[Mlir-commits] [mlir] Rewrites for I2 to I8 signed and unsigned extension (PR #121298)
llvmlistbot at llvm.org
llvmlistbot at llvm.org
Sun Dec 29 07:51:06 PST 2024
llvmbot wrote:
<!--LLVM PR SUMMARY COMMENT-->
@llvm/pr-subscribers-mlir-vector
Author: None (ziereis)
<details>
<summary>Changes</summary>
Adds rewrites for i2 to i8 signed and unsigned extension, similar to the ones that already exist for i4 to i8 conversion.
I use this for i6 quantized models, and this gives me roughly a 2x speedup for an i6 4096x4096 dequantization-matmul on an AMD 5950x.
I didn't add the rewrite for i8 to i2 truncation because I currently don't use it, but if this is needed, I can add it as well.
---
Patch is 20.48 KiB, truncated to 20.00 KiB below, full version: https://github.com/llvm/llvm-project/pull/121298.diff
2 Files Affected:
- (modified) mlir/lib/Dialect/Vector/Transforms/VectorEmulateNarrowType.cpp (+131-6)
- (modified) mlir/test/Dialect/Vector/vector-rewrite-narrow-types.mlir (+145-4)
``````````diff
diff --git a/mlir/lib/Dialect/Vector/Transforms/VectorEmulateNarrowType.cpp b/mlir/lib/Dialect/Vector/Transforms/VectorEmulateNarrowType.cpp
index 181c394edc1d20..323da627de7bc2 100644
--- a/mlir/lib/Dialect/Vector/Transforms/VectorEmulateNarrowType.cpp
+++ b/mlir/lib/Dialect/Vector/Transforms/VectorEmulateNarrowType.cpp
@@ -1084,8 +1084,8 @@ static LogicalResult alignedConversionPrecondition(PatternRewriter &rewriter,
unsigned srcElemBitwidth = srcType.getElementTypeBitWidth();
unsigned dstElemBitwidth = dstType.getElementTypeBitWidth();
- // Only {s}i4 -> (size_of({{s}i/f}) >= 8) are supported for now.
- if (srcElemBitwidth != 4 || dstElemBitwidth < 8 ||
+ // Only {s}i4/i2 -> (size_of({{s}i/f}) >= 8) are supported for now.
+ if ((srcElemBitwidth != 4 && srcElemBitwidth != 2) || dstElemBitwidth < 8 ||
(dstElemBitwidth % srcElemBitwidth) != 0)
return rewriter.notifyMatchFailure(op, "Not a supported aligned case");
@@ -1233,6 +1233,117 @@ static Value rewriteI4ToI8UnsignedExt(PatternRewriter &rewriter, Location loc,
return rewriter.create<vector::InterleaveOp>(loc, low, high);
}
+/// Rewrite the i2 -> i8 signed extension into a sequence of shuffles and
+/// bitwise ops that take advantage of high-level information to avoid leaving
+/// LLVM to scramble with peephole optimizations.
+static Value rewriteI2ToI8SignedExt(PatternRewriter &rewriter, Location loc,
+ Value srcValue) {
+ VectorType srcVecType = cast<VectorType>(srcValue.getType());
+ assert(srcVecType.getElementType().isSignlessInteger(2) &&
+ "Expected i2 type");
+
+ // 1. Generate a bitcast vector<Xxi2> -> vector<X/2xi8>.
+ SmallVector<int64_t> i8VecShape = llvm::to_vector(srcVecType.getShape());
+ constexpr int64_t i2Toi8BitwidthFactor = 4;
+ i8VecShape.back() = i8VecShape.back() / i2Toi8BitwidthFactor;
+ auto i8VecType = VectorType::get(i8VecShape, rewriter.getI8Type());
+ Value i8Vector = rewriter.create<vector::BitCastOp>(loc, i8VecType, srcValue);
+
+ // Element 0 (bits 0-1)
+ constexpr int8_t shiftConst6 = 6;
+ auto shiftAttr6 = DenseElementsAttr::get(i8VecType, shiftConst6);
+ auto shiftValues6 = rewriter.create<arith::ConstantOp>(loc, shiftAttr6);
+ Value shl0 = rewriter.create<arith::ShLIOp>(loc, i8Vector, shiftValues6);
+ Value elem0 = rewriter.create<arith::ShRSIOp>(loc, shl0, shiftValues6);
+
+ // Element 1 (bits 2-3)
+ constexpr int8_t shiftConst4 = 4;
+ auto shiftAttr4 = DenseElementsAttr::get(i8VecType, shiftConst4);
+ auto shiftValues4 = rewriter.create<arith::ConstantOp>(loc, shiftAttr4);
+ Value shl1 = rewriter.create<arith::ShLIOp>(loc, i8Vector, shiftValues4);
+ Value elem1 = rewriter.create<arith::ShRSIOp>(loc, shl1, shiftValues6);
+
+ // Element 2 (bits 4-5)
+ constexpr int8_t shiftConst2 = 2;
+ auto shiftAttr2 = DenseElementsAttr::get(i8VecType, shiftConst2);
+ auto shiftValues2 = rewriter.create<arith::ConstantOp>(loc, shiftAttr2);
+ Value shl2 = rewriter.create<arith::ShLIOp>(loc, i8Vector, shiftValues2);
+ Value elem2 = rewriter.create<arith::ShRSIOp>(loc, shl2, shiftValues6);
+
+ // Element 3 (bits 6-7)
+ Value elem3 = rewriter.create<arith::ShRSIOp>(loc, i8Vector, shiftValues6);
+
+ // interleave all 4 elements by first interleaving even elements and then odd
+ // elem0 = [0,0,0,0]
+ // elem1 = [1,1,1,1]
+ // elem2 = [2,2,2,2]
+ // elem3 = [3,3,3,3]
+ // 02 = [0,2,0,2]
+ // 13 = [1,3,1,3]
+ // 0213 = [0,1,2,3]
+ Value interleave02 = rewriter.create<vector::InterleaveOp>(loc, elem0, elem2);
+ Value interleave13 = rewriter.create<vector::InterleaveOp>(loc, elem1, elem3);
+ return rewriter.create<vector::InterleaveOp>(loc, interleave02, interleave13);
+}
+
+/// Rewrite the i2 -> i8 unsigned extension into a sequence of shuffles and
+/// bitwise ops that take advantage of high-level information to avoid leaving
+/// LLVM to scramble with peephole optimizations.
+static Value rewriteI2ToI8UnsignedExt(PatternRewriter &rewriter, Location loc,
+ Value srcValue) {
+ VectorType srcVecType = cast<VectorType>(srcValue.getType());
+ assert(srcVecType.getElementType().isSignlessInteger(2) &&
+ "Expected i2 type");
+
+ // 1. Generate a bitcast vector<Xxi2> -> vector<X/2xi8>.
+ SmallVector<int64_t> i8VecShape = llvm::to_vector(srcVecType.getShape());
+ constexpr int64_t i2Toi8BitwidthFactor = 4;
+ i8VecShape.back() = i8VecShape.back() / i2Toi8BitwidthFactor;
+ auto i8VecType = VectorType::get(i8VecShape, rewriter.getI8Type());
+ Value i8Vector = rewriter.create<vector::BitCastOp>(loc, i8VecType, srcValue);
+
+ // 2. Extract each i2 element using shifts and masks
+ constexpr uint8_t mask = 3; // Mask for 2 bits: [0000 0011]
+ auto maskAttr = DenseElementsAttr::get(i8VecType, mask);
+ auto maskValues = rewriter.create<arith::ConstantOp>(loc, maskAttr);
+
+ // Element 0 (bits 0-1)
+ Value elem0 = rewriter.create<arith::AndIOp>(loc, i8Vector, maskValues);
+
+ // Element 1 (bits 2-3)
+ constexpr int8_t shift1 = 2;
+ auto shiftAttr1 = DenseElementsAttr::get(i8VecType, shift1);
+ auto shiftValues1 = rewriter.create<arith::ConstantOp>(loc, shiftAttr1);
+ Value shifted1 = rewriter.create<arith::ShRUIOp>(loc, i8Vector, shiftValues1);
+ Value elem1 = rewriter.create<arith::AndIOp>(loc, shifted1, maskValues);
+
+ // Element 2 (bits 4-5)
+ constexpr int8_t shift2 = 4;
+ auto shiftAttr2 = DenseElementsAttr::get(i8VecType, shift2);
+ auto shiftValues2 = rewriter.create<arith::ConstantOp>(loc, shiftAttr2);
+ Value shifted2 = rewriter.create<arith::ShRUIOp>(loc, i8Vector, shiftValues2);
+ Value elem2 = rewriter.create<arith::AndIOp>(loc, shifted2, maskValues);
+
+ // Element 3 (bits 6-7)
+ constexpr int8_t shift3 = 6;
+ auto shiftAttr3 = DenseElementsAttr::get(i8VecType, shift3);
+ auto shiftValues3 = rewriter.create<arith::ConstantOp>(loc, shiftAttr3);
+ Value shifted3 = rewriter.create<arith::ShRUIOp>(loc, i8Vector, shiftValues3);
+ Value elem3 = rewriter.create<arith::AndIOp>(loc, shifted3, maskValues);
+
+ // interleave all 4 elements by first interleaving even elements and then odd
+ // elem0 = [0,0,0,0]
+ // elem1 = [1,1,1,1]
+ // elem2 = [2,2,2,2]
+ // elem3 = [3,3,3,3]
+ // 02 = [0,2,0,2]
+ // 13 = [1,3,1,3]
+ // 0213 = [0,1,2,3]
+ Value interleave02 = rewriter.create<vector::InterleaveOp>(loc, elem0, elem2);
+ Value interleave13 = rewriter.create<vector::InterleaveOp>(loc, elem1, elem3);
+ return rewriter.create<vector::InterleaveOp>(loc, interleave02, interleave13);
+}
+
/// Rewrite the i8 -> i4 truncation into a deinterleave and series of bitwise
/// ops that take advantage of high-level information to avoid leaving LLVM to
/// scramble with peephole optimizations.
@@ -1438,11 +1549,21 @@ struct RewriteAlignedSubByteIntExt : OpRewritePattern<ConversionOpType> {
// Perform the rewrite.
Value subByteExt;
if (isSigned) {
- subByteExt =
- rewriteI4ToI8SignedExt(rewriter, conversionOp.getLoc(), srcValue);
+ if (srcVecType.getElementType().getIntOrFloatBitWidth() == 2)
+ subByteExt =
+ rewriteI2ToI8SignedExt(rewriter, conversionOp.getLoc(), srcValue);
+ else {
+ subByteExt =
+ rewriteI4ToI8SignedExt(rewriter, conversionOp.getLoc(), srcValue);
+ }
} else {
- subByteExt =
- rewriteI4ToI8UnsignedExt(rewriter, conversionOp.getLoc(), srcValue);
+ if (srcVecType.getElementType().getIntOrFloatBitWidth() == 2) {
+ subByteExt =
+ rewriteI2ToI8UnsignedExt(rewriter, conversionOp.getLoc(), srcValue);
+ } else {
+ subByteExt =
+ rewriteI4ToI8UnsignedExt(rewriter, conversionOp.getLoc(), srcValue);
+ }
}
// Finalize the rewrite.
@@ -1489,6 +1610,10 @@ struct RewriteAlignedSubByteIntTrunc : OpRewritePattern<arith::TruncIOp> {
truncOp)))
return failure();
+ // not supported currently.
+ if (dstVecType.getElementType().getIntOrFloatBitWidth() == 2)
+ return failure();
+
// Create a new iX -> i8 truncation op.
Location loc = truncOp.getLoc();
auto i8VecType = srcVecType.cloneWith(std::nullopt, rewriter.getI8Type());
diff --git a/mlir/test/Dialect/Vector/vector-rewrite-narrow-types.mlir b/mlir/test/Dialect/Vector/vector-rewrite-narrow-types.mlir
index 210025e30d7db5..0b469066f290c2 100644
--- a/mlir/test/Dialect/Vector/vector-rewrite-narrow-types.mlir
+++ b/mlir/test/Dialect/Vector/vector-rewrite-narrow-types.mlir
@@ -220,8 +220,8 @@ func.func @aligned_extsi_i4_to_i32(%a: vector<8xi4>) -> vector<8xi32> {
return %0 : vector<8xi32>
}
-// CHECK-LABEL: func.func @aligned_extsi_2d(
-func.func @aligned_extsi_2d(%a: vector<8x32xi4>) -> vector<8x32xi32> {
+// CHECK-LABEL: func.func @aligned_extsi_i4_2d(
+func.func @aligned_extsi_i4_2d(%a: vector<8x32xi4>) -> vector<8x32xi32> {
// CHECK-SAME: %[[IN:.*]]: vector<8x32xi4>) -> vector<8x32xi32> {
// CHECK: %[[I4_BITS:.*]] = arith.constant dense<4> : vector<8x16xi8>
// CHECK: %[[BITCAST:.*]] = vector.bitcast %[[IN]] : vector<8x32xi4> to vector<8x16xi8>
@@ -234,6 +234,72 @@ func.func @aligned_extsi_2d(%a: vector<8x32xi4>) -> vector<8x32xi32> {
return %0 : vector<8x32xi32>
}
+// CHECK-LABEL: func.func @aligned_extsi_i2_to_i8(
+func.func @aligned_extsi_i2_to_i8(%a: vector<8xi2>) -> vector<8xi8> {
+// CHECK-SAME: %[[IN:.*]]: vector<8xi2>) -> vector<8xi8> {
+// CHECK: %[[CST_2:.*]] = arith.constant dense<2> : vector<2xi8>
+// CHECK: %[[CST_4:.*]] = arith.constant dense<4> : vector<2xi8>
+// CHECK: %[[CST_6:.*]] = arith.constant dense<6> : vector<2xi8>
+// CHECK: %[[BITCAST:.*]] = vector.bitcast %[[IN]] : vector<8xi2> to vector<2xi8>
+// CHECK: %[[SHL_6:.*]] = arith.shli %[[BITCAST]], %[[CST_6]] : vector<2xi8>
+// CHECK: %[[ELEM0:.*]] = arith.shrsi %[[SHL_6]], %[[CST_6]] : vector<2xi8>
+// CHECK: %[[SHL_4:.*]] = arith.shli %[[BITCAST]], %[[CST_4]] : vector<2xi8>
+// CHECK: %[[ELEM1:.*]] = arith.shrsi %[[SHL_4]], %[[CST_6]] : vector<2xi8>
+// CHECK: %[[SHL_2:.*]] = arith.shli %[[BITCAST]], %[[CST_2]] : vector<2xi8>
+// CHECK: %[[ELEM2:.*]] = arith.shrsi %[[SHL_2]], %[[CST_6]] : vector<2xi8>
+// CHECK: %[[ELEM3:.*]] = arith.shrsi %[[BITCAST]], %[[CST_6]] : vector<2xi8>
+// CHECK: %[[INTERLEAVE02:.*]] = vector.interleave %[[ELEM0]], %[[ELEM2]] : vector<2xi8>
+// CHECK: %[[INTERLEAVE13:.*]] = vector.interleave %[[ELEM1]], %[[ELEM3]] : vector<2xi8>
+// CHECK: %[[RESULT:.*]] = vector.interleave %[[INTERLEAVE02]], %[[INTERLEAVE13]] : vector<4xi8>
+ %0 = arith.extsi %a : vector<8xi2> to vector<8xi8>
+ return %0 : vector<8xi8>
+}
+
+
+// CHECK-LABEL: func.func @aligned_extsi_i2_to_i32(
+func.func @aligned_extsi_i2_to_i32(%a: vector<8xi2>) -> vector<8xi32> {
+// CHECK-SAME: %[[IN:.*]]: vector<8xi2>) -> vector<8xi32> {
+// CHECK: %[[CST_2:.*]] = arith.constant dense<2> : vector<2xi8>
+// CHECK: %[[CST_4:.*]] = arith.constant dense<4> : vector<2xi8>
+// CHECK: %[[CST_6:.*]] = arith.constant dense<6> : vector<2xi8>
+// CHECK: %[[BITCAST:.*]] = vector.bitcast %[[IN]] : vector<8xi2> to vector<2xi8>
+// CHECK: %[[SHL_6:.*]] = arith.shli %[[BITCAST]], %[[CST_6]] : vector<2xi8>
+// CHECK: %[[ELEM0:.*]] = arith.shrsi %[[SHL_6]], %[[CST_6]] : vector<2xi8>
+// CHECK: %[[SHL_4:.*]] = arith.shli %[[BITCAST]], %[[CST_4]] : vector<2xi8>
+// CHECK: %[[ELEM1:.*]] = arith.shrsi %[[SHL_4]], %[[CST_6]] : vector<2xi8>
+// CHECK: %[[SHL_2:.*]] = arith.shli %[[BITCAST]], %[[CST_2]] : vector<2xi8>
+// CHECK: %[[ELEM2:.*]] = arith.shrsi %[[SHL_2]], %[[CST_6]] : vector<2xi8>
+// CHECK: %[[ELEM3:.*]] = arith.shrsi %[[BITCAST]], %[[CST_6]] : vector<2xi8>
+// CHECK: %[[INTERLEAVE02:.*]] = vector.interleave %[[ELEM0]], %[[ELEM2]] : vector<2xi8>
+// CHECK: %[[INTERLEAVE13:.*]] = vector.interleave %[[ELEM1]], %[[ELEM3]] : vector<2xi8>
+// CHECK: %[[INTERLEAVE:.*]] = vector.interleave %[[INTERLEAVE02]], %[[INTERLEAVE13]] : vector<4xi8>
+// CHECK: %[[RESULT:.*]] = arith.extsi %[[INTERLEAVE]] : vector<8xi8> to vector<8xi32>
+ %0 = arith.extsi %a : vector<8xi2> to vector<8xi32>
+ return %0 : vector<8xi32>
+}
+
+// CHECK-LABEL: func.func @aligned_extsi_i2_2d(
+func.func @aligned_extsi_i2_2d(%a: vector<8x32xi2>) -> vector<8x32xi32> {
+// CHECK-SAME: %[[IN:.*]]: vector<8x32xi2>) -> vector<8x32xi32> {
+// CHECK: %[[CST_2:.*]] = arith.constant dense<2> : vector<8x8xi8>
+// CHECK: %[[CST_4:.*]] = arith.constant dense<4> : vector<8x8xi8>
+// CHECK: %[[CST_6:.*]] = arith.constant dense<6> : vector<8x8xi8>
+// CHECK: %[[BITCAST:.*]] = vector.bitcast %[[IN]] : vector<8x32xi2> to vector<8x8xi8>
+// CHECK: %[[SHL_6:.*]] = arith.shli %[[BITCAST]], %[[CST_6]] : vector<8x8xi8>
+// CHECK: %[[ELEM0:.*]] = arith.shrsi %[[SHL_6]], %[[CST_6]] : vector<8x8xi8>
+// CHECK: %[[SHL_4:.*]] = arith.shli %[[BITCAST]], %[[CST_4]] : vector<8x8xi8>
+// CHECK: %[[ELEM1:.*]] = arith.shrsi %[[SHL_4]], %[[CST_6]] : vector<8x8xi8>
+// CHECK: %[[SHL_2:.*]] = arith.shli %[[BITCAST]], %[[CST_2]] : vector<8x8xi8>
+// CHECK: %[[ELEM2:.*]] = arith.shrsi %[[SHL_2]], %[[CST_6]] : vector<8x8xi8>
+// CHECK: %[[ELEM3:.*]] = arith.shrsi %[[BITCAST]], %[[CST_6]] : vector<8x8xi8>
+// CHECK: %[[INTERLEAVE02:.*]] = vector.interleave %[[ELEM0]], %[[ELEM2]] : vector<8x8xi8>
+// CHECK: %[[INTERLEAVE13:.*]] = vector.interleave %[[ELEM1]], %[[ELEM3]] : vector<8x8xi8>
+// CHECK: %[[INTERLEAVE:.*]] = vector.interleave %[[INTERLEAVE02]], %[[INTERLEAVE13]] : vector<8x16xi8>
+// CHECK: %[[RESULT:.*]] = arith.extsi %[[INTERLEAVE]] : vector<8x32xi8> to vector<8x32xi32>
+ %0 = arith.extsi %a : vector<8x32xi2> to vector<8x32xi32>
+ return %0 : vector<8x32xi32>
+}
+
// CHECK-LABEL: func.func @aligned_trunci_i8_to_i4(
func.func @aligned_trunci_i8_to_i4(%a: vector<8xi8>) -> vector<8xi4> {
@@ -292,6 +358,13 @@ func.func @aligned_trunci_nd(%a: vector<3x8x32xi32>) -> vector<3x8x32xi4> {
return %0 : vector<3x8x32xi4>
}
+func.func @aligned_trunci_i8_to_i2_no_match(%a: vector<8xi8>) -> vector<8xi2> {
+ // CHECK-NOT: arith.bitcast
+ // CHECK: arith.trunci %[[IN:.*]] : vector<8xi8> to vector<8xi2>
+ %0 = arith.trunci %a : vector<8xi8> to vector<8xi2>
+ return %0 : vector<8xi2>
+}
+
// CHECK-LABEL: func.func @aligned_extui_i4_to_i8(
func.func @aligned_extui_i4_to_i8(%a: vector<8xi4>) -> vector<8xi8> {
// CHECK-SAME: %[[IN:.*]]: vector<8xi4>) -> vector<8xi8> {
@@ -319,8 +392,8 @@ func.func @aligned_extui_i4_to_i32(%a: vector<8xi4>) -> vector<8xi32> {
return %0 : vector<8xi32>
}
-// CHECK-LABEL: func.func @aligned_extui_2d(
-func.func @aligned_extui_2d(%a: vector<8x32xi4>) -> vector<8x32xi32> {
+// CHECK-LABEL: func.func @aligned_extui_i4_2d(
+func.func @aligned_extui_i4_2d(%a: vector<8x32xi4>) -> vector<8x32xi32> {
// CHECK-SAME: %[[VAL_0:.*]]: vector<8x32xi4>) -> vector<8x32xi32> {
// CHECK: %[[I4_BITS:.*]] = arith.constant dense<4> : vector<8x16xi8>
// CHECK: %[[LOWBITS_MASK:.*]] = arith.constant dense<15> : vector<8x16xi8>
@@ -333,6 +406,74 @@ func.func @aligned_extui_2d(%a: vector<8x32xi4>) -> vector<8x32xi32> {
return %0 : vector<8x32xi32>
}
+// CHECK-LABEL: func.func @aligned_extui_i2_to_i8(
+func.func @aligned_extui_i2_to_i8(%a: vector<8xi2>) -> vector<8xi8> {
+// CHECK-SAME: %[[IN:.*]]: vector<8xi2>) -> vector<8xi8> {
+// CHECK: %[[CST_6:.*]] = arith.constant dense<6> : vector<2xi8>
+// CHECK: %[[CST_4:.*]] = arith.constant dense<4> : vector<2xi8>
+// CHECK: %[[CST_2:.*]] = arith.constant dense<2> : vector<2xi8>
+// CHECK: %[[LOWBITS_MASK:.*]] = arith.constant dense<3> : vector<2xi8>
+// CHECK: %[[BITCAST:.*]] = vector.bitcast %[[IN]] : vector<8xi2> to vector<2xi8>
+// CHECK: %[[ELEM0:.*]] = arith.andi %[[BITCAST]], %[[LOWBITS_MASK]] : vector<2xi8>
+// CHECK: %[[SHR_2:.*]] = arith.shrui %[[BITCAST]], %[[CST_2]] : vector<2xi8>
+// CHECK: %[[ELEM1:.*]] = arith.andi %[[SHR_2]], %[[LOWBITS_MASK]] : vector<2xi8>
+// CHECK: %[[SHR_4:.*]] = arith.shrui %[[BITCAST]], %[[CST_4]] : vector<2xi8>
+// CHECK: %[[ELEM2:.*]] = arith.andi %[[SHR_4]], %[[LOWBITS_MASK]] : vector<2xi8>
+// CHECK: %[[SHR_6:.*]] = arith.shrui %[[BITCAST]], %[[CST_6]] : vector<2xi8>
+// CHECK: %[[ELEM3:.*]] = arith.andi %[[SHR_6]], %[[LOWBITS_MASK]] : vector<2xi8>
+// CHECK: %[[INTERLEAVE02:.*]] = vector.interleave %[[ELEM0]], %[[ELEM2]] : vector<2xi8>
+// CHECK: %[[INTERLEAVE13:.*]] = vector.interleave %[[ELEM1]], %[[ELEM3]] : vector<2xi8>
+// CHECK: %[[RESULT:.*]] = vector.interleave %[[INTERLEAVE02]], %[[INTERLEAVE13]] : vector<4xi8>
+ %0 = arith.extui %a : vector<8xi2> to vector<8xi8>
+ return %0 : vector<8xi8>
+}
+
+// CHECK-LABEL: func.func @aligned_extui_i2_to_i32(
+func.func @aligned_extui_i2_to_i32(%a: vector<8xi2>) -> vector<8xi32> {
+// CHECK-SAME: %[[IN:.*]]: vector<8xi2>) -> vector<8xi32> {
+// CHECK: %[[CST_6:.*]] = arith.constant dense<6> : vector<2xi8>
+// CHECK: %[[CST_4:.*]] = arith.constant dense<4> : vector<2xi8>
+// CHECK: %[[CST_2:.*]] = arith.constant dense<2> : vector<2xi8>
+// CHECK: %[[LOWBITS_MASK:.*]] = arith.constant dense<3> : vector<2xi8>
+// CHECK: %[[BITCAST:.*]] = vector.bitcast %[[IN]] : vector<8xi2> to vector<2xi8>
+// CHECK: %[[ELEM0:.*]] = arith.andi %[[BITCAST]], %[[LOWBITS_MASK]] : vector<2xi8>
+// CHECK: %[[SHR_2:.*]] = arith.shrui %[[BITCAST]], %[[CST_2]] : vector<2xi8>
+// CHECK: %[[ELEM1:.*]] = arith.andi %[[SHR_2]], %[[LOWBITS_MASK]] : vector<2xi8>
+// CHECK: %[[SHR_4:.*]] = arith.shrui %[[BITCAST]], %[[CST_4]] : vector<2xi8>
+// CHECK: %[[ELEM2:.*]] = arith.andi %[[SHR_4]], %[[LOWBITS_MASK]] : vector<2xi8>
+// CHECK: %[[SHR_6:.*]] = arith.shrui %[[BITCAST]], %[[CST_6]] : vector<2xi8>
+// CHECK: %[[ELEM3:.*]] = arith.andi %[[SHR_6]], %[[LOWBITS_MASK]] : vector<2xi8>
+// CHECK: %[[INTERLEAVE02:.*]] = vector.interleave %[[ELEM0]], %[[ELEM2]] : vector<2xi8>
+// CHECK: %[[INTERLEAVE13:.*]] = vector.interleave %[[ELEM1]], %[[ELEM3]] : vector<2xi8>
+// CHECK: %[[INTERLEAVE:.*]] = vector.interleave %[[INTERLEAVE02]], %[[INTERLEAVE13]] : vector<4xi8>
+// CHECK: %[[RESULT:.*]] = arith.extui %[[INTERLEAVE]] : vector<8xi8> to vector<8xi32>
+ %0 = arith.extui %a : vector<8xi2> to vector<8xi32>
+ return %0 : vector<8xi32>
+}
+
+// CHECK-LABEL: func.func @aligned_extui_i2_2d(
+func.func @aligned_extui_i2_2d(%a: vector<8x32xi2>) -> vector<8x32xi32> {
+// CHECK-SAME: %[[IN:.*]]: vector<8x32xi2>) -> vector<8x32xi32> {
+// CHECK: %[[CST_6:.*]] = arith.constant dense<6> : vector<8x8xi8>
+// CHECK: %[[CST_4:.*]] = arith.constant dense<4> : vector<8x8xi8>
+// CHECK: %[[CST_2:.*]] = arith.constant dense<2> : vector<8x8xi8>
+// CHECK: %[[LOWBITS_MASK:.*]] = arith.constant dense<3> : vector<8x8xi8>
+// CHECK: %[[BITCAST:.*]] = vector.bitcast %[[IN]] : vector<8x32xi2> to vector<8x8xi8>
+// CHECK: %[[ELEM0:.*]] = arith.andi %[[BITCAST]], %[[LOWBITS_MASK]] : vector<8x8xi8>
+// CHECK: %[[SHR_2:.*]] = arith.shrui %[[BITCAST]], %[[CST_2]] : vector<8x8xi8>
+// CHECK: %[[ELEM1:.*]] = arith.andi %[[SHR_2]], %[[LOWBITS_MASK]] : vector<8x8xi8>
+// CHECK: %[[SHR_4:.*]] = arith.shrui %[[BITCAST]], %[[CST_4]] : vector<8x8xi8>
+// CHECK: %[[ELEM2:.*]] = arith.andi %[[SHR_4]], %[[LOWBITS_MASK]] : vector<8x8xi8>
+// CHECK: %[[SHR_6:.*]] = arith.shrui %[[BITCAST]], %[[CST_6]] : vector<8x8xi8>
+// CHECK: %[[ELEM3:.*]] = arith.andi %[[SHR_6]], %[[LOWBITS_MASK]] : vector<8x8xi8>
+// CHECK: %[[INTERLEAVE02:.*]] = vector.interleave %[[ELEM0]], %[[ELEM2]] : vector<8x8xi8>
+// CHECK: %[[INTERLEAVE13:.*]] = vector.interleave %[[ELEM1]], %[[ELEM3]] : vector<8x8xi...
[truncated]
``````````
</details>
https://github.com/llvm/llvm-project/pull/121298
More information about the Mlir-commits
mailing list