[Mlir-commits] [mlir] [mlir][linalg] fix linalg.batch_reduce_matmul auto cast (PR #102585)

zhicong zhong llvmlistbot at llvm.org
Fri Aug 9 01:44:20 PDT 2024


https://github.com/zhczhong created https://github.com/llvm/llvm-project/pull/102585

Fix the auto-cast of `linalg.batch_reduce_matmul` from `cast_to_T(A * cast_to_T(B)) + C` to `cast_to_T(A) * cast_to_T(B) + C`

>From e95fedef54aa3a101cf2a7752b7e8b97181e3037 Mon Sep 17 00:00:00 2001
From: "Zhong, Zhicong" <zhicong.zhong at intel.com>
Date: Fri, 9 Aug 2024 01:41:11 -0700
Subject: [PATCH] fix linalg.batch_reduce_matmul auto cast

---
 .../Linalg/IR/LinalgNamedStructuredOps.yaml   | 27 +++++++++----------
 .../linalg/opdsl/ops/core_named_ops.py        |  3 +--
 .../Dialect/Linalg/generalize-named-ops.mlir  | 27 +++++++++++++++++++
 3 files changed, 41 insertions(+), 16 deletions(-)

diff --git a/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml b/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
index 46b3ec0f60ebfa..249b0f56477cc8 100644
--- a/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
+++ b/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
@@ -1,5 +1,3 @@
-### AUTOGENERATED from core_named_ops.py
-### To regenerate, run: bin/update_core_linalg_named_ops.sh
 --- !LinalgOpConfig
 metadata: !LinalgOpMetadata
   name: copy
@@ -1908,25 +1906,25 @@ structured_op: !LinalgStructuredOpConfig
           scalar_arg: C
         - !ScalarExpression
           scalar_fn:
-            kind: type
-            fn_name: cast_signed
-            type_var: U
+            kind: binary
+            fn_name: mul
             operands:
             - !ScalarExpression
               scalar_fn:
-                kind: binary
-                fn_name: mul
+                kind: type
+                fn_name: cast_signed
+                type_var: U
                 operands:
                 - !ScalarExpression
                   scalar_arg: A
+            - !ScalarExpression
+              scalar_fn:
+                kind: type
+                fn_name: cast_signed
+                type_var: U
+                operands:
                 - !ScalarExpression
-                  scalar_fn:
-                    kind: type
-                    fn_name: cast_signed
-                    type_var: U
-                    operands:
-                    - !ScalarExpression
-                      scalar_arg: B
+                  scalar_arg: B
 --- !LinalgOpConfig
 metadata: !LinalgOpMetadata
   name: matvec
@@ -6509,3 +6507,4 @@ structured_op: !LinalgStructuredOpConfig
                           scalar_const: '2.3283063999999999E-10 : f64'
             - !ScalarExpression
               scalar_arg: min
+
diff --git a/mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py b/mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py
index 67bde8f736ef46..afb68b471d347a 100644
--- a/mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py
+++ b/mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py
@@ -593,8 +593,7 @@ def batch_reduce_matmul(
     domain(D.b, D.m, D.n, D.k)
     implements(ContractionOpInterface)
     C[D.m, D.n] += TypeFn.cast_signed(
-        U, A[D.b, D.m, D.k] * TypeFn.cast_signed(U, B[D.b, D.k, D.n])
-    )
+        U, A[D.b, D.m, D.k]) * TypeFn.cast_signed(U, B[D.b, D.k, D.n]) 
 
 
 @linalg_structured_op
diff --git a/mlir/test/Dialect/Linalg/generalize-named-ops.mlir b/mlir/test/Dialect/Linalg/generalize-named-ops.mlir
index 31fac9b4b41659..1e8f1435ca0fa5 100644
--- a/mlir/test/Dialect/Linalg/generalize-named-ops.mlir
+++ b/mlir/test/Dialect/Linalg/generalize-named-ops.mlir
@@ -329,6 +329,33 @@ func.func @batch_reduce_gemm(%lhs: memref<7x8x9xf32>, %rhs: memref<7x9x8xf32>, %
 // CHECK:         %[[ADD:.+]] = arith.addf %[[BBARG2]], %[[MUL]] : f32
 // CHECK:         linalg.yield %[[ADD]] : f32
 
+// -----
+
+func.func @generalize_batch_reduce_gemm_bf16(%lhs: memref<7x8x9xbf16>, %rhs: memref<7x9x8xbf16>, %out: memref<8x8xf32>) {
+  linalg.batch_reduce_matmul ins(%lhs, %rhs: memref<7x8x9xbf16>, memref<7x9x8xbf16>)
+                             outs(%out: memref<8x8xf32>)
+  return
+}
+
+// CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d3)>
+// CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d3, d2)>
+// CHECK-DAG: #[[MAP2:.+]] = affine_map<(d0, d1, d2, d3) -> (d1, d2)>
+
+// CHECK: @generalize_batch_reduce_gemm_bf16
+
+// CHECK: linalg.generic
+// CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP1]], #[[MAP2]]]
+// CHECK-SAME: iterator_types = ["reduction", "parallel", "parallel", "reduction"]}
+// CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref<7x8x9xbf16>, memref<7x9x8xbf16>)
+// CHECK-SAME: outs(%{{.+}} : memref<8x8xf32>
+// CHECK:         ^{{.+}}(%[[BBARG0:.+]]: bf16, %[[BBARG1:.+]]: bf16, %[[BBARG2:.+]]: f32)
+// CHECK:         %[[EXTBF16_0:.+]] = arith.extf %[[BBARG0]] : bf16 to f32
+// CHECK:         %[[EXTBF16_1:.+]] = arith.extf %[[BBARG1]] : bf16 to f32
+// CHECK:         %[[MUL:.+]] = arith.mulf %[[EXTBF16_0]], %[[EXTBF16_1]] : f32
+// CHECK:         %[[ADD:.+]] = arith.addf %[[BBARG2]], %[[MUL]] : f32
+// CHECK:         linalg.yield %[[ADD]] : f32
+
+
 // -----
 
 // CHECK-LABEL: generalize_linalg_map



More information about the Mlir-commits mailing list