[Mlir-commits] [mlir] [mlir] Add direct vectorization lowering for `tensor.pack` ops (PR #78660)
Han-Chung Wang
llvmlistbot at llvm.org
Sun Feb 4 21:45:08 PST 2024
================
@@ -1393,6 +1401,169 @@ vectorizeAsLinalgGeneric(RewriterBase &rewriter, VectorizationState &state,
return success();
}
+/// Given a tensor::PackOp, return the `dest` shape before any packing
+/// permutations.
+static SmallVector<int64_t> getTiledPackShape(tensor::PackOp packOp,
+ ArrayRef<int64_t> destShape) {
+ return applyPermutation(destShape,
+ tensor::getPackInverseDestPermutation(packOp));
+}
+
+/// Create a TransferReadOp from `source` with static shape `readShape`. If the
+/// vector type for the read is not the same as the type of `source`, then a
+/// mask is created on the read.
+static Value createReadOrMaskedRead(OpBuilder &builder, Location loc,
+ Value source, ArrayRef<int64_t> readShape,
+ Value padValue) {
+ assert(llvm::none_of(readShape,
+ [](int64_t s) { return s == ShapedType::kDynamic; }));
+ auto maskType = VectorType::get(readShape, builder.getI1Type());
+ auto vectorType = VectorType::get(readShape, padValue.getType());
+ int64_t readRank = readShape.size();
+ auto zero = builder.create<arith::ConstantIndexOp>(loc, 0);
+ auto transferReadOp = builder.create<vector::TransferReadOp>(
+ loc,
+ /*vectorType=*/vectorType,
+ /*source=*/source,
+ /*indices=*/SmallVector<Value>(readRank, zero),
+ /*padding=*/padValue,
+ /*inBounds=*/SmallVector<bool>(readRank, true));
+ auto sourceShape = llvm::dyn_cast<ShapedType>(source.getType()).getShape();
+ if (sourceShape.size() == readShape.size() &&
+ llvm::all_of(llvm::zip_equal(readShape, sourceShape), [](auto it) {
+ return std::get<0>(it) != ShapedType::kDynamic &&
+ std::get<0>(it) == std::get<1>(it);
+ })) {
+ return transferReadOp;
+ }
+ SmallVector<OpFoldResult> mixedSourceDims =
+ tensor::getMixedSizes(builder, loc, source);
+ Value mask =
+ builder.create<vector::CreateMaskOp>(loc, maskType, mixedSourceDims);
+ return mlir::vector::maskOperation(builder, transferReadOp, mask)
+ ->getResult(0);
+}
+
+/// Given an input, the mixed destSizes, and the vector sizes for vectorization,
+/// create an empty destination tensor and create a TransferWriteOp from the
+/// input to the empty tensor. If the destination shape is not the same as the
+/// inputVectorSizes for the first rank(inputVectorSizes) dims, then create a
+/// mask for the write.
+static Operation *createWriteOrMaskedWrite(OpBuilder &builder, Location loc,
+ Value input,
+ SmallVector<OpFoldResult> destSizes,
+ ArrayRef<int64_t> inputVectorSizes) {
+ auto inputType = cast<VectorType>(input.getType());
+ Value dest = builder.create<tensor::EmptyOp>(loc, destSizes,
+ inputType.getElementType());
+ int64_t rank = cast<ShapedType>(dest.getType()).getRank();
+ auto zero = builder.create<arith::ConstantIndexOp>(loc, 0);
+ Operation *write = builder.create<vector::TransferWriteOp>(
+ loc,
+ /*vector=*/input,
+ /*source=*/dest,
+ /*indices=*/SmallVector<Value>(rank, zero),
+ /*inBounds=*/SmallVector<bool>(rank, true));
+ auto destShape = cast<ShapedType>(dest.getType()).getShape();
+ assert(llvm::none_of(
+ destShape.drop_front(inputVectorSizes.size()),
+ [](int64_t size) { return size == ShapedType::kDynamic; }) &&
+ "Only dims aligned with inputVectorSizes may be dynamic");
+ bool needMaskForWrite = llvm::any_of(
+ llvm::zip_equal(inputVectorSizes,
+ destShape.take_front(inputVectorSizes.size())),
+ [](auto it) { return std::get<0>(it) != std::get<1>(it); });
+ if (needMaskForWrite) {
+ SmallVector<int64_t> writeMaskShape;
+ writeMaskShape.append(inputVectorSizes.begin(), inputVectorSizes.end());
+ writeMaskShape.append(destShape.begin() + inputVectorSizes.size(),
+ destShape.end());
+ auto writeMaskType = VectorType::get(writeMaskShape, builder.getI1Type());
+ Value maskForWrite =
+ builder.create<vector::CreateMaskOp>(loc, writeMaskType, destSizes);
+ write = mlir::vector::maskOperation(builder, write, maskForWrite);
+ }
+ return write;
+}
+
+/// Vectorize tensor::PackOp with (1) static innerTiles and (2) constant
+/// padding value into:
+/// masked_transfer_read->shape_cast->transpose->transfer_write_in_bounds
+/// As in the following example:
+/// ```mlir
+/// %pack = tensor.pack %src inner_dims_pos = [2, 1] inner_tiles = [16, 2]
+/// into %dst : tensor<32x8x16xf32> -> tensor<32x4x1x16x2xf32>
+/// ```
+/// This pack would be vectorized to:
+/// ```mlir
+/// %load = vector.mask %mask {
+/// vector.transfer_read %arg0[%c0, %c0, %c0], %cst
+/// {in_bounds = [true, true, true]} :
+/// tensor<32x7x16xf32>, vector<32x8x16xf32>
+/// } : vector<32x8x16xi1> -> vector<32x8x16xf32>
+/// %shape_cast = vector.shape_cast %load : vector<32x8x16xf32>
+/// to vector<32x4x2x1x16xf32>
+/// %transpose = vector.transpose %shape_cast, [0, 1, 3, 4, 2]
+/// : vector<32x4x2x1x16xf32> to vector<32x4x1x16x2xf32>
+/// %write = vector.transfer_write %transpose,
+/// %empty[%c0_0, %c0_0, %c0_0, %c0_0, %c0_0]
+/// {in_bounds = [true, true, true, true, true]}
+/// : vector<32x4x1x16x2xf32>, tensor<32x4x1x16x2xf32>
----------------
hanhanW wrote:
[optional] I think adding a blank line before and after the IR is more readable. Also, maybe we should follow the convention, which does not have ``` in examples. E.g., https://github.com/llvm/llvm-project/blob/4b34558f43121df9b863ff2492f74fb2e65a5af1/mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h#L96-L114
So perhaps we can update the comment with below:
```suggestion
/// As in the following example:
///
/// %pack = tensor.pack %src inner_dims_pos = [2, 1] inner_tiles = [16, 2]
/// into %dst : tensor<32x8x16xf32> -> tensor<32x4x1x16x2xf32>
///
/// This pack would be vectorized to:
///
/// %load = vector.mask %mask {
/// vector.transfer_read %arg0[%c0, %c0, %c0], %cst
/// {in_bounds = [true, true, true]} :
/// tensor<32x7x16xf32>, vector<32x8x16xf32>
/// } : vector<32x8x16xi1> -> vector<32x8x16xf32>
/// %shape_cast = vector.shape_cast %load : vector<32x8x16xf32>
/// to vector<32x4x2x1x16xf32>
/// %transpose = vector.transpose %shape_cast, [0, 1, 3, 4, 2]
/// : vector<32x4x2x1x16xf32> to vector<32x4x1x16x2xf32>
/// %write = vector.transfer_write %transpose,
/// %empty[%c0_0, %c0_0, %c0_0, %c0_0, %c0_0]
/// {in_bounds = [true, true, true, true, true]}
/// : vector<32x4x1x16x2xf32>, tensor<32x4x1x16x2xf32>
```
https://github.com/llvm/llvm-project/pull/78660
More information about the Mlir-commits
mailing list