[Mlir-commits] [mlir] [mlir][ArmSME][test] Unroll reduction dimension in multi-tile-matmul.mlir (PR #81160)
llvmlistbot at llvm.org
llvmlistbot at llvm.org
Thu Feb 8 09:00:46 PST 2024
llvmbot wrote:
<!--LLVM PR SUMMARY COMMENT-->
@llvm/pr-subscribers-mlir
@llvm/pr-subscribers-mlir-sme
Author: Benjamin Maxwell (MacDue)
<details>
<summary>Changes</summary>
This tests both #<!-- -->80148 and #<!-- -->80170 work together to allow unrolling the reduction dimension of a matmul.
---
Full diff: https://github.com/llvm/llvm-project/pull/81160.diff
1 Files Affected:
- (modified) mlir/test/Integration/Dialect/Linalg/CPU/ArmSME/multi-tile-matmul.mlir (+5-5)
``````````diff
diff --git a/mlir/test/Integration/Dialect/Linalg/CPU/ArmSME/multi-tile-matmul.mlir b/mlir/test/Integration/Dialect/Linalg/CPU/ArmSME/multi-tile-matmul.mlir
index 327f237ba8948..d5c35068ccb32 100644
--- a/mlir/test/Integration/Dialect/Linalg/CPU/ArmSME/multi-tile-matmul.mlir
+++ b/mlir/test/Integration/Dialect/Linalg/CPU/ArmSME/multi-tile-matmul.mlir
@@ -73,14 +73,14 @@ module attributes {transform.with_named_sequence} {
%matmul = transform.structured.match ops{["linalg.matmul"]} in %module
: (!transform.any_op) -> !transform.any_op
- // Step 1: Tile for size [8] x [8], which corresponds to (2 x SVLs) x (2 x SVLs),
- // where SVLs is the number of 32-bit elements in a vector of SVL bits.
- // This uses all four 32-bit SME virtual tiles.
- %tiled_linalg_op, %loop_i, %loop_j, %loop_k = transform.structured.tile_using_for %matmul[[8], [8], 1]
+ // Step 1: Tile for size [8] x [8] (unrolled by 4), which corresponds to
+ // (2 x SVLs) x (2 x SVLs), where SVLs is the number of 32-bit elements in a
+ // vector of SVL bits. This uses all four 32-bit SME virtual tiles.
+ %tiled_linalg_op, %loop_i, %loop_j, %loop_k = transform.structured.tile_using_for %matmul[[8], [8], 4]
: (!transform.any_op) -> (!transform.any_op, !transform.op<"scf.for">, !transform.op<"scf.for">, !transform.op<"scf.for">)
// Step 2: Vectorize.
- transform.structured.vectorize %tiled_linalg_op vector_sizes [[8], [8], 1]
+ transform.structured.vectorize %tiled_linalg_op vector_sizes [[8], [8], 4]
: !transform.any_op
// Step 3: Bufferize ahead of TransferReadDropUnitDimsPattern, which
``````````
</details>
https://github.com/llvm/llvm-project/pull/81160
More information about the Mlir-commits
mailing list