[Mlir-commits] [mlir] [mlir][spirv] Add an argmax integration test with `mlir-vulkan-runner` (PR #106426)

Angel Zhang llvmlistbot at llvm.org
Wed Aug 28 12:18:38 PDT 2024


https://github.com/angelz913 updated https://github.com/llvm/llvm-project/pull/106426

>From 85609d0b5e60ef5deeadfa4f2492918f62c5010f Mon Sep 17 00:00:00 2001
From: Angel Zhang <angel.zhang at amd.com>
Date: Wed, 28 Aug 2024 17:47:51 +0000
Subject: [PATCH] [mlir][spirv] Add an argmax integration test with
 mlir-vulkan-runner

---
 mlir/test/mlir-vulkan-runner/argmax.mlir      | 109 ++++++++++++++++++
 mlir/tools/mlir-vulkan-runner/CMakeLists.txt  |   1 +
 .../mlir-vulkan-runner/mlir-vulkan-runner.cpp |   4 +-
 3 files changed, 113 insertions(+), 1 deletion(-)
 create mode 100644 mlir/test/mlir-vulkan-runner/argmax.mlir

diff --git a/mlir/test/mlir-vulkan-runner/argmax.mlir b/mlir/test/mlir-vulkan-runner/argmax.mlir
new file mode 100644
index 00000000000000..d30c1cb5b58bdc
--- /dev/null
+++ b/mlir/test/mlir-vulkan-runner/argmax.mlir
@@ -0,0 +1,109 @@
+// RUN: mlir-vulkan-runner %s \
+// RUN:  --shared-libs=%vulkan-runtime-wrappers,%mlir_runner_utils \
+// RUN:  --entry-point-result=void | FileCheck %s
+
+// This kernel computes the argmax (index of the maximum element) from an array
+// of integers. Each thread computes a lane maximum using a single `scf.for`.
+// Then `gpu.subgroup_reduce` is used to find the maximum across the entire
+// subgroup, which is then used by SPIR-V subgroup ops to compute the argmax
+// of the entire input array. Note that this kernel only works if we have a
+// single workgroup.
+
+// CHECK: [15]
+module attributes {
+  gpu.container_module,
+  spirv.target_env = #spirv.target_env<
+    #spirv.vce<v1.3, [Shader, Groups, GroupNonUniformArithmetic, GroupNonUniformBallot], [SPV_KHR_storage_buffer_storage_class]>, #spirv.resource_limits<>>
+} {
+  gpu.module @kernels {
+    gpu.func @kernel_argmax(%input : memref<128xi32>, %output : memref<1xi32>, %total_count_buf : memref<1xi32>) kernel
+      attributes {spirv.entry_point_abi = #spirv.entry_point_abi<workgroup_size = [32, 1, 1]>} {
+      %idx0 = arith.constant 0 : index
+      %idx1 = arith.constant 1 : index
+
+      %total_count = memref.load %total_count_buf[%idx0] : memref<1xi32>
+      %lane_count_idx = gpu.subgroup_size : index
+      %lane_count_i32 = index.castu %lane_count_idx : index to i32
+      %lane_id_idx = gpu.thread_id x
+      %lane_id_i32 = index.castu %lane_id_idx : index to i32
+      %lane_res_init = arith.constant 0 : i32
+      %lane_max_init = memref.load %input[%lane_id_idx] : memref<128xi32>
+      %num_batches_i32 = arith.divui %total_count, %lane_count_i32 : i32
+      %num_batches_idx = index.castu %num_batches_i32 : i32 to index
+
+      %lane_res, %lane_max = scf.for %iter = %idx1 to %num_batches_idx step %idx1
+      iter_args(%lane_res_iter = %lane_res_init, %lane_max_iter = %lane_max_init) -> (i32, i32) {
+        %iter_i32 = index.castu %iter : index to i32
+        %mul = arith.muli %lane_count_i32, %iter_i32 : i32
+        %idx_i32 = arith.addi %mul, %lane_id_i32 : i32
+        %idx = index.castu %idx_i32 : i32 to index
+        %elem = memref.load %input[%idx] : memref<128xi32>
+        %gt = arith.cmpi sgt, %elem, %lane_max_iter : i32
+        %lane_res_next = arith.select %gt, %idx_i32, %lane_res_iter : i32
+        %lane_max_next = arith.select %gt, %elem, %lane_max_iter : i32
+        scf.yield %lane_res_next, %lane_max_next : i32, i32
+      }
+
+      %subgroup_max = gpu.subgroup_reduce maxsi %lane_max : (i32) -> (i32)
+      %eq = arith.cmpi eq, %lane_max, %subgroup_max : i32
+      %ballot = spirv.GroupNonUniformBallot <Subgroup> %eq : vector<4xi32>
+      %lsb = spirv.GroupNonUniformBallotFindLSB <Subgroup> %ballot : vector<4xi32>, i32
+      %cond = arith.cmpi eq, %lsb, %lane_id_i32 : i32
+
+      scf.if %cond {
+        memref.store %lane_res, %output[%idx0] : memref<1xi32>
+      }
+
+      gpu.return
+    }
+  }
+
+  func.func @main() {
+    // Allocate 3 buffers.
+    %in_buf = memref.alloc() : memref<128xi32>
+    %out_buf = memref.alloc() : memref<1xi32>
+    %total_count_buf = memref.alloc() : memref<1xi32>
+
+    // Constants.
+    %cst0 = arith.constant 0 : i32
+    %idx0 = arith.constant 0 : index
+    %idx1 = arith.constant 1 : index
+    %idx16 = arith.constant 16 : index
+    %idx32 = arith.constant 32 : index
+    %idx48 = arith.constant 48 : index
+    %idx64 = arith.constant 64 : index
+    %idx80 = arith.constant 80 : index
+    %idx96 = arith.constant 96 : index
+    %idx112 = arith.constant 112 : index
+
+    // Initialize input buffer.
+    %in_vec = arith.constant dense<[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]> : vector<16xi32>
+    vector.store %in_vec, %in_buf[%idx0] : memref<128xi32>, vector<16xi32>
+    vector.store %in_vec, %in_buf[%idx16] : memref<128xi32>, vector<16xi32>
+    vector.store %in_vec, %in_buf[%idx32] : memref<128xi32>, vector<16xi32>
+    vector.store %in_vec, %in_buf[%idx48] : memref<128xi32>, vector<16xi32>
+    vector.store %in_vec, %in_buf[%idx64] : memref<128xi32>, vector<16xi32>
+    vector.store %in_vec, %in_buf[%idx80] : memref<128xi32>, vector<16xi32>
+    vector.store %in_vec, %in_buf[%idx96] : memref<128xi32>, vector<16xi32>
+    vector.store %in_vec, %in_buf[%idx112] : memref<128xi32>, vector<16xi32>
+
+    // Initialize output buffer.
+    %out_buf2 = memref.cast %out_buf : memref<1xi32> to memref<?xi32>
+    call @fillResource1DInt(%out_buf2, %cst0) : (memref<?xi32>, i32) -> ()
+
+    // Total number of scalars.
+    %total_count = arith.constant 128 : i32
+    %total_count_buf2 = memref.cast %total_count_buf : memref<1xi32> to memref<?xi32>
+    call @fillResource1DInt(%total_count_buf2, %total_count) : (memref<?xi32>, i32) -> ()
+
+    // Launch kernel function and print output.
+    gpu.launch_func @kernels::@kernel_argmax
+        blocks in (%idx1, %idx1, %idx1) threads in (%idx32, %idx1, %idx1)
+        args(%in_buf : memref<128xi32>, %out_buf : memref<1xi32>, %total_count_buf : memref<1xi32>)
+    %out_buf3 = memref.cast %out_buf2 : memref<?xi32> to memref<*xi32>
+    call @printMemrefI32(%out_buf3) : (memref<*xi32>) -> ()
+    return
+  }
+  func.func private @fillResource1DInt(%0 : memref<?xi32>, %1 : i32)
+  func.func private @printMemrefI32(%ptr : memref<*xi32>)
+}
diff --git a/mlir/tools/mlir-vulkan-runner/CMakeLists.txt b/mlir/tools/mlir-vulkan-runner/CMakeLists.txt
index 26d6caacb0a7b1..36ec946b168715 100644
--- a/mlir/tools/mlir-vulkan-runner/CMakeLists.txt
+++ b/mlir/tools/mlir-vulkan-runner/CMakeLists.txt
@@ -57,6 +57,7 @@ if (MLIR_ENABLE_VULKAN_RUNNER)
     MLIRExecutionEngine
     MLIRFuncDialect
     MLIRGPUDialect
+    MLIRIndexDialect
     MLIRIR
     MLIRJitRunner
     MLIRLLVMDialect
diff --git a/mlir/tools/mlir-vulkan-runner/mlir-vulkan-runner.cpp b/mlir/tools/mlir-vulkan-runner/mlir-vulkan-runner.cpp
index 2dd539ef83481f..bd34165574c8d2 100644
--- a/mlir/tools/mlir-vulkan-runner/mlir-vulkan-runner.cpp
+++ b/mlir/tools/mlir-vulkan-runner/mlir-vulkan-runner.cpp
@@ -24,6 +24,7 @@
 #include "mlir/Dialect/Func/IR/FuncOps.h"
 #include "mlir/Dialect/GPU/IR/GPUDialect.h"
 #include "mlir/Dialect/GPU/Transforms/Passes.h"
+#include "mlir/Dialect/Index/IR/IndexDialect.h"
 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
 #include "mlir/Dialect/LLVMIR/Transforms/RequestCWrappers.h"
 #include "mlir/Dialect/MemRef/IR/MemRef.h"
@@ -110,7 +111,8 @@ int main(int argc, char **argv) {
   registry.insert<mlir::arith::ArithDialect, mlir::LLVM::LLVMDialect,
                   mlir::gpu::GPUDialect, mlir::spirv::SPIRVDialect,
                   mlir::scf::SCFDialect, mlir::func::FuncDialect,
-                  mlir::memref::MemRefDialect, mlir::vector::VectorDialect>();
+                  mlir::memref::MemRefDialect, mlir::vector::VectorDialect,
+                  mlir::index::IndexDialect>();
   mlir::registerBuiltinDialectTranslation(registry);
   mlir::registerLLVMDialectTranslation(registry);
 



More information about the Mlir-commits mailing list