[Mlir-commits] [mlir] [MLIR][NVVM] Add Op for TMA Store with reduction (PR #118853)
Durgadoss R
llvmlistbot at llvm.org
Fri Dec 6 03:28:07 PST 2024
================
@@ -2029,6 +2029,107 @@ def NVVM_CpAsyncBulkTensorPrefetchOp :
}];
}
+// List of modes supported for TMA Store and Reduction Ops
+def TMAStoreModeTile : I32EnumAttrCase<"TILE", 0, "tile">;
+def TMAStoreModeIm2Col : I32EnumAttrCase<"IM2COL", 1, "im2col">;
+
+def TMAStoreMode : I32EnumAttr<"TMAStoreMode", "NVVM TMA Store Mode",
+ [TMAStoreModeTile, TMAStoreModeIm2Col]> {
+ let genSpecializedAttr = 0;
+ let cppNamespace = "::mlir::NVVM";
+}
+def TMAStoreModeAttr : EnumAttr<NVVM_Dialect, TMAStoreMode, "tma_store_mode"> {
+ let assemblyFormat = "`<` $value `>`";
+}
+
+// List of Reduction Ops supported with TMA Store
+def TMAReduxKindAdd : I32EnumAttrCase<"ADD", 0, "add">;
+def TMAReduxKindMin : I32EnumAttrCase<"MIN", 1, "min">;
+def TMAReduxKindMax : I32EnumAttrCase<"MAX", 2, "max">;
+def TMAReduxKindInc : I32EnumAttrCase<"INC", 3, "inc">;
+def TMAReduxKindDec : I32EnumAttrCase<"DEC", 4, "dec">;
+def TMAReduxKindAnd : I32EnumAttrCase<"AND", 5, "and">;
+def TMAReduxKindOr : I32EnumAttrCase<"OR", 6, "or">;
+def TMAReduxKindXor : I32EnumAttrCase<"XOR", 7, "xor">;
+
+def TMAReduxKind : I32EnumAttr<"TMAReduxKind", "NVVM TMA redux kind",
+ [TMAReduxKindAdd, TMAReduxKindMax, TMAReduxKindMin,
+ TMAReduxKindInc, TMAReduxKindDec, TMAReduxKindAnd,
+ TMAReduxKindOr, TMAReduxKindXor]> {
+ let genSpecializedAttr = 0;
+ let cppNamespace = "::mlir::NVVM";
+}
+def TMAReduxKindAttr : EnumAttr<NVVM_Dialect, TMAReduxKind, "tma_redux_kind"> {
+ let assemblyFormat = "`<` $value `>`";
+}
+
+def NVVM_CpAsyncBulkTensorReduceOp :
----------------
durga4github wrote:
Thank you, Krzysztof, for your thoughts!
As you probably observed, this Op models one PTX instruction family only.
As Mehdi also pointed out, we had to model this with many intrinsics at
the LLVM level (mainly) due to the differing arguments for each variant.
Since MLIR infra offers enhanced type support like Variadic<>, Optional<>
etc, and the existing TMA Ops here already leverage these features,
I followed the same approach to model this Op too.
https://github.com/llvm/llvm-project/pull/118853
More information about the Mlir-commits
mailing list