[Mlir-commits] [mlir] [mlir][tensor] Add TilingInterface support for fusing tensor.pad (PR #105892)
Quinn Dawkins
llvmlistbot at llvm.org
Fri Aug 23 14:32:55 PDT 2024
https://github.com/qedawkins created https://github.com/llvm/llvm-project/pull/105892
This adds implementations for the two TilingInterface methods required for fusion to `tensor.pad`: `getIterationDomainTileFromResultTile` and `generateResultTileValue`, allowing fusion of pad with a tiled consumer.
>From 1159dd62d07370d7cf2c217118db1211850766ef Mon Sep 17 00:00:00 2001
From: Quinn Dawkins <quinn at nod-labs.com>
Date: Fri, 23 Aug 2024 09:51:09 -0400
Subject: [PATCH] [mlir][tensor] Add TilingInterface support for fusing
tensor.pad
This adds implementations for the two TilingInterface methods required
for fusion to `tensor.pad`: `getIterationDomainTileFromResultTile` and
`generateResultTileValue`, allowing fusion of pad with a tiled
consumer.
---
.../Tensor/IR/TensorTilingInterfaceImpl.cpp | 17 ++++++++
mlir/test/Dialect/Tensor/tiling.mlir | 41 +++++++++++++++++++
2 files changed, 58 insertions(+)
diff --git a/mlir/lib/Dialect/Tensor/IR/TensorTilingInterfaceImpl.cpp b/mlir/lib/Dialect/Tensor/IR/TensorTilingInterfaceImpl.cpp
index dec678de6d1c27..f35a9cd4cb9275 100644
--- a/mlir/lib/Dialect/Tensor/IR/TensorTilingInterfaceImpl.cpp
+++ b/mlir/lib/Dialect/Tensor/IR/TensorTilingInterfaceImpl.cpp
@@ -67,6 +67,23 @@ struct PadOpTiling : public TilingInterface::ExternalModel<PadOpTiling, PadOp> {
resultSizes.assign(sizes.begin(), sizes.end());
return success();
}
+
+ LogicalResult getIterationDomainTileFromResultTile(
+ Operation *op, OpBuilder &b, unsigned resultNumber,
+ ArrayRef<OpFoldResult> offsets, ArrayRef<OpFoldResult> sizes,
+ SmallVectorImpl<OpFoldResult> &iterDomainOffsets,
+ SmallVectorImpl<OpFoldResult> &iterDomainSizes) const {
+ iterDomainOffsets.assign(offsets.begin(), offsets.end());
+ iterDomainSizes.assign(sizes.begin(), sizes.end());
+ return success();
+ }
+
+ FailureOr<TilingResult>
+ generateResultTileValue(Operation *op, OpBuilder &b, unsigned resultNumber,
+ ArrayRef<OpFoldResult> offsets,
+ ArrayRef<OpFoldResult> sizes) const {
+ return getTiledImplementation(op, b, offsets, sizes);
+ }
};
template <typename OpTy>
diff --git a/mlir/test/Dialect/Tensor/tiling.mlir b/mlir/test/Dialect/Tensor/tiling.mlir
index e02ab06a9d5337..193fbe93e0f9ee 100644
--- a/mlir/test/Dialect/Tensor/tiling.mlir
+++ b/mlir/test/Dialect/Tensor/tiling.mlir
@@ -116,6 +116,47 @@ module attributes {transform.with_named_sequence} {
// -----
+// CHECK-LABEL: func @fuse_static_pad_tensor_3_4(
+// CHECK-SAME: %[[IN:.*]]: tensor<7x9xf32>
+// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
+// CHECK-DAG: %[[C2:.*]] = arith.constant 2 : index
+// CHECK-DAG: %[[C3:.*]] = arith.constant 3 : index
+// CHECK-DAG: %[[C15:.*]] = arith.constant 15 : index
+// CHECK-DAG: %[[C16:.*]] = arith.constant 16 : index
+// CHECK: %[[RESULT:.*]] = scf.for {{.*}} = %[[C0]] to %[[C15]] step %[[C2]]
+// CHECK: scf.for {{.*}} = %[[C0]] to %[[C16]] step %[[C3]] iter_args(%[[INNER_OUT:.*]] =
+// CHECK: %[[SWAP_RESULT:.*]] = scf.if
+// CHECK: tensor.generate
+// CHECK: else
+// CHECK: %[[SLICE:.*]] = tensor.extract_slice %[[IN]][{{.*}}, {{.*}}] [{{.*}}, {{.*}}] [1, 1]
+// CHECK: %[[PAD:.*]] = tensor.pad %[[SLICE]]
+// CHECK: %[[COPY:.*]] = linalg.copy ins(%[[SWAP_RESULT:.*]]
+// CHECK: tensor.insert_slice %[[COPY]] into %[[INNER_OUT]][{{.*}}, {{.*}}] [{{.*}}, {{.*}}] [1, 1]
+// CHECK: return %[[RESULT]]
+
+func.func @fuse_static_pad_tensor_3_4(%input_tensor: tensor<7x9xf32>,
+ %pad_value: f32) -> tensor<15x16xf32> {
+ %0 = tensor.pad %input_tensor low[3, 4] high[5, 3] {
+ ^bb0(%arg1: index, %arg2: index):
+ tensor.yield %pad_value : f32
+ } : tensor<7x9xf32> to tensor<15x16xf32>
+ %empty = tensor.empty() : tensor<15x16xf32>
+ %1 = linalg.copy ins(%0 : tensor<15x16xf32>) outs(%empty : tensor<15x16xf32>) -> tensor<15x16xf32>
+ return %1 : tensor<15x16xf32>
+}
+
+module attributes {transform.with_named_sequence} {
+ transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) {
+ %copy = transform.structured.match ops{["linalg.copy"]} in %arg1
+ : (!transform.any_op) -> !transform.any_op
+ %a, %b, %c = transform.structured.fuse %copy [2, 3]
+ : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op)
+ transform.yield
+ }
+}
+
+// -----
+
// CHECK-LABEL: func @static_pad_tensor_0_3(
// CHECK-SAME: %[[IN:.*]]: tensor<7x9xf32>
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
More information about the Mlir-commits
mailing list