], %[[ARG1]]
+// CHECK-SAME: outs(%[[INIT]]
+// CHECK: %[[UNPACK_NEW_DEST:.+]] = tensor.empty() : tensor<16x540x960xi32>
+// CHECK: %[[UNPACK:.+]] = tensor.unpack %[[POOL]]
+// CHECK-SAME: inner_dims_pos = [0] inner_tiles = [16]
+// CHECK-SAME: into %[[UNPACK_NEW_DEST]]
+// CHECK: return %[[UNPACK]] : tensor<16x540x960xi32>
>From 0adeab5925be64186081f8f7a35ef9266efd07e0 Mon Sep 17 00:00:00 2001
From: Quinn Dawkins <quinn at nod-labs.com>
Date: Fri, 16 Feb 2024 10:51:29 -0500
Subject: [PATCH 2/2] [mlir][linalg] Add pattern to propagate pack up through
tensor.pad
This mirrors the existing pattern for pushing unpack down through
padding, restricting to cases where the padded dimensions aren't tiled
by the pack.
---
.../Transforms/DataLayoutPropagation.cpp | 89 ++++++++++++++++++-
.../Linalg/data-layout-propagation.mlir | 66 ++++++++++++++
2 files changed, 152 insertions(+), 3 deletions(-)
diff --git a/mlir/lib/Dialect/Linalg/Transforms/DataLayoutPropagation.cpp b/mlir/lib/Dialect/Linalg/Transforms/DataLayoutPropagation.cpp
index 6a971b37cad7c5..5ceb85e7d9903b 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/DataLayoutPropagation.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/DataLayoutPropagation.cpp
@@ -470,6 +470,88 @@ struct BubbleUpPackOpThroughGenericOpPattern
ControlPropagationFn controlFn;
};
+/// Propagate a tensor.pack operation up through a tensor.pad. The idea is to
+/// add as many zero padding dimensions in `high` and `low` based on the number
+/// of point loops.
+class BubbleUpPackThroughPadOp final : public OpRewritePattern<tensor::PackOp> {
+public:
+ BubbleUpPackThroughPadOp(MLIRContext *context, ControlPropagationFn fun)
+ : OpRewritePattern<tensor::PackOp>(context), controlFn(std::move(fun)) {}
+
+ LogicalResult matchAndRewrite(tensor::PackOp packOp,
+ PatternRewriter &rewriter) const override {
+ auto padOp = packOp.getSource().getDefiningOp<tensor::PadOp>();
+ if (!padOp)
+ return failure();
+
+ // User controlled propagation function.
+ if (!controlFn(padOp))
+ return failure();
+
+ if (!padOp.getResult().hasOneUse())
+ return failure();
+
+ // TODO: Enable padding when the padding values are the same.
+ if (packOp.getPaddingValue())
+ return failure();
+
+ // Fail for non-constant padding values. The body of the pad could
+ // depend on the padding indices and/or properties of the padded
+ // tensor so for now we fail.
+ // TODO: Support non-constant padding values.
+ Value paddingVal = padOp.getConstantPaddingValue();
+ if (!paddingVal)
+ return failure();
+
+ if (!packOp.getDest().getDefiningOp<tensor::EmptyOp>())
+ return failure();
+
+ ArrayRef<int64_t> innerDimsPos = packOp.getInnerDimsPos();
+ ArrayRef<int64_t> outerDimsPerm = packOp.getOuterDimsPerm();
+
+ // Bail out if one of the padded dimension is a tiled one.
+ llvm::SmallBitVector paddedDims = padOp.getPaddedDims();
+ llvm::SmallBitVector innerDims(paddedDims.size());
+ for (int64_t dim : innerDimsPos)
+ innerDims.flip(dim);
+ if (paddedDims.anyCommon(innerDims))
+ return failure();
+
+ Location loc = padOp->getLoc();
+ OpBuilder::InsertionGuard guard(rewriter);
+ rewriter.setInsertionPoint(padOp);
+
+ auto empty = tensor::PackOp::createDestinationTensor(
+ rewriter, loc, padOp.getSource(), packOp.getMixedTiles(), innerDimsPos,
+ outerDimsPerm);
+ Value packedSource = rewriter.create<tensor::PackOp>(
+ loc, padOp.getSource(), empty, innerDimsPos, packOp.getMixedTiles(),
+ /*padding=*/std::nullopt, outerDimsPerm);
+
+ // If we have `outer_dims_perms` we need to adjust the padded dimensions.
+ SmallVector<OpFoldResult> lowPad = padOp.getMixedLowPad();
+ SmallVector<OpFoldResult> highPad = padOp.getMixedHighPad();
+ if (!outerDimsPerm.empty()) {
+ applyPermutationToVector<OpFoldResult>(lowPad, outerDimsPerm);
+ applyPermutationToVector<OpFoldResult>(highPad, outerDimsPerm);
+ }
+ // The tiled dimensions were verified to be unpadded above, so here we
+ // just append 0 for the inner tile dimensions.
+ size_t pointLoopsSize = innerDimsPos.size();
+ lowPad.append(pointLoopsSize, rewriter.getIndexAttr(0));
+ highPad.append(pointLoopsSize, rewriter.getIndexAttr(0));
+
+ auto newPadOp = rewriter.create<tensor::PadOp>(
+ loc, /*result=*/Type(), packedSource, lowPad, highPad, paddingVal,
+ padOp.getNofold());
+ rewriter.replaceOp(packOp, newPadOp.getResult());
+ return success();
+ }
+
+private:
+ ControlPropagationFn controlFn;
+};
+
// TODO: Relax this restriction. We should unpack a generic op also
// in the presence of multiple unpack ops as producers.
/// Return the unpacked operand, if present, for the current generic op.
@@ -690,7 +772,8 @@ struct PushDownUnPackThroughPadOp : public OpRewritePattern<tensor::PadOp> {
void mlir::linalg::populateDataLayoutPropagationPatterns(
RewritePatternSet &patterns,
const ControlPropagationFn &controlPackUnPackPropagation) {
- patterns.insert<BubbleUpPackOpThroughGenericOpPattern,
- PushDownUnPackOpThroughGenericOp, PushDownUnPackThroughPadOp>(
- patterns.getContext(), controlPackUnPackPropagation);
+ patterns
+ .insert<BubbleUpPackOpThroughGenericOpPattern, BubbleUpPackThroughPadOp,
+ PushDownUnPackOpThroughGenericOp, PushDownUnPackThroughPadOp>(
+ patterns.getContext(), controlPackUnPackPropagation);
}
diff --git a/mlir/test/Dialect/Linalg/data-layout-propagation.mlir b/mlir/test/Dialect/Linalg/data-layout-propagation.mlir
index 92459e117bbe32..e036695a2ac9fd 100644
--- a/mlir/test/Dialect/Linalg/data-layout-propagation.mlir
+++ b/mlir/test/Dialect/Linalg/data-layout-propagation.mlir
@@ -621,6 +621,72 @@ func.func @pad_along_unpacked_dim(%arg0: tensor<1x2x56x56x32xf32>) -> tensor<1x5
// -----
+func.func @pad_valid_pack_propagation(%arg0: tensor<1x64x56x56xf32>) -> tensor<1x2x58x58x32xf32> {
+ %cst = arith.constant 0.000000e+00 : f32
+ %padded = tensor.pad %arg0 low[0, 0, 1, 1] high[0, 0, 1, 1] {
+ ^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index):
+ tensor.yield %cst : f32
+ } : tensor<1x64x56x56xf32> to tensor<1x64x58x58xf32>
+ %0 = tensor.empty() : tensor<1x2x58x58x32xf32>
+ %1 = tensor.pack %padded inner_dims_pos = [1] inner_tiles = [32] into %0 : tensor<1x64x58x58xf32> -> tensor<1x2x58x58x32xf32>
+ return %1 : tensor<1x2x58x58x32xf32>
+}
+
+// CHECK-LABEL: func.func @pad_valid_pack_propagation(
+// CHECK-SAME: %[[ARG0:.+]]: tensor<1x64x56x56xf32>)
+// CHECK: %[[CST:.+]] = arith.constant 0.000000e+00 : f32
+// CHECK: %[[EMPTY:.+]] = tensor.empty() : tensor<1x2x56x56x32xf32>
+// CHECK: %[[PACKED:.+]] = tensor.pack %[[ARG0]] inner_dims_pos = [1] inner_tiles = [32]
+// CHECK-SAME: into %[[EMPTY]] : tensor<1x64x56x56xf32> -> tensor<1x2x56x56x32xf32>
+// CHECK: %[[PADDED:.+]] = tensor.pad %[[PACKED]] low[0, 0, 1, 1, 0] high[0, 0, 1, 1, 0]
+// CHECK: return %[[PADDED]]
+
+// -----
+
+func.func @pad_valid_outer_dims_pack_propagation(%arg0: tensor<1x64x56x56xf32>) -> tensor<1x58x58x2x32xf32> {
+ %cst = arith.constant 0.000000e+00 : f32
+ %padded = tensor.pad %arg0 low[0, 0, 1, 1] high[0, 0, 1, 1] {
+ ^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index):
+ tensor.yield %cst : f32
+ } : tensor<1x64x56x56xf32> to tensor<1x64x58x58xf32>
+ %0 = tensor.empty() : tensor<1x58x58x2x32xf32>
+ %1 = tensor.pack %padded outer_dims_perm = [0, 3, 2, 1] inner_dims_pos = [1] inner_tiles = [32] into %0 : tensor<1x64x58x58xf32> -> tensor<1x58x58x2x32xf32>
+ return %1 : tensor<1x58x58x2x32xf32>
+}
+
+// CHECK-LABEL: func.func @pad_valid_outer_dims_pack_propagation(
+// CHECK-SAME: %[[ARG0:.+]]: tensor<1x64x56x56xf32>)
+// CHECK: %[[CST:.+]] = arith.constant 0.000000e+00 : f32
+// CHECK: %[[EMPTY:.+]] = tensor.empty() : tensor<1x56x56x2x32xf32>
+// CHECK: %[[PACKED:.+]] = tensor.pack %[[ARG0]]
+// CHECK-SAME: outer_dims_perm = [0, 3, 2, 1] inner_dims_pos = [1] inner_tiles = [32]
+// CHECK-SAME: into %[[EMPTY]] : tensor<1x64x56x56xf32> -> tensor<1x56x56x2x32xf32>
+// CHECK: %[[PADDED:.+]] = tensor.pad %[[PACKED]] low[0, 1, 1, 0, 0] high[0, 1, 1, 0, 0]
+// CHECK: return %[[PADDED]]
+
+// -----
+
+func.func @pad_along_packed_dim(%arg0: tensor<1x60x56x56xf32>) -> tensor<1x2x58x58x32xf32> {
+ %cst = arith.constant 0.000000e+00 : f32
+ %padded = tensor.pad %arg0 low[0, 2, 1, 1] high[0, 2, 1, 1] {
+ ^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index):
+ tensor.yield %cst : f32
+ } : tensor<1x60x56x56xf32> to tensor<1x64x58x58xf32>
+ %0 = tensor.empty() : tensor<1x2x58x58x32xf32>
+ %1 = tensor.pack %padded inner_dims_pos = [1] inner_tiles = [32] into %0 : tensor<1x64x58x58xf32> -> tensor<1x2x58x58x32xf32>
+ return %1 : tensor<1x2x58x58x32xf32>
+}
+
+// CHECK-LABEL: func.func @pad_along_packed_dim(
+// CHECK-SAME: %[[ARG0:.+]]: tensor<1x60x56x56xf32>)
+// CHECK: %[[CST:.+]] = arith.constant 0.000000e+00 : f32
+// CHECK: %[[PADDED:.+]] = tensor.pad %[[ARG0]] low[0, 2, 1, 1] high[0, 2, 1, 1]
+// CHECK: %[[EMPTY:.+]] = tensor.empty() : tensor<1x2x58x58x32xf32>
+// CHECK: tensor.pack %[[PADDED]] inner_dims_pos = [1] inner_tiles = [32]
+// CHECK-SAME: into %[[EMPTY]] : tensor<1x64x58x58xf32> -> tensor<1x2x58x58x32xf32>
+
+// -----
+
#map0 = affine_map<(d0, d1) -> (d0, d1)>
func.func @would_break_dominance(%arg0: tensor<128x256xi32>) -> tensor<4x16x16x32xi32>{
%init = tensor.empty() : tensor<128x256xi32>
More information about the Mlir-commits
mailing list