[Mlir-commits] [mlir] 7880b2c - [mlir] Add direct vectorization lowering for `tensor.pack` ops (#78660)

llvmlistbot at llvm.org llvmlistbot at llvm.org
Wed Feb 7 11:11:15 PST 2024


Author: Max191
Date: 2024-02-07T14:11:11-05:00
New Revision: 7880b2c8586eade00a4aa5ac11007317a61e376c

URL: https://github.com/llvm/llvm-project/commit/7880b2c8586eade00a4aa5ac11007317a61e376c
DIFF: https://github.com/llvm/llvm-project/commit/7880b2c8586eade00a4aa5ac11007317a61e376c.diff

LOG: [mlir] Add direct vectorization lowering for `tensor.pack` ops (#78660)

This PR adds a direct vectorization lowering of `tensor.pack` into
`mask(vector.transfer_read)`->`vector.shape_cast`->`vector.transpose`->`vector.transfer_write`.

Added: 
    

Modified: 
    mlir/include/mlir/Dialect/Tensor/Utils/Utils.h
    mlir/lib/Dialect/Linalg/TransformOps/LinalgTransformOps.cpp
    mlir/lib/Dialect/Linalg/Transforms/Transforms.cpp
    mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
    mlir/lib/Dialect/Tensor/Utils/Utils.cpp
    mlir/test/Dialect/Linalg/vectorization.mlir

Removed: 
    


################################################################################
diff  --git a/mlir/include/mlir/Dialect/Tensor/Utils/Utils.h b/mlir/include/mlir/Dialect/Tensor/Utils/Utils.h
index 04b4de4a33a52..fe9b16cb44b3d 100644
--- a/mlir/include/mlir/Dialect/Tensor/Utils/Utils.h
+++ b/mlir/include/mlir/Dialect/Tensor/Utils/Utils.h
@@ -32,6 +32,14 @@ FailureOr<RankedTensorType>
 computeTransposedType(RankedTensorType rankedTensorType,
                       ArrayRef<int64_t> transposeVector);
 
+/// Given a tensor::PackOp, compute the permutation vector to shuffle the
+/// packed shape into the shape before any outer or inner permutations have
+/// been applied.
+/// i.e. for a pack from an ABCD layout to an ABCDba:
+/// The packed shape would be ABCDba.
+/// The pre-permutation shape would be AaBbCD.
+SmallVector<int64_t> getPackInverseDestPermutation(PackOp packOp);
+
 /// A tensor.insert_slice is a cast-like operation if it merely rank-extends the
 /// source tensor or inserts the source tensor into a destination tensor with
 /// the same shape.

diff  --git a/mlir/lib/Dialect/Linalg/TransformOps/LinalgTransformOps.cpp b/mlir/lib/Dialect/Linalg/TransformOps/LinalgTransformOps.cpp
index 6431bbd25396a..585fd14b40d76 100644
--- a/mlir/lib/Dialect/Linalg/TransformOps/LinalgTransformOps.cpp
+++ b/mlir/lib/Dialect/Linalg/TransformOps/LinalgTransformOps.cpp
@@ -3152,7 +3152,7 @@ DiagnosedSilenceableFailure transform::VectorizeOp::apply(
 
   // TODO: Check that the correct number of vectorSizes was provided.
   for (Operation *target : targets) {
-    if (!isa<linalg::LinalgOp, tensor::PadOp>(target)) {
+    if (!isa<linalg::LinalgOp, tensor::PadOp, tensor::PackOp>(target)) {
       return mlir::emitSilenceableFailure(target->getLoc())
              << "Unsupported Op, cannot vectorize";
     }

diff  --git a/mlir/lib/Dialect/Linalg/Transforms/Transforms.cpp b/mlir/lib/Dialect/Linalg/Transforms/Transforms.cpp
index 02bc3e672bf7a..596b7c50c1e4e 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/Transforms.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/Transforms.cpp
@@ -233,31 +233,11 @@ FailureOr<LowerPackResult> linalg::lowerPack(RewriterBase &rewriter,
   rewriter.setInsertionPoint(packOp);
 
   // 2. Compute the permutation vector to shuffle packed shape into the shape
-  // before any outer or inner permutations have been applied. The permutation
-  // can be obtained from two permutations:
-  //   a) Compute the permutation vector to move the last `numPackedDims` into
-  //      the `innerPosDims` of a shape of rank `packedRank`.
-  //   b) Compute the permutation vector to move outer dims if the pack op
-  //      has outer_dims_perm.
-  // Apply (b) permutation on (a) permutation to get the final permutation.
-  int64_t numPackedDims = packOp.getInnerDimsPos().size();
-  int64_t packedRank = packedTensorType.getRank();
-  auto lastDims = llvm::to_vector(
-      llvm::seq<int64_t>(packedRank - numPackedDims, packedRank));
+  // before any outer or inner permutations have been applied.
   PackingMetadata packingMetadata = computePackingMetadata(
       packedTensorType.getRank(), packOp.getInnerDimsPos());
-  SmallVector<int64_t> innerPositionsPerm = computePermutationVector(
-      packedRank, lastDims, packingMetadata.insertPositions);
-
-  SmallVector<int64_t> outerPos = packingMetadata.outerPositions;
-  ArrayRef<int64_t> outerPerm = packOp.getOuterDimsPerm();
-  if (!outerPerm.empty())
-    applyPermutationToVector(outerPos, outerPerm);
-  SmallVector<int64_t> outerPositionPerm = computePermutationVector(
-      packedRank, packingMetadata.outerPositions, outerPos);
-
-  SmallVector<int64_t> packedToStripMinedShapePerm = innerPositionsPerm;
-  applyPermutationToVector(packedToStripMinedShapePerm, outerPositionPerm);
+  SmallVector<int64_t> packedToStripMinedShapePerm =
+      tensor::getPackInverseDestPermutation(packOp);
 
   // 3. Compute the stripMinedShape: this is the packed shape before any outer
   // or inner permutations have been applied.
@@ -304,10 +284,6 @@ FailureOr<LowerPackResult> linalg::lowerPack(RewriterBase &rewriter,
       DBGSNL(); llvm::interleaveComma(packedTensorType.getShape(),
                                       DBGS() << "packedShape: ");
       DBGSNL();
-      llvm::interleaveComma(outerPositionPerm, DBGS() << "outerPositionPerm: ");
-      DBGSNL(); llvm::interleaveComma(innerPositionsPerm,
-                                      DBGS() << "innerPositionsPerm: ");
-      DBGSNL();
       llvm::interleaveComma(packedToStripMinedShapePerm,
                             DBGS() << "packedToStripMinedShapePerm: ");
       DBGSNL(); llvm::interleaveComma(
@@ -332,9 +308,11 @@ FailureOr<LowerPackResult> linalg::lowerPack(RewriterBase &rewriter,
       auto emptyOp =
           rewriter.create<tensor::EmptyOp>(loc, packedTensorType, ValueRange{});
       // Offsets.
-      SmallVector<OpFoldResult> zeros(packedRank, rewriter.getIndexAttr(0));
+      SmallVector<OpFoldResult> zeros(packOp.getDestRank(),
+                                      rewriter.getIndexAttr(0));
       // Strides.
-      SmallVector<OpFoldResult> ones(packedRank, rewriter.getIndexAttr(1));
+      SmallVector<OpFoldResult> ones(packOp.getDestRank(),
+                                     rewriter.getIndexAttr(1));
       SmallVector<OpFoldResult> sizes =
           tensor::getMixedSizes(rewriter, loc, packOp.getDest());
 

diff  --git a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
index 0707625819d1a..2bd6929fea614 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
@@ -19,10 +19,16 @@
 #include "mlir/Dialect/Linalg/Transforms/Transforms.h"
 #include "mlir/Dialect/Linalg/Utils/Utils.h"
 #include "mlir/Dialect/Tensor/IR/Tensor.h"
+#include "mlir/Dialect/Tensor/Utils/Utils.h"
+#include "mlir/Dialect/Utils/IndexingUtils.h"
 #include "mlir/Dialect/Utils/StructuredOpsUtils.h"
 #include "mlir/Dialect/Vector/IR/VectorOps.h"
 #include "mlir/Dialect/Vector/Interfaces/MaskableOpInterface.h"
 #include "mlir/IR/AffineExpr.h"
+#include "mlir/IR/Builders.h"
+#include "mlir/IR/BuiltinTypeInterfaces.h"
+#include "mlir/IR/BuiltinTypes.h"
+#include "mlir/IR/OpDefinition.h"
 #include "mlir/IR/PatternMatch.h"
 #include "mlir/Support/LLVM.h"
 #include "mlir/Transforms/RegionUtils.h"
@@ -30,7 +36,9 @@
 #include "llvm/ADT/Sequence.h"
 #include "llvm/ADT/SmallVector.h"
 #include "llvm/ADT/TypeSwitch.h"
+#include "llvm/ADT/iterator_range.h"
 #include "llvm/Support/Debug.h"
+#include "llvm/Support/MathExtras.h"
 #include "llvm/Support/raw_ostream.h"
 #include <optional>
 #include <type_traits>
@@ -1393,6 +1401,164 @@ vectorizeAsLinalgGeneric(RewriterBase &rewriter, VectorizationState &state,
   return success();
 }
 
+/// Given a tensor::PackOp, return the `dest` shape before any packing
+/// permutations.
+static SmallVector<int64_t> getTiledPackShape(tensor::PackOp packOp,
+                                              ArrayRef<int64_t> destShape) {
+  return applyPermutation(destShape,
+                          tensor::getPackInverseDestPermutation(packOp));
+}
+
+/// Create a TransferReadOp from `source` with static shape `readShape`. If the
+/// vector type for the read is not the same as the type of `source`, then a
+/// mask is created on the read.
+static Value createReadOrMaskedRead(OpBuilder &builder, Location loc,
+                                    Value source, ArrayRef<int64_t> readShape,
+                                    Value padValue) {
+  assert(llvm::none_of(readShape,
+                       [](int64_t s) { return s == ShapedType::kDynamic; }));
+  auto sourceShape = dyn_cast<ShapedType>(source.getType()).getShape();
+  assert(sourceShape.size() == readShape.size());
+  auto maskType = VectorType::get(readShape, builder.getI1Type());
+  auto vectorType = VectorType::get(readShape, padValue.getType());
+  int64_t readRank = readShape.size();
+  auto zero = builder.create<arith::ConstantIndexOp>(loc, 0);
+  auto transferReadOp = builder.create<vector::TransferReadOp>(
+      loc,
+      /*vectorType=*/vectorType,
+      /*source=*/source,
+      /*indices=*/SmallVector<Value>(readRank, zero),
+      /*padding=*/padValue,
+      /*inBounds=*/SmallVector<bool>(readRank, true));
+  if (llvm::equal(readShape, sourceShape)) {
+    return transferReadOp;
+  }
+  SmallVector<OpFoldResult> mixedSourceDims =
+      tensor::getMixedSizes(builder, loc, source);
+  Value mask =
+      builder.create<vector::CreateMaskOp>(loc, maskType, mixedSourceDims);
+  return mlir::vector::maskOperation(builder, transferReadOp, mask)
+      ->getResult(0);
+}
+
+/// Given an input, the mixed destSizes, and the vector sizes for vectorization,
+/// create an empty destination tensor and create a TransferWriteOp from the
+/// input to the empty tensor. If the destination shape is not the same as the
+/// inputVectorSizes for the first rank(inputVectorSizes) dims, then create a
+/// mask for the write.
+static Operation *createWriteOrMaskedWrite(OpBuilder &builder, Location loc,
+                                           Value input,
+                                           SmallVector<OpFoldResult> destSizes,
+                                           ArrayRef<int64_t> inputVectorSizes) {
+  auto inputType = cast<VectorType>(input.getType());
+  Value dest = builder.create<tensor::EmptyOp>(loc, destSizes,
+                                               inputType.getElementType());
+  int64_t rank = cast<ShapedType>(dest.getType()).getRank();
+  auto zero = builder.create<arith::ConstantIndexOp>(loc, 0);
+  Operation *write = builder.create<vector::TransferWriteOp>(
+      loc,
+      /*vector=*/input,
+      /*source=*/dest,
+      /*indices=*/SmallVector<Value>(rank, zero),
+      /*inBounds=*/SmallVector<bool>(rank, true));
+  auto destShape = cast<ShapedType>(dest.getType()).getShape();
+  assert(llvm::none_of(
+             destShape.drop_front(inputVectorSizes.size()),
+             [](int64_t size) { return size == ShapedType::kDynamic; }) &&
+         "Only dims aligned with inputVectorSizes may be dynamic");
+  bool needMaskForWrite = !llvm::equal(
+      inputVectorSizes, destShape.take_front(inputVectorSizes.size()));
+  if (needMaskForWrite) {
+    SmallVector<int64_t> writeMaskShape;
+    writeMaskShape.append(inputVectorSizes.begin(), inputVectorSizes.end());
+    writeMaskShape.append(destShape.begin() + inputVectorSizes.size(),
+                          destShape.end());
+    auto writeMaskType = VectorType::get(writeMaskShape, builder.getI1Type());
+    Value maskForWrite =
+        builder.create<vector::CreateMaskOp>(loc, writeMaskType, destSizes);
+    write = mlir::vector::maskOperation(builder, write, maskForWrite);
+  }
+  return write;
+}
+
+/// Vectorize tensor::PackOp with (1) static innerTiles and (2) constant
+/// padding value into:
+/// masked_transfer_read->shape_cast->transpose->transfer_write_in_bounds
+/// As in the following example:
+///
+/// %pack = tensor.pack %src inner_dims_pos = [2, 1] inner_tiles = [16, 2]
+///     into %dst : tensor<32x8x16xf32> -> tensor<32x4x1x16x2xf32>
+///
+/// This pack would be vectorized to:
+///
+/// %load = vector.mask %mask {
+///     vector.transfer_read %arg0[%c0, %c0, %c0], %cst
+///         {in_bounds = [true, true, true]} :
+///         tensor<32x7x16xf32>, vector<32x8x16xf32>
+/// } : vector<32x8x16xi1> -> vector<32x8x16xf32>
+/// %shape_cast = vector.shape_cast %load : vector<32x8x16xf32>
+///                                         to vector<32x4x2x1x16xf32>
+/// %transpose = vector.transpose %shape_cast, [0, 1, 3, 4, 2]
+///     : vector<32x4x2x1x16xf32> to vector<32x4x1x16x2xf32>
+/// %write = vector.transfer_write %transpose,
+///     %empty[%c0_0, %c0_0, %c0_0, %c0_0, %c0_0]
+///     {in_bounds = [true, true, true, true, true]}
+///     : vector<32x4x1x16x2xf32>, tensor<32x4x1x16x2xf32>
+static LogicalResult
+vectorizeAsTensorPackOp(RewriterBase &rewriter, tensor::PackOp packOp,
+                        ArrayRef<int64_t> inputVectorSizes,
+                        SmallVectorImpl<Value> &newResults) {
+  OpBuilder::InsertionGuard g(rewriter);
+  rewriter.setInsertionPoint(packOp);
+
+  Location loc = packOp.getLoc();
+  auto padValue = packOp.getPaddingValue();
+  if (!padValue) {
+    padValue = rewriter.create<arith::ConstantOp>(
+        loc, rewriter.getZeroAttr(packOp.getSourceType().getElementType()));
+  }
+  ReifiedRankedShapedTypeDims reifiedReturnShapes;
+  LogicalResult status =
+      cast<ReifyRankedShapedTypeOpInterface>(packOp.getOperation())
+          .reifyResultShapes(rewriter, reifiedReturnShapes);
+  (void)status; // prevent unused variable warning on non-assert builds.
+  assert(succeeded(status) && "failed to reify result shapes");
+
+  // Create masked TransferReadOp.
+  SmallVector<int64_t> inputShape(inputVectorSizes);
+  auto innerTiles = packOp.getStaticInnerTiles();
+  auto innerDimsPos = packOp.getInnerDimsPos();
+  auto outerDimsPerm = packOp.getOuterDimsPerm();
+  if (!outerDimsPerm.empty())
+    applyPermutationToVector(inputShape,
+                             invertPermutationVector(outerDimsPerm));
+  for (auto [idx, size] : enumerate(innerTiles))
+    inputShape[innerDimsPos[idx]] *= size;
+  auto maskedRead = createReadOrMaskedRead(rewriter, loc, packOp.getSource(),
+                                           inputShape, padValue);
+
+  // Create ShapeCastOp.
+  SmallVector<int64_t> destShape(inputVectorSizes);
+  destShape.append(innerTiles.begin(), innerTiles.end());
+  auto tiledPackType = VectorType::get(getTiledPackShape(packOp, destShape),
+                                       packOp.getDestType().getElementType());
+  auto shapeCastOp =
+      rewriter.create<vector::ShapeCastOp>(loc, tiledPackType, maskedRead);
+
+  // Create TransposeOp.
+  auto destPermutation =
+      invertPermutationVector(tensor::getPackInverseDestPermutation(packOp));
+  auto transposeOp = rewriter.create<vector::TransposeOp>(
+      loc, shapeCastOp.getResult(), destPermutation);
+
+  // Create TransferWriteOp.
+  Operation *write =
+      createWriteOrMaskedWrite(rewriter, loc, transposeOp.getResult(),
+                               reifiedReturnShapes[0], inputVectorSizes);
+  newResults.push_back(write->getResult(0));
+  return success();
+}
+
 /// Vectorize a `padOp` with (1) static result type, (2) constant padding value
 /// and (3) all-zero lowPad to
 ///   `transfer_write_in_bounds(transfer_read_masked(pad_source, pad_value))`.
@@ -1402,9 +1568,6 @@ vectorizeAsTensorPadOp(RewriterBase &rewriter, tensor::PadOp padOp,
                        SmallVectorImpl<Value> &newResults) {
   auto padValue = padOp.getConstantPaddingValue();
   Location loc = padOp.getLoc();
-  int64_t rank = inputVectorSizes.size();
-  auto maskType = VectorType::get(inputVectorSizes, rewriter.getI1Type());
-  auto vectorType = VectorType::get(inputVectorSizes, padValue.getType());
 
   // transfer_write_in_bounds(transfer_read_masked(pad_source, pad_value))
   OpBuilder::InsertionGuard g(rewriter);
@@ -1416,36 +1579,10 @@ vectorizeAsTensorPadOp(RewriterBase &rewriter, tensor::PadOp padOp,
           .reifyResultShapes(rewriter, reifiedReturnShapes);
   (void)status; // prevent unused variable warning on non-assert builds
   assert(succeeded(status) && "failed to reify result shapes");
-  auto emptyOp = rewriter.create<tensor::EmptyOp>(loc, reifiedReturnShapes[0],
-                                                  padValue.getType());
-  SmallVector<OpFoldResult> mixedSourceDims =
-      tensor::getMixedSizes(rewriter, loc, padOp.getSource());
-  Value mask =
-      rewriter.create<vector::CreateMaskOp>(loc, maskType, mixedSourceDims);
-  auto zero = rewriter.create<arith::ConstantIndexOp>(loc, 0);
-  auto transferReadOp = rewriter.create<vector::TransferReadOp>(
-      loc,
-      /*vectorType=*/vectorType,
-      /*source=*/padOp.getSource(),
-      /*indices=*/SmallVector<Value>(rank, zero),
-      /*padding=*/padValue,
-      /*inBounds=*/SmallVector<bool>(rank, true));
-  auto maskedOp = cast<vector::MaskOp>(
-      mlir::vector::maskOperation(rewriter, transferReadOp, mask));
-  Operation *write = rewriter.create<vector::TransferWriteOp>(
-      loc,
-      /*vector=*/maskedOp->getResult(0),
-      /*source=*/emptyOp,
-      /*indices=*/SmallVector<Value>(rank, zero),
-      /*inBounds=*/SmallVector<bool>(rank, true));
-  bool needMaskForWrite = llvm::any_of(
-      llvm::zip_equal(inputVectorSizes, padOp.getResultType().getShape()),
-      [](auto it) { return std::get<0>(it) != std::get<1>(it); });
-  if (needMaskForWrite) {
-    Value maskForWrite = rewriter.create<vector::CreateMaskOp>(
-        loc, maskType, reifiedReturnShapes[0]);
-    write = mlir::vector::maskOperation(rewriter, write, maskForWrite);
-  }
+  auto maskedRead = createReadOrMaskedRead(rewriter, loc, padOp.getSource(),
+                                           inputVectorSizes, padValue);
+  Operation *write = createWriteOrMaskedWrite(
+      rewriter, loc, maskedRead, reifiedReturnShapes[0], inputVectorSizes);
   newResults.push_back(write->getResult(0));
   return success();
 }
@@ -1585,6 +1722,32 @@ vectorizeLinalgOpPrecondition(LinalgOp linalgOp,
   return success();
 }
 
+/// TODO: Use a matcher to check for a constant padding value.
+static LogicalResult
+vectorizePackOpPrecondition(tensor::PackOp packOp,
+                            ArrayRef<int64_t> inputVectorSizes) {
+  auto padValue = packOp.getPaddingValue();
+  if (padValue && !padValue.getDefiningOp<arith::ConstantOp>()) {
+    LDBG("pad value is not constant: " << packOp << "\n");
+    return failure();
+  }
+
+  ArrayRef<int64_t> resultTensorShape = packOp.getDestType().getShape();
+  if (failed(isValidMaskedInputVector(
+          resultTensorShape.take_front(packOp.getSourceRank()),
+          inputVectorSizes)))
+    return failure();
+
+  if (llvm::any_of(packOp.getInnerTiles(), [](OpFoldResult v) {
+        return !getConstantIntValue(v).has_value();
+      })) {
+    LDBG("inner_tiles must be constant: " << packOp << "\n");
+    return failure();
+  }
+
+  return success();
+}
+
 static LogicalResult
 vectorizePadOpPrecondition(tensor::PadOp padOp,
                            ArrayRef<int64_t> inputVectorSizes) {
@@ -1644,6 +1807,9 @@ LogicalResult mlir::linalg::vectorizeOpPrecondition(
       .Case<tensor::PadOp>([&](auto padOp) {
         return vectorizePadOpPrecondition(padOp, inputVectorSizes);
       })
+      .Case<tensor::PackOp>([&](auto packOp) {
+        return vectorizePackOpPrecondition(packOp, inputVectorSizes);
+      })
       .Default([](auto) { return failure(); });
 }
 
@@ -1732,6 +1898,10 @@ LogicalResult mlir::linalg::vectorize(RewriterBase &rewriter, Operation *op,
             return vectorizeAsTensorPadOp(rewriter, padOp, inputVectorSizes,
                                           results);
           })
+          .Case<tensor::PackOp>([&](auto packOp) {
+            return vectorizeAsTensorPackOp(rewriter, packOp, inputVectorSizes,
+                                           results);
+          })
           .Default([](auto) { return failure(); });
 
   if (failed(vectorizeResult)) {

diff  --git a/mlir/lib/Dialect/Tensor/Utils/Utils.cpp b/mlir/lib/Dialect/Tensor/Utils/Utils.cpp
index 24cbceb3d1179..f20008a1ed2b2 100644
--- a/mlir/lib/Dialect/Tensor/Utils/Utils.cpp
+++ b/mlir/lib/Dialect/Tensor/Utils/Utils.cpp
@@ -73,6 +73,35 @@ mlir::tensor::computeTransposedType(RankedTensorType rankedTensorType,
   return transposedTensorType;
 }
 
+SmallVector<int64_t>
+mlir::tensor::getPackInverseDestPermutation(PackOp packOp) {
+  // The permutation can be obtained from two permutations:
+  //   a) Compute the permutation vector to move the last `numPackedDims` into
+  //      the `innerPosDims` of a shape of rank `packedRank`.
+  //   b) Compute the permutation vector to move outer dims if the pack op
+  //      has outer_dims_perm.
+  // Apply (b) permutation on (a) permutation to get the final permutation.
+  int64_t numPackedDims = packOp.getInnerDimsPos().size();
+  int64_t packedRank = packOp.getDestType().getRank();
+  auto lastDims = llvm::to_vector(
+      llvm::seq<int64_t>(packedRank - numPackedDims, packedRank));
+  PackingMetadata packingMetadata = computePackingMetadata(
+      packOp.getDestType().getRank(), packOp.getInnerDimsPos());
+  SmallVector<int64_t> innerPositionsPerm = computePermutationVector(
+      packedRank, lastDims, packingMetadata.insertPositions);
+
+  SmallVector<int64_t> outerPos = packingMetadata.outerPositions;
+  ArrayRef<int64_t> outerPerm = packOp.getOuterDimsPerm();
+  if (!outerPerm.empty())
+    applyPermutationToVector(outerPos, outerPerm);
+  SmallVector<int64_t> outerPositionPerm = computePermutationVector(
+      packedRank, packingMetadata.outerPositions, outerPos);
+
+  SmallVector<int64_t> packInverseDestPermutation = innerPositionsPerm;
+  applyPermutationToVector(packInverseDestPermutation, outerPositionPerm);
+  return packInverseDestPermutation;
+}
+
 bool mlir::tensor::isCastLikeInsertSliceOp(InsertSliceOp op) {
   llvm::SmallBitVector droppedDims = op.getDroppedDims();
   int64_t srcDim = 0;

diff  --git a/mlir/test/Dialect/Linalg/vectorization.mlir b/mlir/test/Dialect/Linalg/vectorization.mlir
index d5fb0cbb9c723..5d1bef478ee98 100644
--- a/mlir/test/Dialect/Linalg/vectorization.mlir
+++ b/mlir/test/Dialect/Linalg/vectorization.mlir
@@ -426,16 +426,17 @@ func.func @test_masked_vectorize_pad(
 {
   //  CHECK-DAG: %[[c42:.*]] = arith.constant 4.243000e+01 : f32
   //  CHECK-DAG: %[[c0:.*]] = arith.constant 0 : index
-  //  CHECK-DAG: %[[empty:.*]] = tensor.empty() : tensor<2x4xf32>
+  //  CHECK-DAG: %[[c0_0:.*]] = arith.constant 0 : index
   //      CHECK: %[[d0:.*]] = tensor.dim {{.*}} : tensor<?x?xf32>
   //      CHECK: %[[d1:.*]] = tensor.dim {{.*}} : tensor<?x?xf32>
   //      CHECK: %[[mask:.*]] = vector.create_mask %[[d0]], %[[d1]] : vector<2x4xi1>
-  //  CHECK-DAG: %[[c0_2:.*]] = arith.constant 0 : index
   //      CHECK: %[[masked_read:.*]] = vector.mask %[[mask]] {
-  // CHECK-SAME:   vector.transfer_read %{{.*}}[%[[c0_2]], %[[c0_2]]], %[[c42]]
+  // CHECK-SAME:   vector.transfer_read %{{.*}}[%[[c0_0]], %[[c0_0]]], %[[c42]]
   // CHECK-SAME:   {in_bounds = [true, true]} : tensor<?x?xf32>, vector<2x4xf32>
   // CHECK-SAME: } : vector<2x4xi1> -> vector<2x4xf32>
-  //      CHECK: vector.transfer_write %[[masked_read]], %[[empty]][%[[c0_2]], %[[c0_2]]]
+  //  CHECK-DAG: %[[c0_1:.*]] = arith.constant 0 : index
+  //  CHECK-DAG: %[[empty:.*]] = tensor.empty() : tensor<2x4xf32>
+  //      CHECK: vector.transfer_write %[[masked_read]], %[[empty]][%[[c0_1]], %[[c0_1]]]
   // CHECK-SAME:   {in_bounds = [true, true]} : vector<2x4xf32>, tensor<2x4xf32>
   %cst = arith.constant 42.43 : f32
   %c0 = arith.constant 0 : index
@@ -467,18 +468,19 @@ func.func @test_masked_vectorize_dynamic_pad(
   //  CHECK-DAG: %[[c0:.*]] = arith.constant 0 : index
   //  CHECK-DAG: %[[res_d0:.+]] = affine.apply #[[MAP]]()
   //  CHECK-DAG: %[[res_d1:.+]] = affine.apply #[[MAP]]()
-  //  CHECK-DAG: %[[empty:.*]] = tensor.empty(%[[res_d0]], %[[res_d1]]) : tensor<?x?xf32>
+  //      CHECK: %[[c0_2:.*]] = arith.constant 0 : index
   //      CHECK: %[[d0:.*]] = tensor.dim {{.*}} : tensor<?x?xf32>
   //      CHECK: %[[d1:.*]] = tensor.dim {{.*}} : tensor<?x?xf32>
   //      CHECK: %[[mask:.*]] = vector.create_mask %[[d0]], %[[d1]] : vector<2x4xi1>
-  //  CHECK-DAG: %[[c0_2:.*]] = arith.constant 0 : index
   //      CHECK: %[[masked_read:.*]] = vector.mask %[[mask]] {
   // CHECK-SAME:   vector.transfer_read %{{.*}}[%[[c0_2]], %[[c0_2]]], %[[c42]]
   // CHECK-SAME:   {in_bounds = [true, true]} : tensor<?x?xf32>, vector<2x4xf32>
   // CHECK-SAME: } : vector<2x4xi1> -> vector<2x4xf32>
+  //  CHECK-DAG: %[[empty:.*]] = tensor.empty(%[[res_d0]], %[[res_d1]]) : tensor<?x?xf32>
+  //  CHECK-DAG: %[[c0_3:.*]] = arith.constant 0 : index
   //      CHECK: %[[mask_2:.*]] = vector.create_mask %[[res_d0]], %[[res_d1]] : vector<2x4xi1>
   //      CHECK: %[[masked_write:.*]] = vector.mask %[[mask_2]] {
-  // CHECK-SAME: vector.transfer_write %[[masked_read]], %[[empty]][%[[c0_2]], %[[c0_2]]]
+  // CHECK-SAME: vector.transfer_write %[[masked_read]], %[[empty]][%[[c0_3]], %[[c0_3]]]
   // CHECK-SAME:   {in_bounds = [true, true]} : vector<2x4xf32>, tensor<?x?xf32>
   //      CHECK: return %[[masked_write]] : tensor<?x?xf32>
   %cst = arith.constant 42.43 : f32
@@ -501,6 +503,106 @@ module attributes {transform.with_named_sequence} {
 
 // -----
 
+func.func @test_vectorize_pack(%arg0: tensor<32x8x16xf32>, %arg1: tensor<4x1x32x16x2xf32>) -> tensor<4x1x32x16x2xf32> {
+  %pack = tensor.pack %arg0 outer_dims_perm = [1, 2, 0] inner_dims_pos = [2, 1] inner_tiles = [16, 2] into %arg1 : tensor<32x8x16xf32> -> tensor<4x1x32x16x2xf32>
+  return %pack : tensor<4x1x32x16x2xf32>
+}
+//  CHECK-DAG: %[[cst:.*]] = arith.constant 0.000000e+00 : f32
+//  CHECK-DAG: %[[c0:.*]] = arith.constant 0 : index
+//      CHECK: %[[read:.*]] = vector.transfer_read %{{.*}}[%[[c0]], %[[c0]], %[[c0]]], %[[cst]]
+// CHECK-SAME:    {in_bounds = [true, true, true]} : tensor<32x8x16xf32>, vector<32x8x16xf32>
+//      CHECK: %[[shape_cast:.*]] = vector.shape_cast %[[read]] : vector<32x8x16xf32> to vector<32x4x2x1x16xf32>
+//      CHECK: %[[transpose:.*]] = vector.transpose %[[shape_cast]], [1, 3, 0, 4, 2] : vector<32x4x2x1x16xf32> to vector<4x1x32x16x2xf32>
+//  CHECK-DAG: %[[c0_1:.*]] = arith.constant 0 : index
+//  CHECK-DAG: %[[empty:.*]] = tensor.empty() : tensor<4x1x32x16x2xf32>
+//      CHECK: %[[write:.*]] = vector.transfer_write %[[transpose]], %[[empty]][%[[c0_1]], %[[c0_1]], %[[c0_1]], %[[c0_1]], %[[c0_1]]]
+// CHECK-SAME:   {in_bounds = [true, true, true, true, true]} : vector<4x1x32x16x2xf32>, tensor<4x1x32x16x2xf32>
+//      CHECK: return %[[write]] : tensor<4x1x32x16x2xf32>
+
+module attributes {transform.with_named_sequence} {
+  transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.readonly}) {
+    %0 = transform.structured.match ops{["tensor.pack"]} in %arg0 : (!transform.any_op) -> !transform.any_op
+    transform.structured.vectorize %0 vector_sizes [4, 1, 32] : !transform.any_op
+    transform.yield 
+  }
+}
+
+// -----
+
+func.func @test_vectorize_padded_pack(%arg0: tensor<32x7x15xf32>, %arg1: tensor<32x4x1x16x2xf32>) -> tensor<32x4x1x16x2xf32> {
+  %pad = arith.constant 0.000000e+00 : f32
+  %pack = tensor.pack %arg0 padding_value(%pad : f32) inner_dims_pos = [2, 1] inner_tiles = [16, 2] into %arg1 : tensor<32x7x15xf32> -> tensor<32x4x1x16x2xf32>
+  return %pack : tensor<32x4x1x16x2xf32>
+}
+//  CHECK-DAG: %[[cst:.*]] = arith.constant 0.000000e+00 : f32
+//  CHECK-DAG: %[[c0:.*]] = arith.constant 0 : index
+//  CHECK-DAG: %[[c32:.*]] = arith.constant 32 : index
+//  CHECK-DAG: %[[c7:.*]] = arith.constant 7 : index
+//  CHECK-DAG: %[[c15:.*]] = arith.constant 15 : index
+//      CHECK: %[[mask:.*]] = vector.create_mask %[[c32]], %[[c7]], %[[c15]] : vector<32x8x16xi1>
+//      CHECK: %[[masked_read:.*]] = vector.mask %[[mask]] {
+// CHECK-SAME:   vector.transfer_read %{{.*}}[%[[c0]], %[[c0]], %[[c0]]], %[[cst]]
+// CHECK-SAME:   {in_bounds = [true, true, true]} : tensor<32x7x15xf32>, vector<32x8x16xf32>
+// CHECK-SAME: } : vector<32x8x16xi1> -> vector<32x8x16xf32>
+//      CHECK: %[[shape_cast:.*]] = vector.shape_cast %[[masked_read]] : vector<32x8x16xf32> to vector<32x4x2x1x16xf32>
+//      CHECK: %[[transpose:.*]] = vector.transpose %[[shape_cast]], [0, 1, 3, 4, 2] : vector<32x4x2x1x16xf32> to vector<32x4x1x16x2xf32>
+//  CHECK-DAG: %[[c0_1:.*]] = arith.constant 0 : index
+//  CHECK-DAG: %[[empty:.*]] = tensor.empty() : tensor<32x4x1x16x2xf32>
+//      CHECK: %[[write:.*]] = vector.transfer_write %[[transpose]], %[[empty]][%[[c0_1]], %[[c0_1]], %[[c0_1]], %[[c0_1]], %[[c0_1]]]
+// CHECK-SAME:   {in_bounds = [true, true, true, true, true]} : vector<32x4x1x16x2xf32>, tensor<32x4x1x16x2xf32>
+//      CHECK: return %[[write]] : tensor<32x4x1x16x2xf32>
+
+module attributes {transform.with_named_sequence} {
+  transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.readonly}) {
+    %0 = transform.structured.match ops{["tensor.pack"]} in %arg0 : (!transform.any_op) -> !transform.any_op
+    transform.structured.vectorize %0 vector_sizes [32, 4, 1] : !transform.any_op
+    transform.yield 
+  }
+}
+
+// -----
+
+func.func @test_vectorize_dynamic_pack(%arg0: tensor<?x?xf32>, %arg1: tensor<?x?x16x2xf32>) -> tensor<?x?x16x2xf32> {
+  %pack = tensor.pack %arg0 inner_dims_pos = [1, 0] inner_tiles = [16, 2] into %arg1 : tensor<?x?xf32> -> tensor<?x?x16x2xf32>
+  return %pack : tensor<?x?x16x2xf32>
+}
+//  CHECK-DAG: %[[cst:.*]] = arith.constant 0.000000e+00 : f32
+//  CHECK-DAG: %[[c0:.*]] = arith.constant 0 : index
+//  CHECK-DAG: %[[c1:.*]] = arith.constant 1 : index
+//  CHECK-DAG: %[[d0:.*]] = tensor.dim {{.*}} %[[c0]] : tensor<?x?x16x2xf32>
+//  CHECK-DAG: %[[d1:.*]] = tensor.dim {{.*}} %[[c1]] : tensor<?x?x16x2xf32>
+//  CHECK-DAG: %[[c0_1:.*]] = arith.constant 0 : index
+//  CHECK-DAG: %[[c0_0:.*]] = arith.constant 0 : index
+//  CHECK-DAG: %[[c1_0:.*]] = arith.constant 1 : index
+//  CHECK-DAG: %[[d0_0:.*]] = tensor.dim {{.*}} %[[c0_0]] : tensor<?x?xf32>
+//  CHECK-DAG: %[[d1_0:.*]] = tensor.dim {{.*}} %[[c1_0]] : tensor<?x?xf32>
+//      CHECK: %[[mask:.*]] = vector.create_mask %[[d0_0]], %[[d1_0]] : vector<8x16xi1>
+//      CHECK: %[[masked_read:.*]] = vector.mask %[[mask]] {
+// CHECK-SAME:   vector.transfer_read %{{.*}}[%[[c0_1]], %[[c0_1]]], %[[cst]]
+// CHECK-SAME:   {in_bounds = [true, true]} : tensor<?x?xf32>, vector<8x16xf32>
+// CHECK-SAME: } : vector<8x16xi1> -> vector<8x16xf32>
+//      CHECK: %[[shape_cast:.*]] = vector.shape_cast %[[masked_read]] : vector<8x16xf32> to vector<4x2x1x16xf32>
+//      CHECK: %[[transpose:.*]] = vector.transpose %[[shape_cast]], [0, 2, 3, 1] : vector<4x2x1x16xf32> to vector<4x1x16x2xf32>
+//  CHECK-DAG: %[[c0_2:.*]] = arith.constant 0 : index
+//  CHECK-DAG: %[[c16:.*]] = arith.constant 16 : index
+//  CHECK-DAG: %[[c2:.*]] = arith.constant 2 : index
+//  CHECK-DAG: %[[empty:.*]] = tensor.empty(%[[d0]], %[[d1]]) : tensor<?x?x16x2xf32>
+//      CHECK: %[[mask_0:.*]] = vector.create_mask %[[d0]], %[[d1]], %[[c16]], %[[c2]] : vector<4x1x16x2xi1>
+//      CHECK: %[[masked_write:.*]] = vector.mask %[[mask_0]] {
+// CHECK-SAME:   vector.transfer_write %[[transpose]], %[[empty]][%[[c0_2]], %[[c0_2]], %[[c0_2]], %[[c0_2]]]
+// CHECK-SAME:   {in_bounds = [true, true, true, true]} : vector<4x1x16x2xf32>, tensor<?x?x16x2xf32>
+//      CHECK: return %[[masked_write]] : tensor<?x?x16x2xf32>
+
+module attributes {transform.with_named_sequence} {
+  transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.readonly}) {
+    %0 = transform.structured.match ops{["tensor.pack"]} in %arg0 : (!transform.any_op) -> !transform.any_op
+    transform.structured.vectorize %0 vector_sizes [4, 1] : !transform.any_op
+    transform.yield 
+  }
+}
+
+// -----
+
 func.func @matmul(%A: memref<?x?xf32>, %B: memref<?x?xf32>, %C: memref<?x?xf32>) {
   linalg.matmul ins(%A, %B: memref<?x?xf32>, memref<?x?xf32>)
             outs(%C: memref<?x?xf32>)


        


More information about the Mlir-commits mailing list