[Mlir-commits] [mlir] 4c3b0a6 - [mlir][tosa] Fix Map for Bias Broadcast (#89059)
llvmlistbot at llvm.org
llvmlistbot at llvm.org
Wed Apr 24 02:13:06 PDT 2024
Author: Jack Frankland
Date: 2024-04-24T17:13:01+08:00
New Revision: 4c3b0a6e009228e8c45586eea7a1f7955d36dd42
URL: https://github.com/llvm/llvm-project/commit/4c3b0a6e009228e8c45586eea7a1f7955d36dd42
DIFF: https://github.com/llvm/llvm-project/commit/4c3b0a6e009228e8c45586eea7a1f7955d36dd42.diff
LOG: [mlir][tosa] Fix Map for Bias Broadcast (#89059)
Added:
Modified:
mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamed.cpp
mlir/test/Conversion/TosaToLinalg/tosa-to-linalg-named.mlir
Removed:
################################################################################
diff --git a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamed.cpp b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamed.cpp
index 8fb8d16486560c..d8fb3abc0bef8a 100644
--- a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamed.cpp
+++ b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamed.cpp
@@ -101,9 +101,18 @@ static mlir::Value linalgBroadcastAndMaybeExtSI(PatternRewriter &rewriter,
// The source tensor is broadcast to all the outer dimensions of the
// result tensor.
SmallVector<AffineExpr> sourceDims;
- for (auto dim : llvm::seq<int64_t>(0, sourceRank)) {
- auto expr = rewriter.getAffineDimExpr(dim + resultRank - sourceRank);
- sourceDims.push_back(expr);
+ // In the case of a rank one source tensor with a single element TOSA
+ // specifies that the value be broadcast meaning we need an edge case for a
+ // constant map.
+ assert(sourceTy.hasStaticShape() &&
+ "Dynamic broadcasting shapes not supported!");
+ if (sourceRank == 1 && sourceTy.getDimSize(0) == 1) {
+ sourceDims.push_back(rewriter.getAffineConstantExpr(0));
+ } else {
+ for (auto dim : llvm::seq<int64_t>(0, sourceRank)) {
+ auto expr = rewriter.getAffineDimExpr(dim + resultRank - sourceRank);
+ sourceDims.push_back(expr);
+ }
}
// Creating maps for the input and output of the broacast-like generic op.
diff --git a/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg-named.mlir b/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg-named.mlir
index b4049000c50dc8..39699ee315e6cb 100644
--- a/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg-named.mlir
+++ b/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg-named.mlir
@@ -503,6 +503,19 @@ func.func @avg_pool_dyn(%arg0: tensor<?x6x34x62xf32>) -> (tensor<?x5x33x62xf32>)
// -----
+// CHECK: #[[$MAP1:.+]] = affine_map<(d0, d1, d2, d3) -> (0)>
+// CHECK: #[[$MAP2:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
+
+// CHECK-LABEL: @conv2d_scalar_bias_f32
+func.func @conv2d_scalar_bias_f32(%input: tensor<1x49x42x27xf32>, %weights: tensor<28x3x3x27xf32>, %bias: tensor<1xf32>) -> () {
+ // CHECK: %[[INIT:.+]] = tensor.empty() : tensor<1x45x40x28xf32>
+ // CHECK: %[[BROADCAST:.+]] = linalg.generic {indexing_maps = [#[[$MAP1]], #[[$MAP2]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg2 : tensor<1xf32>) outs(%[[INIT]] : tensor<1x45x40x28xf32>) {
+ %0 = tosa.conv2d %input, %weights, %bias {pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>, dilation = array<i64: 2, 1>} : (tensor<1x49x42x27xf32>, tensor<28x3x3x27xf32>, tensor<1xf32>) -> tensor<1x45x40x28xf32>
+ return
+}
+
+// -----
+
// CHECK: #[[$MAP1:.+]] = affine_map<(d0, d1, d2, d3) -> (d3)>
// CHECK: #[[$MAP2:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
More information about the Mlir-commits
mailing list