[Mlir-commits] [mlir] [mlir][linalg] Add scalable vectorisation for depthwise convolutions (PR #81625)
Cullen Rhodes
llvmlistbot at llvm.org
Thu Feb 15 02:15:40 PST 2024
================
@@ -1609,6 +1610,19 @@ static LogicalResult reductionPreconditions(LinalgOp op) {
}
static LogicalResult vectorizeDynamicLinalgOpPrecondition(linalg::LinalgOp op) {
+ // Support dynamic shapes in 1D depthwise convolution, but only in the
+ // _channel_ dimension. That's exclusively to support scalable vectorisation.
+ if (auto conv = dyn_cast<linalg::DepthwiseConv1DNwcWcOp>(op.getOperation())) {
+ auto lhsShaped = op.getDpsInputOperand(0)->get();
+ ArrayRef<int64_t> lhsShape =
+ dyn_cast<ShapedType>(lhsShaped.getType()).getShape();
+ auto shapeWithoutCh = lhsShape.drop_back(1);
+ if (ShapedType::isDynamicShape(shapeWithoutCh))
+ return failure();
+
+ return success();
----------------
c-rhodes wrote:
ah ok, I was suggesting
```suggestion
if (ShapedType::isDynamicShape(lhsShape.back()))
return success();
return failure();
```
but as you say that's not checking if the other dims are static. Perhaps worth adding a negative test with dynamic dims other than channel to check nothing happens.
https://github.com/llvm/llvm-project/pull/81625
More information about the Mlir-commits
mailing list