[Mlir-commits] [mlir] 536486f - [MLIR][Linalg] Fix DataLayoutPropagation for tensor.unpack + linalg.generic (#101755)
llvmlistbot at llvm.org
llvmlistbot at llvm.org
Mon Aug 5 10:34:55 PDT 2024
Author: Abhishek Varma
Date: 2024-08-05T23:04:47+05:30
New Revision: 536486fb4f45bffc2f4de5ae13e0cd825e8178a9
URL: https://github.com/llvm/llvm-project/commit/536486fb4f45bffc2f4de5ae13e0cd825e8178a9
DIFF: https://github.com/llvm/llvm-project/commit/536486fb4f45bffc2f4de5ae13e0cd825e8178a9.diff
LOG: [MLIR][Linalg] Fix DataLayoutPropagation for tensor.unpack + linalg.generic (#101755)
-- While pushing down tensor.unpack through linalg.generic we should
take into account DPS. The current implementation was enforcing creating
a tensor.empty() for the final output value. This should've just been
the outs operand of the original linalg.generic.
-- This commit thus adds a fix for the same.
Signed-off-by: Abhishek Varma <abhvarma at amd.com>
Added:
Modified:
mlir/lib/Dialect/Linalg/Transforms/DataLayoutPropagation.cpp
mlir/test/Dialect/Linalg/data-layout-propagation.mlir
Removed:
################################################################################
diff --git a/mlir/lib/Dialect/Linalg/Transforms/DataLayoutPropagation.cpp b/mlir/lib/Dialect/Linalg/Transforms/DataLayoutPropagation.cpp
index 6ea6cda74c446..0741e147cdd69 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/DataLayoutPropagation.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/DataLayoutPropagation.cpp
@@ -1106,23 +1106,11 @@ pushDownUnPackOpThroughGenericOp(RewriterBase &rewriter, GenericOp genericOp,
auto innerDimsPos = destPack.getInnerDimsPos();
auto outerDimsPerm = destPack.getOuterDimsPerm();
- // If the output type for the generic
diff ers from the source
- // unpack op, we need to create a new destination tensor. In the
- // dynamic case we always need a new destination.
- auto loc = genericOp.getLoc();
- Value unPackDest = producerUnPackOp.getDest();
- auto genericOutType =
- cast<RankedTensorType>(genericOp.getDpsInitOperand(0)->get().getType());
- if (producerUnPackOp.getDestType() != genericOutType ||
- !genericOutType.hasStaticShape()) {
- unPackDest = tensor::UnPackOp::createDestinationTensor(
- rewriter, loc, newResult, mixedTiles, innerDimsPos, outerDimsPerm);
- }
-
// Insert an unPackOp right after the packed generic.
Value unPackOpRes =
rewriter
- .create<tensor::UnPackOp>(loc, newResult, unPackDest, innerDimsPos,
+ .create<tensor::UnPackOp>(genericOp.getLoc(), newResult,
+ destPack.getSource(), innerDimsPos,
mixedTiles, outerDimsPerm)
.getResult();
diff --git a/mlir/test/Dialect/Linalg/data-layout-propagation.mlir b/mlir/test/Dialect/Linalg/data-layout-propagation.mlir
index d9206432379fb..07708231a6e2f 100644
--- a/mlir/test/Dialect/Linalg/data-layout-propagation.mlir
+++ b/mlir/test/Dialect/Linalg/data-layout-propagation.mlir
@@ -436,7 +436,7 @@ func.func @unpack_on_output(%arg0: tensor<12x2x56x56x32xf32>) -> tensor<12x56x56
// CHECK-SAME: outs(%[[PACKED_ARG0]]
// CHECK: %[[UNPACK:.+]] = tensor.unpack %[[RES]]
// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
-// CHECK-SAME: into %[[ARG0_EMPTY_UNPACK]]
+// CHECK-SAME: into %[[UNPACKED_ARG0]]
// -----
@@ -475,7 +475,7 @@ func.func @unpack_on_input(%arg0: tensor<12x2x56x56x32xf32>, %init: tensor<12x56
// CHECK-SAME: outs(%[[ARG1_PACK]]
// CHECK: %[[UNPACK:.+]] = tensor.unpack %[[RES]]
// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
-// CHECK-SAME: into %[[ARG0_UNPACK_EMPTY]]
+// CHECK-SAME: into %[[ARG1]]
// -----
@@ -512,10 +512,9 @@ func.func @unpack_element_type_change(%arg0: tensor<12x2x56x56x32xf32>, %init: t
// CHECK-SAME: indexing_maps = [#[[$MAP]], #[[$MAP]]]
// CHECK-SAME: ins(%[[ARG0_PACK]]
// CHECK-SAME: outs(%[[ARG1_PACK]]
-// CHECK: %[[ARG0_NEW_EMPTY_UNPACK:.+]] = tensor.empty() : tensor<12x56x56x64xf16>
// CHECK: %[[UNPACK:.+]] = tensor.unpack %[[RES]]
// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
-// CHECK-SAME: into %[[ARG0_NEW_EMPTY_UNPACK]]
+// CHECK-SAME: into %[[ARG1]]
// -----
@@ -536,6 +535,7 @@ func.func @forward_tensor_empty(%arg0: tensor<12x2x56x56x32xf32>) -> tensor<12x5
// CHECK: #[[$MAP:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)>
// CHECK-LABEL: func.func @forward_tensor_empty
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
+// CHECK: %[[FINAL_RES:.+]] = tensor.empty() : tensor<12x56x56x64xf32>
// CHECK: %[[ARG0_UNPACK_EMPTY:.+]] = tensor.empty() : tensor<12x56x56x64xf32>
// CHECK: %[[UNPACKED_ARG0:.+]] = tensor.unpack %[[ARG0]]
// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
@@ -551,7 +551,7 @@ func.func @forward_tensor_empty(%arg0: tensor<12x2x56x56x32xf32>) -> tensor<12x5
// CHECK-SAME: outs(%[[DEST]]
// CHECK: %[[UNPACKED:.+]] = tensor.unpack %[[RES]]
// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
-// CHECK-SAME: into %[[ARG0_UNPACK_EMPTY]]
+// CHECK-SAME: into %[[FINAL_RES]]
// -----
@@ -913,6 +913,7 @@ func.func @unpack_
diff erent_destination_shape(%arg0: tensor<1x1x1080x1920x16xi32
// CHECK-LABEL: func.func @unpack_
diff erent_destination_shape
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]
+// CHECK: %[[FINAL_RES:.+]] = tensor.empty() : tensor<16x540x960xi32>
// CHECK: %[[INIT:.+]] = tensor.empty() : tensor<1x540x960x16xi32>
// CHECK: %[[PACK_EMPTY:.+]] = tensor.empty() : tensor<1x1x1080x1920x16xi32>
// CHECK: %[[PACK_ARG0:.+]] = tensor.pack
@@ -923,10 +924,9 @@ func.func @unpack_
diff erent_destination_shape(%arg0: tensor<1x1x1080x1920x16xi32
// CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "parallel", "reduction", "reduction", "parallel"]
// CHECK-SAME: ins(%[[PACK_ARG0]], %[[ARG1]]
// CHECK-SAME: outs(%[[INIT]]
-// CHECK: %[[UNPACK_NEW_DEST:.+]] = tensor.empty() : tensor<16x540x960xi32>
// CHECK: %[[UNPACK:.+]] = tensor.unpack %[[POOL]]
// CHECK-SAME: inner_dims_pos = [0] inner_tiles = [16]
-// CHECK-SAME: into %[[UNPACK_NEW_DEST]]
+// CHECK-SAME: into %[[FINAL_RES]]
// CHECK: return %[[UNPACK]] : tensor<16x540x960xi32>
// -----
More information about the Mlir-commits
mailing list