[Mlir-commits] [mlir] [mlir][VectorOps] Add `vector.interleave` operation (PR #80315)
Diego Caballero
llvmlistbot at llvm.org
Mon Feb 5 10:10:12 PST 2024
================
@@ -1734,6 +1734,70 @@ struct VectorSplatNdOpLowering : public ConvertOpToLLVMPattern<SplatOp> {
}
};
+struct VectorInterleaveOpLowering
+ : public ConvertOpToLLVMPattern<vector::InterleaveOp> {
+ using ConvertOpToLLVMPattern::ConvertOpToLLVMPattern;
+
+ void initialize() {
+ // This pattern recursively unpacks one dimension at a time. The recursion
+ // bounded as the rank is strictly decreasing.
+ setHasBoundedRewriteRecursion();
+ }
+
+ LogicalResult
+ matchAndRewrite(vector::InterleaveOp interleaveOp, OpAdaptor adaptor,
+ ConversionPatternRewriter &rewriter) const override {
+ VectorType resultType = interleaveOp.getResultVectorType();
+
+ // If the result is rank 1, then this directly maps to LLVM.
+ if (resultType.getRank() == 1) {
+ if (resultType.isScalable()) {
+ rewriter.replaceOpWithNewOp<LLVM::experimental_vector_interleave2>(
+ interleaveOp, typeConverter->convertType(resultType),
+ adaptor.getLhs(), adaptor.getRhs());
+ return success();
+ }
+ // Lower fixed-size interleaves to a shufflevector. While the
+ // vector.interleave2 intrinsic supports fixed and scalable vectors, the
+ // langref still recommends fixed-vectors use shufflevector, see:
+ // https://llvm.org/docs/LangRef.html#id876.
+ int64_t resultVectorSize = resultType.getNumElements();
+ SmallVector<int32_t> interleaveShuffleMask;
+ interleaveShuffleMask.reserve(resultVectorSize);
+ for (int i = 0; i < resultVectorSize / 2; i++) {
+ interleaveShuffleMask.push_back(i);
+ interleaveShuffleMask.push_back((resultVectorSize / 2) + i);
+ }
+ rewriter.replaceOpWithNewOp<LLVM::ShuffleVectorOp>(
+ interleaveOp, adaptor.getLhs(), adaptor.getRhs(),
+ interleaveShuffleMask);
+ return success();
+ }
+
+ // It's not possible to unroll a scalable dimension.
+ if (resultType.getScalableDims().front())
----------------
dcaballe wrote:
It would help if we add a comment here saying that we are unrolling only the leading dimension because this pattern is applied recursively. Even better, we could unroll all the dimensions at once to avoid recursion and applying partial unrolling when the rewrite may eventually fail. We could separate the base case in one pattern and the unrolling one in another pattern if that makes it clearer. We follow that approach often.
https://github.com/llvm/llvm-project/pull/80315
More information about the Mlir-commits
mailing list