[Mlir-commits] [mlir] [mlir][nfc] Update vectorize-tensor-extract.mlir (2/N) (PR #119080)

llvmlistbot at llvm.org llvmlistbot at llvm.org
Sat Dec 7 08:42:59 PST 2024


llvmbot wrote:


<!--LLVM PR SUMMARY COMMENT-->

@llvm/pr-subscribers-mlir-linalg

Author: Andrzej WarzyƄski (banach-space)

<details>
<summary>Changes</summary>

Tests in "vectorize-tensor-extract.mlir" are inconsistent and would
benefit from refactoring to:

* Clearly categorize tests into "contiguous load," "gather load," and
  "scalar load + broadcast" cases, reflecting the structure of
  tensor.extract vectorization.
* Unify variable naming (both MLIR and FileCheck).
* Ensure all tests exercise unmasked vectorization (masked vectorization
  is covered in "vectorize-tensor-extract-masked.mlir").
* Improve and standardize formatting.

These changes will make it easier to identify the test cases being
exercised and simplify future maintenance or refactoring.

This is patch 2/N in the series. Below is a summary of the changes in
this patch.

----------------------------------------------------------------------
Summary of patch 2/N
----------------------------------------------------------------------

Makes all tests re-use the same TD sequence. This TD sequence has been
extracted to a dedicted file:
  * "td/vectorize-with-patterns.mlir".

----------------------------------------------------------------------
**DEPENDS ON**
* https://github.com/llvm/llvm-project/pull/118977
* https://github.com/llvm/llvm-project/pull/119079

Please only review the top commit

---

Patch is 29.09 KiB, truncated to 20.00 KiB below, full version: https://github.com/llvm/llvm-project/pull/119080.diff


4 Files Affected:

- (modified) mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp (-5) 
- (added) mlir/test/Dialect/Linalg/td/vectorize-with-patterns.mlir (+10) 
- (modified) mlir/test/Dialect/Linalg/vectorization-with-patterns.mlir (+45-3) 
- (modified) mlir/test/Dialect/Linalg/vectorize-tensor-extract.mlir (+64-220) 


``````````diff
diff --git a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
index e5c96b52acee23..863f2280e46ce6 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
@@ -1115,11 +1115,6 @@ vectorizeTensorExtract(RewriterBase &rewriter, VectorizationState &state,
   //  b. contiguous loads.
   // Both cases use vector.transfer_read.
 
-  assert(llvm::count_if(resultType.getShape(),
-                        [](uint64_t dim) { return dim != 1; }) &&
-         "Contiguous loads and scalar loads + broadcast only support 1-D "
-         "vectors ATM!");
-
   // Collect indices for `vector.transfer_read`. At this point, the indices will
   // either be scalars or would have been broadcast to vectors matching the
   // result type. For indices that are vectors, there are two options:
diff --git a/mlir/test/Dialect/Linalg/td/vectorize-with-patterns.mlir b/mlir/test/Dialect/Linalg/td/vectorize-with-patterns.mlir
new file mode 100644
index 00000000000000..f8d1a50d7430df
--- /dev/null
+++ b/mlir/test/Dialect/Linalg/td/vectorize-with-patterns.mlir
@@ -0,0 +1,10 @@
+module @transforms attributes { transform.with_named_sequence } {
+  transform.named_sequence @vectorize_with_patterns(%module: !transform.any_op {transform.readonly}) {
+
+    %0 = transform.structured.match ops{["linalg.generic"]} in %module : (!transform.any_op) -> !transform.any_op
+    %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
+    %2 = transform.structured.vectorize_children_and_apply_patterns %1 { vectorize_nd_extract } : (!transform.any_op) -> !transform.any_op
+
+    transform.yield
+   }
+}
diff --git a/mlir/test/Dialect/Linalg/vectorization-with-patterns.mlir b/mlir/test/Dialect/Linalg/vectorization-with-patterns.mlir
index 0c996bed996d3c..b688a677500c22 100644
--- a/mlir/test/Dialect/Linalg/vectorization-with-patterns.mlir
+++ b/mlir/test/Dialect/Linalg/vectorization-with-patterns.mlir
@@ -122,6 +122,48 @@ module attributes {transform.with_named_sequence} {
 
 // -----
 
+#map = affine_map<() -> ()>
+
+// CHECK-LABEL:   func.func @generic_0d(
+// CHECK-SAME:     %[[ARG_0:.*]]: tensor<f32>, %[[ARG_1:.*]]: tensor<f32>, %[[ARG_2:.*]]: tensor<f32>)
+func.func @generic_0d(%arg0: tensor<f32>, %arg1: tensor<f32>,
+                      %arg2: tensor<f32>) -> tensor<f32> {
+// CHECK:           %[[PAD:.*]] = arith.constant 0.000000e+00 : f32
+// CHECK:           %[[READ_0:.*]] = vector.transfer_read %[[ARG_0]][], %[[PAD]] : tensor<f32>, vector<f32>
+// CHECK:           %[[ARG_0_AS_SCALAR:.*]] = vector.extract %[[READ_0]][] : f32 from vector<f32>
+// CHECK:           %[[READ_1:.*]] = vector.transfer_read %[[ARG_1]][], %[[PAD]] : tensor<f32>, vector<f32>
+// CHECK:           %[[ARG_1_AS_SCALAR:.*]] = vector.extract %[[READ_1]][] : f32 from vector<f32>
+// CHECK:           %[[READ_2:.*]] = vector.transfer_read %[[ARG_2]][], %[[PAD]] : tensor<f32>, vector<f32>
+// CHECK:           %[[ARG_2_AS_SCALAR:.*]] = vector.extract %[[READ_2]][] : f32 from vector<f32>
+// CHECK:           %[[MULF:.*]] = arith.mulf %[[ARG_0_AS_SCALAR]], %[[ARG_1_AS_SCALAR]] : f32
+// CHECK:           %[[ADDF:.*]] = arith.addf %[[ARG_2_AS_SCALAR]], %[[MULF]] : f32
+// CHECK:           %[[ADDF_BCAST:.*]] = vector.broadcast %[[ADDF]] : f32 to vector<f32>
+// CHECK:           vector.transfer_write %[[ADDF_BCAST]], %[[ARG_2]][] : vector<f32>, tensor<f32>
+  %res = linalg.generic {
+    indexing_maps = [#map, #map, #map],
+    iterator_types = []
+  } ins(%arg0, %arg1 : tensor<f32>, tensor<f32>)
+    outs(%arg2 : tensor<f32>) {
+  ^bb(%a: f32, %b: f32, %c: f32) :
+    %d = arith.mulf %a, %b: f32
+    %e = arith.addf %c, %d: f32
+    linalg.yield %e : f32
+  } -> tensor<f32>
+
+  return %res : tensor<f32>
+}
+
+module attributes {transform.with_named_sequence} {
+  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
+    %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
+    %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
+    %2 = transform.structured.vectorize_children_and_apply_patterns %1  { disable_multi_reduction_to_contract_patterns, disable_transfer_permutation_map_lowering_patterns } : (!transform.any_op) -> !transform.any_op
+    transform.yield
+  }
+}
+
+// -----
+
 #matmul_transpose_out_trait = {
   indexing_maps = [
     affine_map<(m, n, k) -> (m, k)>,
@@ -372,7 +414,7 @@ module attributes {transform.with_named_sequence} {
 // -----
 
 // CHECK-LABEL: func @test_vectorize_fill
-func.func @test_vectorize_fill_scalar(%A : memref<f32>, %arg0 : f32) {
+func.func @test_vectorize_fill_0d(%A : memref<f32>, %arg0 : f32) {
   // CHECK-SAME: (%[[M:.*]]: memref<f32>, %[[val:.*]]: f32)
   //      CHECK:   %[[VEC:.*]] = vector.broadcast %[[val]] : f32 to vector<f32>
   //      CHECK:   vector.transfer_write %[[VEC]], %[[M]][] : vector<f32>, memref<f32>
@@ -410,8 +452,8 @@ module attributes {transform.with_named_sequence} {
 
 // -----
 
-// CHECK-LABEL: func @test_vectorize_copy_scalar
-func.func @test_vectorize_copy_scalar(%A : memref<f32>, %B : memref<f32>) {
+// CHECK-LABEL: func @test_vectorize_copy_0d
+func.func @test_vectorize_copy_0d(%A : memref<f32>, %B : memref<f32>) {
   //  CHECK-SAME: (%[[A:.*]]: memref<f32>, %[[B:.*]]: memref<f32>)
   //       CHECK:   %[[V:.*]] = vector.transfer_read %[[A]][]{{.*}} : memref<f32>, vector<f32>
   //       CHECK:   %[[val:.*]] = vector.extract %[[V]][] : f32 from vector<f32>
diff --git a/mlir/test/Dialect/Linalg/vectorize-tensor-extract.mlir b/mlir/test/Dialect/Linalg/vectorize-tensor-extract.mlir
index 1a93d1cd9b7880..7c456349157191 100644
--- a/mlir/test/Dialect/Linalg/vectorize-tensor-extract.mlir
+++ b/mlir/test/Dialect/Linalg/vectorize-tensor-extract.mlir
@@ -1,4 +1,6 @@
-// RUN: mlir-opt %s -transform-interpreter -split-input-file | FileCheck %s
+// RUN: mlir-opt -split-input-file \
+// RUN: -transform-preload-library='transform-library-paths=%p/td/vectorize-with-patterns.mlir' \
+// RUN: -transform-interpreter=entry-point=vectorize_with_patterns %s | FileCheck %s
 
 #map0 = affine_map<(d0, d1, d2, d3) -> (d0, d2)>
 #map1 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
@@ -27,41 +29,52 @@ func.func @vectorize_1d_tensor_extract(%arg0: tensor<3xf32>, %arg1: tensor<4x3xi
 // CHECK: %[[GATHER:.*]] = vector.gather %[[ARG0]][%[[C0]]] [%[[INDICES]]], %[[MASK]], %[[PASSTHRU]]
 // CHECK: vector.transfer_write %[[GATHER]]
 
-module attributes {transform.with_named_sequence} {
-  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
-    %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
-    %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
-    %2 = transform.structured.vectorize_children_and_apply_patterns %1 : (!transform.any_op) -> !transform.any_op
-    transform.yield
-  }
-}
-
 // -----
 
 #map = affine_map<() -> ()>
-func.func @negative_no_loops(%arg0: tensor<f32>, %arg1: tensor<f32>) -> tensor<f32> {
-  %1 = linalg.generic {
+func.func @extract_scalar_from_0d_into_0d(%src: tensor<f32>, %init: tensor<f32>) -> tensor<f32> {
+  %res = linalg.generic {
     indexing_maps = [#map],
     iterator_types = []
-  } outs(%arg1 : tensor<f32>) {
-  ^bb0(%arg4: f32):
-    %2 = tensor.extract %arg0[] : tensor<f32>
-    linalg.yield %2 : f32
+  } outs(%init : tensor<f32>) {
+  ^bb0(%in: f32):
+    %1 = tensor.extract %src[] : tensor<f32>
+    linalg.yield %1 : f32
   } -> tensor<f32>
-  return %1 : tensor<f32>
-}
-// CHECK-LABEL: func.func @negative_no_loops
-// CHECK: tensor.extract
-
-module attributes {transform.with_named_sequence} {
-  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
-    %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
-    %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
-    %2 = transform.structured.vectorize_children_and_apply_patterns %1 : (!transform.any_op) -> !transform.any_op
-    transform.yield
-  }
+
+  return %res : tensor<f32>
 }
 
+// CHECK-LABEL:   func.func @extract_scalar_from_0d_into_0d(
+// CHECK-SAME:      %[[SRC:.*]]: tensor<f32>,
+// CHECK-SAME:      %[[INIT:.*]]: tensor<f32>) -> tensor<f32> {
+// CHECK:           %[[PAD:.*]] = arith.constant 0.000000e+00 : f32
+// CHECK:           %[[READ:.*]] = vector.transfer_read %[[SRC]][], %[[PAD]] : tensor<f32>, vector<f32>
+// CHECK:           vector.transfer_write %[[READ]], %[[INIT]][] : vector<f32>, tensor<f32>
+
+// -----
+
+#map = affine_map<(n) -> (n)>
+func.func @extract_scalar_from_0d_into_1d(%src: tensor<f32>, %init: tensor<1xf32>) -> tensor<1xf32> {
+  %res = linalg.generic {
+    indexing_maps = [#map],
+    iterator_types = ["parallel"]
+  } outs(%init : tensor<1xf32>) {
+  ^bb0(%in: f32):
+    %1 = tensor.extract %src[] : tensor<f32>
+    linalg.yield %1 : f32
+  } -> tensor<1xf32>
+
+  return %res : tensor<1xf32>
+}
+// CHECK-LABEL:   func.func @extract_scalar_from_0d_into_1d(
+// CHECK-SAME:      %[[SRC:.*]]: tensor<f32>,
+// CHECK-SAME:      %[[INIT:.*]]: tensor<1xf32>) -> tensor<1xf32> {
+// CHECK:           %[[C0:.*]] = arith.constant 0 : index
+// CHECK:           %[[PAD:.*]] = arith.constant 0.000000e+00 : f32
+// CHECK:           %[[READ:.*]] = vector.transfer_read %[[SRC]][], %[[PAD]] : tensor<f32>, vector<f32>
+// CHECK:           %[[READ_BCAST:.*]] = vector.broadcast %[[READ]] : vector<f32> to vector<1xf32>
+// CHECK:           vector.transfer_write %[[READ_BCAST]], %[[INIT]][%[[C0]]] {in_bounds = [true]} : vector<1xf32>, tensor<1xf32>
 
 // -----
 
@@ -92,14 +105,6 @@ func.func @vectorize_nd_tensor_extract_scalar_broadcast(%arg0: tensor<3x3xf32>,
 // CHECK:           %[[C0_2:.*]] = arith.constant 0 : index
 // CHECK:           vector.transfer_write %[[READ]], %[[ARG_1]]{{\[}}%[[C0_2]], %[[C0_2]], %[[C0_2]]] : vector<1x1x3xf32>, tensor<1x1x3xf32>
 
-module attributes {transform.with_named_sequence} {
-  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
-     %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
-    transform.structured.vectorize %0 { vectorize_nd_extract }  : !transform.any_op
-    transform.yield
-   }
-}
-
 // -----
 
 #map = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
@@ -169,15 +174,6 @@ func.func @vectorize_nd_tensor_extract_transfer_read_basic_column(
 // CHECK:           %[[RES:.*]] = vector.transfer_write %[[BCAST]], %[[OUTPUT]]{{\[}}%[[C0]], %[[C0]], %[[C0]]] {in_bounds = [true, true, true]} : vector<3x1x1xf32>, tensor<3x1x1xf32>
 // CHECK:           return %[[RES]] : tensor<3x1x1xf32>
 
-module attributes {transform.with_named_sequence} {
-  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
-    %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
-    %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
-    %2 = transform.structured.vectorize_children_and_apply_patterns %1 { vectorize_nd_extract } : (!transform.any_op) -> !transform.any_op
-    transform.yield
-  }
-}
-
  // -----
 
 func.func @vectorize_nd_tensor_extract_transfer_read_complex(%6: tensor<45x80x16xf32>, %arg0: index, %arg2: index, %arg1: index, %arg4: index, %extracted_slice : tensor<1x4xf32>) -> tensor<1x4xf32> {
@@ -221,15 +217,6 @@ func.func @vectorize_nd_tensor_extract_transfer_read_complex(%6: tensor<45x80x16
 // CHECK:           return %[[VAL_21]] : tensor<1x4xf32>
 // CHECK:         }
 
-module attributes {transform.with_named_sequence} {
-  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
-     %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
-     %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
-     %2 = transform.structured.vectorize_children_and_apply_patterns %1 { vectorize_nd_extract } : (!transform.any_op) -> !transform.any_op
-     transform.yield
-   }
-}
-
 // -----
 
 #map0 = affine_map<(d0, d1, d2, d3) -> (d0, d2)>
@@ -271,15 +258,6 @@ func.func @vectorize_nd_tensor_extract_index_from_tensor(%arg0: tensor<3x3xf32>,
 // CHECK:    %[[GATHER:.*]] = vector.gather %[[ARG0]][%[[C0]], %[[C0]]] [%[[T]]], %[[CST_1]], %[[PASSTHRU]] : tensor<3x3xf32>, vector<4x7x3x2xindex>, vector<4x7x3x2xi1>, vector<4x7x3x2xf32> into vector<4x7x3x2xf32>
 // CHECK:    vector.transfer_write %[[GATHER]], %[[ARG4]][%[[C0]], %[[C0]], %[[C0]], %[[C0]]] {in_bounds = [true, true, true, true]} : vector<4x7x3x2xf32>, tensor<4x7x3x2xf32>
 
-module attributes {transform.with_named_sequence} {
-  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
-    %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
-    %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
-    %2 = transform.structured.vectorize_children_and_apply_patterns %1 { vectorize_nd_extract } : (!transform.any_op) -> !transform.any_op
-    transform.yield
-  }
-}
-
 // -----
 
 #map = affine_map<(d0, d1) -> (d0, d1)>
@@ -301,15 +279,6 @@ func.func @vectorize_nd_tensor_extract_load_1d_column_vector_using_gather_load(%
   return %1 : tensor<8x1xf32>
 }
 
-module attributes {transform.with_named_sequence} {
-  transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.readonly}) {
-    %0 = transform.structured.match ops{["linalg.generic"]} in %arg0 : (!transform.any_op) -> !transform.any_op
-    %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
-    %2 = transform.structured.vectorize_children_and_apply_patterns %1 {vectorize_nd_extract} : (!transform.any_op) -> !transform.any_op
-    transform.yield
-  }
-}
-
 // CHECK-LABEL: func.func @vectorize_nd_tensor_extract_load_1d_column_vector_using_gather_load
 // CHECK-SAME: %[[ARG0:.*]]: tensor<8x128x768xf32>
 // CHECK-SAME: %[[ARG1:.*]]: index
@@ -352,15 +321,6 @@ func.func @index_from_output_column_vector_gather_load(%src: tensor<8x128xf32>)
   return %res : tensor<8x1xf32>
 }
 
-module attributes {transform.with_named_sequence} {
-  transform.named_sequence @__transform_main(%arg2: !transform.any_op {transform.readonly}) {
-    %0 = transform.structured.match ops{["linalg.generic"]} in %arg2 : (!transform.any_op) -> !transform.any_op
-    %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
-    %2 = transform.structured.vectorize_children_and_apply_patterns %1 {vectorize_nd_extract} : (!transform.any_op) -> !transform.any_op
-    transform.yield
-  }
-}
-
 // CHECK-LABEL:   func.func @index_from_output_column_vector_gather_load(
 // CHECK-SAME:      %[[SRC:.*]]: tensor<8x128xf32>) -> tensor<8x1xf32> {
 // CHECK:           %[[C128:.*]] = arith.constant dense<128> : vector<1x8xindex>
@@ -399,15 +359,6 @@ func.func @index_from_output_column_vector_contiguous_load(%src: tensor<8x128xf3
   return %res : tensor<8x1xf32>
 }
 
-module attributes {transform.with_named_sequence} {
-  transform.named_sequence @__transform_main(%arg2: !transform.any_op {transform.readonly}) {
-    %0 = transform.structured.match ops{["linalg.generic"]} in %arg2 : (!transform.any_op) -> !transform.any_op
-    %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
-    %2 = transform.structured.vectorize_children_and_apply_patterns %1 {vectorize_nd_extract} : (!transform.any_op) -> !transform.any_op
-    transform.yield
-  }
-}
-
 // CHECK-LABEL:   func.func @index_from_output_column_vector_contiguous_load(
 // CHECK-SAME:      %[[SRC:.*]]: tensor<8x128xf32>) -> tensor<8x1xf32> {
 // CHECK:           %[[C0:.*]] = arith.constant 0 : index
@@ -459,15 +410,6 @@ func.func @vectorize_nd_tensor_extract_contiguous_and_gather(%arg0: tensor<6xf32
 // CHECK:           %[[VAL_14:.*]] = vector.transfer_write %[[VAL_13]], %[[VAL_8]]{{\[}}%[[VAL_2]]] {in_bounds = [true]} : vector<5xf32>, tensor<5xf32>
 // CHECK:           return %[[VAL_14]] : tensor<5xf32>
 
-module attributes {transform.with_named_sequence} {
-  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
-     %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
-     %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
-     %2 = transform.structured.vectorize_children_and_apply_patterns %1 { vectorize_nd_extract } : (!transform.any_op) -> !transform.any_op
-     transform.yield
-   }
-}
-
 // -----
 
 // The vectorizer converts `affine.apply` so that the subsequent Ops can be vectorised based on the converted ops. Contiguous load.
@@ -502,15 +444,6 @@ func.func @vectorize_nd_tensor_extract_with_affine_apply_contiguous(%6: tensor<8
 // CHECK:           return %[[VAL_12]] : tensor<1x4xf32>
 // CHECK:         }
 
-module attributes {transform.with_named_sequence} {
-  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
-     %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
-     %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
-     %2 = transform.structured.vectorize_children_and_apply_patterns %1 { vectorize_nd_extract } : (!transform.any_op) -> !transform.any_op
-     transform.yield
-   }
-}
-
 // -----
 
 func.func @vectorize_nd_tensor_extract_with_tensor_extract(%input_1: tensor<1x20xi32>, %input_2: tensor<257x24xf32>, %arg0 : index, %arg1 : index, %arg2 : index, %arg3 : index) -> tensor<1x1x4xf32> {
@@ -547,16 +480,6 @@ func.func @vectorize_nd_tensor_extract_with_tensor_extract(%input_1: tensor<1x20
 // for address calculation also satisfy the required conditions).
 // CHECK:           vector.transfer_read %[[INPUT_2]][%{{.*}}, %{{.*}}, %{{.*}} {in_bounds = [true, true]} : tensor<257x24xf32>, vector<1x4xf32>
 
-
-module attributes {transform.with_named_sequence} {
-  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
-     %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
-     %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
-     %2 = transform.structured.vectorize_children_and_apply_patterns %1 { vectorize_nd_extract } : (!transform.any_op) -> !transform.any_op
-     transform.yield
-   }
-}
-
 // -----
 
 // The vectorizer converts `affine.apply` so that the subsequent Ops can be vectorised based on the converted ops. Gather load.
@@ -594,15 +517,6 @@ func.func @vectorize_nd_tensor_extract_with_affine_apply_gather(%6: tensor<80x16
 // CHECK:           return %[[VAL_14]] : tensor<1x4xf32>
 // CHECK:         }
 
-module attributes {transform.with_named_sequence} {
-  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
-     %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
-     %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
-     %2 = transform.structured.vectorize_children_and_apply_patterns %1 { vectorize_nd_extract } : (!transform.any_op) -> !transform.any_op
-     transform.yield
-   }
-}
-
 // -----
 
 // Make sure that non-linear arithmetic operations (e.g. arith.maxsi) are allowed when calculating indices for load operations. Gather load.
@@ -636,15 +550,6 @@ func.func @vectorize_nd_tensor_extract_with_maxsi_gather(%arg0: tensor<80x16xf32
 // CHECK:           return %[[VAL_10]] : tensor<1x4xf32>
 // CHECK:         }
 
-module attributes {transform.with_named_sequence} {
-  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
-     %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any...
[truncated]

``````````

</details>


https://github.com/llvm/llvm-project/pull/119080


More information about the Mlir-commits mailing list