[Mlir-commits] [mlir] ab70251 - [mlir][VectorOps] Add vector.interleave operation (#80965)
llvmlistbot at llvm.org
llvmlistbot at llvm.org
Mon Feb 12 08:21:05 PST 2024
Author: Benjamin Maxwell
Date: 2024-02-12T16:21:02Z
New Revision: ab702513f1ee2268ce216d11c310a08cae24a0e7
URL: https://github.com/llvm/llvm-project/commit/ab702513f1ee2268ce216d11c310a08cae24a0e7
DIFF: https://github.com/llvm/llvm-project/commit/ab702513f1ee2268ce216d11c310a08cae24a0e7.diff
LOG: [mlir][VectorOps] Add vector.interleave operation (#80965)
The interleave operation constructs a new vector by interleaving the
elements from the trailing (or final) dimension of two input vectors,
returning a new vector where the trailing dimension is twice the size.
Note that for the n-D case this differs from the interleaving possible
with `vector.shuffle`, which would only operate on the leading
dimension.
Another key difference is this operation supports scalable vectors,
though currently a general LLVM lowering is limited to the case where
only the trailing dimension is scalable.
Example:
```mlir
%0 = vector.interleave %a, %b
: vector<[4]xi32> ; yields vector<[8]xi32>
%1 = vector.interleave %c, %d
: vector<8xi8> ; yields vector<16xi8>
%2 = vector.interleave %e, %f
: vector<f16> ; yields vector<2xf16>
%3 = vector.interleave %g, %h
: vector<2x4x[2]xf64> ; yields vector<2x4x[4]xf64>
%4 = vector.interleave %i, %j
: vector<6x3xf32> ; yields vector<6x6xf32>
```
Note: This change alone does not add any lowerings.
Added:
Modified:
mlir/include/mlir/Dialect/Vector/IR/VectorOps.td
mlir/test/Dialect/Vector/ops.mlir
Removed:
################################################################################
diff --git a/mlir/include/mlir/Dialect/Vector/IR/VectorOps.td b/mlir/include/mlir/Dialect/Vector/IR/VectorOps.td
index bc08f8d07fb0de..6d50b0654bc575 100644
--- a/mlir/include/mlir/Dialect/Vector/IR/VectorOps.td
+++ b/mlir/include/mlir/Dialect/Vector/IR/VectorOps.td
@@ -478,6 +478,69 @@ def Vector_ShuffleOp :
let hasCanonicalizer = 1;
}
+def Vector_InterleaveOp :
+ Vector_Op<"interleave", [Pure,
+ AllTypesMatch<["lhs", "rhs"]>,
+ TypesMatchWith<
+ "type of 'result' is double the width of the inputs",
+ "lhs", "result",
+ [{
+ [&]() -> ::mlir::VectorType {
+ auto vectorType = ::llvm::cast<mlir::VectorType>($_self);
+ ::mlir::VectorType::Builder builder(vectorType);
+ if (vectorType.getRank() == 0) {
+ static constexpr int64_t v2xty_shape[] = { 2 };
+ return builder.setShape(v2xty_shape);
+ }
+ auto lastDim = vectorType.getRank() - 1;
+ return builder.setDim(lastDim, vectorType.getDimSize(lastDim) * 2);
+ }()
+ }]>]> {
+ let summary = "constructs a vector by interleaving two input vectors";
+ let description = [{
+ The interleave operation constructs a new vector by interleaving the
+ elements from the trailing (or final) dimension of two input vectors,
+ returning a new vector where the trailing dimension is twice the size.
+
+ Note that for the n-D case this
diff ers from the interleaving possible with
+ `vector.shuffle`, which would only operate on the leading dimension.
+
+ Another key
diff erence is this operation supports scalable vectors, though
+ currently a general LLVM lowering is limited to the case where only the
+ trailing dimension is scalable.
+
+ Example:
+ ```mlir
+ %0 = vector.interleave %a, %b
+ : vector<[4]xi32> ; yields vector<[8]xi32>
+ %1 = vector.interleave %c, %d
+ : vector<8xi8> ; yields vector<16xi8>
+ %2 = vector.interleave %e, %f
+ : vector<f16> ; yields vector<2xf16>
+ %3 = vector.interleave %g, %h
+ : vector<2x4x[2]xf64> ; yields vector<2x4x[4]xf64>
+ %4 = vector.interleave %i, %j
+ : vector<6x3xf32> ; yields vector<6x6xf32>
+ ```
+ }];
+
+ let arguments = (ins AnyVectorOfAnyRank:$lhs, AnyVectorOfAnyRank:$rhs);
+ let results = (outs AnyVector:$result);
+
+ let assemblyFormat = [{
+ $lhs `,` $rhs attr-dict `:` type($lhs)
+ }];
+
+ let extraClassDeclaration = [{
+ VectorType getSourceVectorType() {
+ return ::llvm::cast<VectorType>(getLhs().getType());
+ }
+ VectorType getResultVectorType() {
+ return ::llvm::cast<VectorType>(getResult().getType());
+ }
+ }];
+}
+
def Vector_ExtractElementOp :
Vector_Op<"extractelement", [Pure,
TypesMatchWith<"result type matches element type of vector operand",
diff --git a/mlir/test/Dialect/Vector/ops.mlir b/mlir/test/Dialect/Vector/ops.mlir
index 2f8530e7c171aa..79a80be4f8b202 100644
--- a/mlir/test/Dialect/Vector/ops.mlir
+++ b/mlir/test/Dialect/Vector/ops.mlir
@@ -1081,3 +1081,38 @@ func.func @fastmath(%x: vector<42xf32>) -> f32 {
%min = vector.reduction <minnumf>, %x fastmath<reassoc,nnan,ninf> : vector<42xf32> into f32
return %min: f32
}
+
+// CHECK-LABEL: @interleave_0d
+func.func @interleave_0d(%a: vector<f32>, %b: vector<f32>) -> vector<2xf32> {
+ // CHECK: vector.interleave %{{.*}}, %{{.*}} : vector<f32>
+ %0 = vector.interleave %a, %b : vector<f32>
+ return %0 : vector<2xf32>
+}
+
+// CHECK-LABEL: @interleave_1d
+func.func @interleave_1d(%a: vector<4xf32>, %b: vector<4xf32>) -> vector<8xf32> {
+ // CHECK: vector.interleave %{{.*}}, %{{.*}} : vector<4xf32>
+ %0 = vector.interleave %a, %b : vector<4xf32>
+ return %0 : vector<8xf32>
+}
+
+// CHECK-LABEL: @interleave_1d_scalable
+func.func @interleave_1d_scalable(%a: vector<[8]xi16>, %b: vector<[8]xi16>) -> vector<[16]xi16> {
+ // CHECK: vector.interleave %{{.*}}, %{{.*}} : vector<[8]xi16>
+ %0 = vector.interleave %a, %b : vector<[8]xi16>
+ return %0 : vector<[16]xi16>
+}
+
+// CHECK-LABEL: @interleave_2d
+func.func @interleave_2d(%a: vector<2x8xf32>, %b: vector<2x8xf32>) -> vector<2x16xf32> {
+ // CHECK: vector.interleave %{{.*}}, %{{.*}} : vector<2x8xf32>
+ %0 = vector.interleave %a, %b : vector<2x8xf32>
+ return %0 : vector<2x16xf32>
+}
+
+// CHECK-LABEL: @interleave_2d_scalable
+func.func @interleave_2d_scalable(%a: vector<2x[2]xf64>, %b: vector<2x[2]xf64>) -> vector<2x[4]xf64> {
+ // CHECK: vector.interleave %{{.*}}, %{{.*}} : vector<2x[2]xf64>
+ %0 = vector.interleave %a, %b : vector<2x[2]xf64>
+ return %0 : vector<2x[4]xf64>
+}
More information about the Mlir-commits
mailing list