[Mlir-commits] [mlir] [mlir][tensor][SVE] Add e2e test for tensor.pack targeting SVE (PR #119692)

Andrzej WarzyƄski llvmlistbot at llvm.org
Thu Dec 12 03:48:28 PST 2024


https://github.com/banach-space created https://github.com/llvm/llvm-project/pull/119692

This patch adds an integration test for tensor.pack targeting scalable
vectors and SVE. The test is based on:

  * Linalg/CPU/pack-dynamic-inner-tile.mlir,

with some modifications. Notably, the inner tile size is:

  * [vscale * 8, 1] instead of
  * [8, 1].

The value of vscale is hardcoded to 2 to demonstrate that the effective
runtime tile size is [16, 1] rather than [8, 1]. This behavior is
achieved using the runtime helper: `func.call @setArmVLBits(%c256)`.

NOTE: Run the test under qemu-aarch64, even on hardware that supports
SVE. This test effectively assumes vscale >= 2, and this can only be
guaranteed under emulation.


>From 9073314fd4503f3ed22d57cc743ce6504ed76a59 Mon Sep 17 00:00:00 2001
From: Andrzej Warzynski <andrzej.warzynski at arm.com>
Date: Tue, 12 Nov 2024 20:33:29 +0000
Subject: [PATCH] [mlir][tensor][SVE] Add e2e test for tensor.pack targeting
 SVE

This patch adds an integration test for tensor.pack targeting scalable
vectors and SVE. The test is based on:

  * Linalg/CPU/pack-dynamic-inner-tile.mlir,

with some modifications. Notably, the inner tile size is:

  * [vscale * 8, 1] instead of
  * [8, 1].

The value of vscale is hardcoded to 2 to demonstrate that the effective
runtime tile size is [16, 1] rather than [8, 1]. This behavior is
achieved using the runtime helper: `func.call @setArmVLBits(%c256)`.

NOTE: Run the test under qemu-aarch64, even on hardware that supports
SVE. This test effectively assumes vscale >= 2, and this can only be
guaranteed under emulation.
---
 .../CPU/ArmSVE/pack-scalable-inner-tile.mlir  | 181 ++++++++++++++++++
 1 file changed, 181 insertions(+)
 create mode 100644 mlir/test/Integration/Dialect/Linalg/CPU/ArmSVE/pack-scalable-inner-tile.mlir

diff --git a/mlir/test/Integration/Dialect/Linalg/CPU/ArmSVE/pack-scalable-inner-tile.mlir b/mlir/test/Integration/Dialect/Linalg/CPU/ArmSVE/pack-scalable-inner-tile.mlir
new file mode 100644
index 00000000000000..a0fd3f7d87083c
--- /dev/null
+++ b/mlir/test/Integration/Dialect/Linalg/CPU/ArmSVE/pack-scalable-inner-tile.mlir
@@ -0,0 +1,181 @@
+// REQUIRES: arm-emulator
+
+// This test is a clone of pack-dynamic-inner-tile.mlir, but the inner tile is
+// vector.vscale * %c8 rather than %c8. In order to demonstrate the impact of
+// using scalable vectors, vscale is set to 2 so that that the run-time tile
+// size is [16, 1] rather than [8, 1].
+//
+// Note that you can also tweak the size of vscale by passing this flag to
+// QEMU:
+//  * -cpu max,sve-max-vq=[1-16]
+// (select the value between 1 and 16).
+
+// DEFINE: %{compile} =  mlir-opt %s \
+// DEFINE:    --transform-interpreter --test-transform-dialect-erase-schedule \
+// DEFINE:    --lower-vector-mask \
+// DEFINE:    -canonicalize -cse --convert-vector-to-scf \
+// DEFINE:    -arm-sve-legalize-vector-storage -convert-vector-to-llvm="enable-arm-sve" -test-lower-to-llvm -o %t
+
+// DEFINE: %{entry_point} = main
+// DEFINE: %{run} = %mcr_aarch64_cmd %t -e %{entry_point} -entry-point-result=void --march=aarch64 --mattr="+sve"\
+// DEFINE:    -shared-libs=%mlir_runner_utils,%mlir_c_runner_utils,%native_mlir_arm_runner_utils
+
+// RUN: rm -f %t && %{compile} &&  %{run} |  FileCheck %s
+
+/// End-to-end test for tensor.pack where one of the inner tile sizes is
+/// scalable.
+
+func.func @main() {
+  // Allocate and initialise the inputs
+  %A_alloc = tensor.empty() : tensor<7x16xi32>
+
+  %A = arith.constant dense<[
+    [ 1,  8, 15, 22, 29, 36, 43, 50, 57, 64, 71, 78, 85, 92, 99 , 106],
+    [ 2,  9, 16, 23, 30, 37, 44, 51, 58, 65, 72, 79, 86, 93, 100, 107],
+    [ 3, 10, 17, 24, 31, 38, 45, 52, 59, 66, 73, 80, 87, 94, 101, 108],
+    [ 4, 11, 18, 25, 32, 39, 46, 53, 60, 67, 74, 81, 88, 95, 102, 109],
+    [ 5, 12, 19, 26, 33, 40, 47, 54, 61, 68, 75, 82, 89, 96, 103, 110],
+    [ 6, 13, 20, 27, 34, 41, 48, 55, 62, 69, 76, 83, 90, 97, 104, 111],
+    [ 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98, 105, 112]
+  ]> : tensor<7x16xi32>
+
+  func.call @pack(%A) : (tensor<7x16xi32>) -> ()
+
+  return
+}
+
+func.func private @pack(%A: tensor<7x16xi32>) {
+  %c1 = arith.constant 1 : index
+  %pad_val = arith.constant 123 : i32
+
+  // Set vscale to 2 (vector width = 256). This will have identical effect to:
+  //  * qemu-aarch64 -cpu max,sve-max-vq=2 (...)
+  %c256 = arith.constant 256 : i32
+  func.call @setArmVLBits(%c256) : (i32) -> ()
+
+  // Scalable tile size
+  %vs = vector.vscale
+  %c8 = arith.constant 8 : index
+  %tile_size = arith.muli %c8, %vs : index
+
+  %A_pack_empty = tensor.empty(%c1, %tile_size) : tensor<?x16x?x1xi32>
+
+  %A_pack = tensor.pack %A
+    padding_value(%pad_val : i32)
+    inner_dims_pos = [0, 1]
+    inner_tiles = [%tile_size, 1]
+    into %A_pack_empty : tensor<7x16xi32> -> tensor<?x16x?x1xi32>
+
+  %A_cast = tensor.cast %A_pack : tensor<?x16x?x1xi32> to tensor<*xi32>
+
+  // Print the results
+  // CHECK: Unranked Memref base@ = 0{{.*}} rank = 4 offset = 0 sizes = [1, 16, 16, 1] strides = [256, 16, 1, 1] data =
+  // Tile 1: ((vscale x 8) x 1)
+  // CHECK-NEXT:  1
+  // CHECK-NEXT:  2
+  // CHECK-NEXT:  3
+  // CHECK-NEXT:  4
+  // CHECK-NEXT:  5
+  // CHECK-NEXT:  6
+  // CHECK-NEXT:  7
+  // Expect pad value after 7 elements
+  // CHECK-NEXT:  123
+  // CHECK-NEXT:  123
+  // CHECK-NEXT:  123
+  // CHECK-NEXT:  123
+  // CHECK-NEXT:  123
+  // CHECK-NEXT:  123
+  // CHECK-NEXT:  123
+  // CHECK-NEXT:  123
+  // CHECK-NEXT:  123
+  // Tile 2: ((vscale x 8) x 1)
+  // CHECK-NEXT:  8
+  // CHECK-NEXT:  9
+  // CHECK-NEXT:  10
+  // CHECK-NEXT:  11
+  // CHECK-NEXT:  12
+  // CHECK-NEXT:  13
+  // CHECK-NEXT:  14
+  // Expect pad value after further 7 elements
+  // CHECK-NEXT:  123
+  // CHECK-NEXT:  123
+  // CHECK-NEXT:  123
+  // CHECK-NEXT:  123
+  // CHECK-NEXT:  123
+  // CHECK-NEXT:  123
+  // CHECK-NEXT:  123
+  // CHECK-NEXT:  123
+  // CHECK-NEXT:  123
+  // Tile 3: ((vscale x 8) x 1)
+  // CHECK-NEXT:  15
+  // CHECK-NEXT:  16
+  // ...
+  call @printMemrefI32(%A_cast) : (tensor<*xi32>) -> ()
+
+  return
+}
+
+module @transforms attributes { transform.with_named_sequence } {
+  transform.named_sequence @__transform_main(%module: !transform.any_op {transform.consume}) {
+    %pack = transform.structured.match ops{["tensor.pack"]} in %module : (!transform.any_op) -> !transform.any_op
+
+    // 1. Tile so that we can decompose tensor.pack into tensor.pad and other
+    // Ops (see step 2)
+    %tiled_pack_op_p, %loops:2 = transform.structured.tile_using_for %pack tile_sizes [1, 1]
+       : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op)
+
+    // 2. Decompose the tiled pack Op into (trimmed for brevity):
+    //
+    //  %padded = tensor.pad %slice_of_A (..) :
+    //      tensor<?x?xi32> to tensor<8x1xi32>
+    //  %inserted_slice = tensor.insert_slice %padded into %slice_of_A_pack (...) :
+    //      tensor<8x1xi32> into tensor<1x1x?x1xi32>
+    //
+    // (NOTE: no tile is transposed, hence no linalg.transpose)
+    //
+    // This is followed by this decomposition of the pad Op:
+    //
+    //  %c123_i32 = arith.constant 123 : i32
+    //  %slice_of_A = tensor.extract_slice %A[%3, %arg3] [%4, %5] [1, 1] :
+    //    tensor<7x16xi32> to tensor<?x?xi32>
+    //  %empty = tensor.empty() : tensor<8x1xi32>
+    //  %fill = linalg.fill ins(%c123_i32 : i32) outs(%empty :
+    //    tensor<8x1xi32>) -> tensor<8x1xi32>
+    //  %inserted_slice = tensor.insert_slice %slice_of_A into %fill[0, 0] [%4, %5] [1, 1] :
+    //    tensor<?x?xi32> into tensor<8x1xi32>
+    //
+    %func_op = transform.get_parent_op %tiled_pack_op_p {isolated_from_above} : (!transform.any_op) -> !transform.op<"func.func">
+    transform.apply_patterns to %func_op {
+      transform.apply_patterns.linalg.decompose_pack_unpack
+      transform.apply_patterns.linalg.decompose_pad
+    } : !transform.op<"func.func">
+
+    // 3. Vectorize linalg.fill.
+    // Vector sizes match the inner tiles in the payload IR.
+    %fill = transform.structured.match ops{["linalg.fill"]} in %func_op : (!transform.op<"func.func">) -> !transform.any_op
+    transform.structured.vectorize %fill vector_sizes [[8], 1] : !transform.any_op
+
+    transform.apply_patterns to %func_op {
+      transform.apply_patterns.tensor.fold_tensor_subset_ops
+      transform.apply_patterns.canonicalization
+    } : !transform.op<"func.func">
+
+    // 3. Bufferize before lowering to LLVM
+    %bufferize = transform.bufferization.one_shot_bufferize %module
+      {bufferize_function_boundaries=true} : (!transform.any_op) -> !transform.any_op
+
+    // 4. Canonicalize + rank-reducing patters (to get rid of the trailing unit
+    // dim).
+    %func_op_bufferized = transform.structured.match ops{["func.func"]} in %bufferize : (!transform.any_op) -> !transform.op<"func.func">
+    transform.apply_patterns to %func_op_bufferized {
+      transform.apply_patterns.vector.rank_reducing_subview_patterns
+      transform.apply_patterns.vector.drop_unit_dims_with_shape_cast
+      transform.apply_patterns.canonicalization
+    } : !transform.op<"func.func">
+
+    transform.yield
+  }
+}
+
+func.func private @printMemrefI32(%ptr : tensor<*xi32>)
+func.func private @setArmVLBits(%bits : i32)



More information about the Mlir-commits mailing list