[Mlir-commits] [mlir] [mlir][sparse] update doc and examples of the [dis]assemble operations (PR #88213)
Aart Bik
llvmlistbot at llvm.org
Tue Apr 9 16:48:10 PDT 2024
https://github.com/aartbik created https://github.com/llvm/llvm-project/pull/88213
The doc and examples of the [dis]assemble operations did not reflect all the recent changes on order of the operands. Also clarified some of the text.
>From f862865268f2779115d9eb552463339a88580312 Mon Sep 17 00:00:00 2001
From: Aart Bik <ajcbik at google.com>
Date: Tue, 9 Apr 2024 16:46:11 -0700
Subject: [PATCH] [mlir][sparse] update doc and examples of the [dis]assemble
operations
The doc and examples of the [dis]assemble operations did
not reflect all the recent changes on order of the operands.
Also clarified some of the text.
---
.../SparseTensor/IR/SparseTensorOps.td | 87 +++++++++----------
mlir/test/Dialect/SparseTensor/invalid.mlir | 6 +-
mlir/test/Dialect/SparseTensor/roundtrip.mlir | 14 +--
.../Dialect/SparseTensor/CPU/sparse_pack.mlir | 10 ++-
4 files changed, 60 insertions(+), 57 deletions(-)
diff --git a/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorOps.td b/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorOps.td
index 5df8a176459b7c..b7baf2d81db1e0 100644
--- a/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorOps.td
+++ b/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorOps.td
@@ -61,34 +61,32 @@ def SparseTensor_AssembleOp : SparseTensor_Op<"assemble", [Pure]>,
let summary = "Returns a sparse tensor assembled from the given values and levels";
let description = [{
- Assembles the values and per-level coordinate or postion arrays into a sparse tensor.
- The order and types of provided levels must be consistent with the actual storage
- layout of the returned sparse tensor described below.
+ Assembles the per-level position and coordinate arrays together with
+ the values arrays into a sparse tensor. The order and types of the
+ provided levels must be consistent with the actual storage layout of
+ the returned sparse tensor described below.
- - `values : tensor<? x V>`
- supplies the value for each stored element in the sparse tensor.
- `levels: [tensor<? x iType>, ...]`
- each supplies the sparse tensor coordinates scheme in the sparse tensor for
- the corresponding level as specifed by `sparse_tensor::StorageLayout`.
-
- This operation can be used to assemble a sparse tensor from external
- sources; e.g., when passing two numpy arrays from Python.
-
- Disclaimer: This is the user's responsibility to provide input that can be
- correctly interpreted by the sparsifier, which does not perform
- any sanity test during runtime to verify data integrity.
+ supplies the sparse tensor position and coordinate arrays
+ of the sparse tensor for the corresponding level as specifed by
+ `sparse_tensor::StorageLayout`.
+ - `values : tensor<? x V>`
+ supplies the values array for the stored elements in the sparse tensor.
- TODO: The returned tensor is allowed (in principle) to have non-identity
- dimOrdering/higherOrdering mappings. However, the current implementation
- does not yet support them.
+ This operation can be used to assemble a sparse tensor from an
+ external source; e.g., by passing numpy arrays from Python. It
+ is the user's responsibility to provide input that can be correctly
+ interpreted by the sparsifier, which does not perform any sanity
+ test to verify data integrity.
Example:
```mlir
- %values = arith.constant dense<[ 1.1, 2.2, 3.3 ]> : tensor<3xf64>
- %coordinates = arith.constant dense<[[0,0], [1,2], [1,3]]> : tensor<3x2xindex>
- %st = sparse_tensor.assemble %values, %coordinates
- : tensor<3xf64>, tensor<3x2xindex> to tensor<3x4xf64, #COO>
+ %pos = arith.constant dense<[0, 3]> : tensor<2xindex>
+ %index = arith.constant dense<[[0,0], [1,2], [1,3]]> : tensor<3x2xindex>
+ %values = arith.constant dense<[ 1.1, 2.2, 3.3 ]> : tensor<3xf64>
+ %s = sparse_tensor.assemble (%pos, %index), %values
+ : (tensor<2xindex>, tensor<3x2xindex>), tensor<3xf64> to tensor<3x4xf64, #COO>
// yields COO format |1.1, 0.0, 0.0, 0.0|
// of 3x4 matrix |0.0, 0.0, 2.2, 3.3|
// |0.0, 0.0, 0.0, 0.0|
@@ -96,8 +94,8 @@ def SparseTensor_AssembleOp : SparseTensor_Op<"assemble", [Pure]>,
}];
let assemblyFormat =
- "` ` `(` $levels `)` `,` $values attr-dict"
- " `:` `(` type($levels) `)` `,` type($values) `to` type($result)";
+ "` ` `(` $levels `)` `,` $values attr-dict `:`"
+ " `(` type($levels) `)` `,` type($values) `to` type($result)";
let hasVerifier = 1;
}
@@ -110,21 +108,20 @@ def SparseTensor_DisassembleOp : SparseTensor_Op<"disassemble", [Pure, SameVaria
TensorOf<[AnyType]>:$ret_values,
Variadic<AnyIndexingScalarLike>:$lvl_lens,
AnyIndexingScalarLike:$val_len)> {
- let summary = "Returns the (values, coordinates) pair disassembled from the input tensor";
+ let summary = "Copies the values and levels of the given sparse tensor";
let description = [{
The disassemble operation is the inverse of `sparse_tensor::assemble`.
- It returns the values and per-level position and coordinate array to the
- user from the sparse tensor along with the actual length of the memory used
- in each returned buffer. This operation can be used for returning an
- disassembled MLIR sparse tensor to frontend; e.g., returning two numpy arrays
- to Python.
-
- Disclaimer: This is the user's responsibility to allocate large enough buffers
- to hold the sparse tensor. The sparsifier simply copies each fields
- of the sparse tensor into the user-supplied buffer without bound checking.
+ It copies the values and per-level position and coordinate arrays of
+ the given sparse tensor into the user-supplied buffers along with the
+ actual length of the memory used in each returned tensor.
- TODO: the current implementation does not yet support non-identity mappings.
+ This operation can be used for returning a disassembled MLIR sparse tensor;
+ e.g., copying the sparse tensor contents into pre-allocated numpy arrays
+ back to Python. It is the user's responsibility to allocate large enough
+ buffers of the appropriate types to hold the sparse tensor contents.
+ The sparsifier simply copies all fields of the sparse tensor into the
+ user-supplied buffers without any sanity test to verify data integrity.
Example:
@@ -132,26 +129,26 @@ def SparseTensor_DisassembleOp : SparseTensor_Op<"disassemble", [Pure, SameVaria
// input COO format |1.1, 0.0, 0.0, 0.0|
// of 3x4 matrix |0.0, 0.0, 2.2, 3.3|
// |0.0, 0.0, 0.0, 0.0|
- %v, %p, %c, %v_len, %p_len, %c_len =
- sparse_tensor.disassemble %sp : tensor<3x4xf64, #COO>
- out_lvls(%op, %oi) : tensor<2xindex>, tensor<3x2xindex>,
- out_vals(%od) : tensor<3xf64> ->
- tensor<3xf64>, (tensor<2xindex>, tensor<3x2xindex>), index, (index, index)
- // %v = arith.constant dense<[ 1.1, 2.2, 3.3 ]> : tensor<3xf64>
+ %p, %c, %v, %p_len, %c_len, %v_len =
+ sparse_tensor.disassemble %s : tensor<3x4xf64, #COO>
+ out_lvls(%op, %oi : tensor<2xindex>, tensor<3x2xindex>)
+ out_vals(%od : tensor<3xf64>) ->
+ (tensor<2xindex>, tensor<3x2xindex>), tensor<3xf64>, (index, index), index
// %p = arith.constant dense<[ 0, 3 ]> : tensor<2xindex>
// %c = arith.constant dense<[[0,0], [1,2], [1,3]]> : tensor<3x2xindex>
- // %v_len = 3
+ // %v = arith.constant dense<[ 1.1, 2.2, 3.3 ]> : tensor<3xf64>
// %p_len = 2
// %c_len = 6 (3x2)
+ // %v_len = 3
```
}];
let assemblyFormat =
- "$tensor `:` type($tensor) "
+ "$tensor attr-dict `:` type($tensor)"
"`out_lvls` `(` $out_levels `:` type($out_levels) `)` "
- "`out_vals` `(` $out_values `:` type($out_values) `)` attr-dict"
- "`->` `(` type($ret_levels) `)` `,` type($ret_values) `,` "
- "`(` type($lvl_lens) `)` `,` type($val_len)";
+ "`out_vals` `(` $out_values `:` type($out_values) `)` `->`"
+ "`(` type($ret_levels) `)` `,` type($ret_values) `,` "
+ "`(` type($lvl_lens) `)` `,` type($val_len)";
let hasVerifier = 1;
}
diff --git a/mlir/test/Dialect/SparseTensor/invalid.mlir b/mlir/test/Dialect/SparseTensor/invalid.mlir
index 18851f29d8eaa3..7f5c05190fc9a2 100644
--- a/mlir/test/Dialect/SparseTensor/invalid.mlir
+++ b/mlir/test/Dialect/SparseTensor/invalid.mlir
@@ -60,7 +60,7 @@ func.func @invalid_pack_mis_position(%values: tensor<6xf64>, %coordinates: tenso
func.func @invalid_unpack_type(%sp: tensor<100xf32, #SparseVector>, %values: tensor<6xf64>, %pos: tensor<2xi32>, %coordinates: tensor<6x1xi32>) {
// expected-error at +1 {{input/output element-types don't match}}
- %rv, %rp, %rc, %vl, %pl, %cl = sparse_tensor.disassemble %sp : tensor<100xf32, #SparseVector>
+ %rp, %rc, %rv, %pl, %cl, %vl = sparse_tensor.disassemble %sp : tensor<100xf32, #SparseVector>
out_lvls(%pos, %coordinates : tensor<2xi32>, tensor<6x1xi32>)
out_vals(%values : tensor<6xf64>)
-> (tensor<2xi32>, tensor<6x1xi32>), tensor<6xf64>, (index, index), index
@@ -73,7 +73,7 @@ func.func @invalid_unpack_type(%sp: tensor<100xf32, #SparseVector>, %values: ten
func.func @invalid_unpack_type(%sp: tensor<100x2xf64, #SparseVector>, %values: tensor<6xf64>, %pos: tensor<2xi32>, %coordinates: tensor<6x3xi32>) {
// expected-error at +1 {{input/output trailing COO level-ranks don't match}}
- %rv, %rp, %rc, %vl, %pl, %cl = sparse_tensor.disassemble %sp : tensor<100x2xf64, #SparseVector>
+ %rp, %rc, %rv, %pl, %cl, %vl = sparse_tensor.disassemble %sp : tensor<100x2xf64, #SparseVector>
out_lvls(%pos, %coordinates : tensor<2xi32>, tensor<6x3xi32> )
out_vals(%values : tensor<6xf64>)
-> (tensor<2xi32>, tensor<6x3xi32>), tensor<6xf64>, (index, index), index
@@ -86,7 +86,7 @@ func.func @invalid_unpack_type(%sp: tensor<100x2xf64, #SparseVector>, %values: t
func.func @invalid_unpack_mis_position(%sp: tensor<2x100xf64, #CSR>, %values: tensor<6xf64>, %coordinates: tensor<6xi32>) {
// expected-error at +1 {{inconsistent number of fields between input/output}}
- %rv, %rc, %vl, %pl = sparse_tensor.disassemble %sp : tensor<2x100xf64, #CSR>
+ %rc, %rv, %cl, %vl = sparse_tensor.disassemble %sp : tensor<2x100xf64, #CSR>
out_lvls(%coordinates : tensor<6xi32>)
out_vals(%values : tensor<6xf64>)
-> (tensor<6xi32>), tensor<6xf64>, (index), index
diff --git a/mlir/test/Dialect/SparseTensor/roundtrip.mlir b/mlir/test/Dialect/SparseTensor/roundtrip.mlir
index a47a3d5119f96d..12f69c1d37b9cd 100644
--- a/mlir/test/Dialect/SparseTensor/roundtrip.mlir
+++ b/mlir/test/Dialect/SparseTensor/roundtrip.mlir
@@ -33,21 +33,21 @@ func.func @sparse_pack(%pos: tensor<2xi32>, %index: tensor<6x1xi32>, %data: tens
#SparseVector = #sparse_tensor.encoding<{map = (d0) -> (d0 : compressed), crdWidth=32}>
// CHECK-LABEL: func @sparse_unpack(
// CHECK-SAME: %[[T:.*]]: tensor<100xf64, #
-// CHECK-SAME: %[[OD:.*]]: tensor<6xf64>
-// CHECK-SAME: %[[OP:.*]]: tensor<2xindex>
-// CHECK-SAME: %[[OI:.*]]: tensor<6x1xi32>
+// CHECK-SAME: %[[OP:.*]]: tensor<2xindex>,
+// CHECK-SAME: %[[OI:.*]]: tensor<6x1xi32>,
+// CHECK-SAME: %[[OD:.*]]: tensor<6xf64>)
// CHECK: %[[P:.*]]:2, %[[D:.*]], %[[PL:.*]]:2, %[[DL:.*]] = sparse_tensor.disassemble %[[T]]
// CHECK: return %[[P]]#0, %[[P]]#1, %[[D]]
func.func @sparse_unpack(%sp : tensor<100xf64, #SparseVector>,
- %od : tensor<6xf64>,
%op : tensor<2xindex>,
- %oi : tensor<6x1xi32>)
+ %oi : tensor<6x1xi32>,
+ %od : tensor<6xf64>)
-> (tensor<2xindex>, tensor<6x1xi32>, tensor<6xf64>) {
- %rp, %ri, %rd, %vl, %pl, %cl = sparse_tensor.disassemble %sp : tensor<100xf64, #SparseVector>
+ %rp, %ri, %d, %rpl, %ril, %dl = sparse_tensor.disassemble %sp : tensor<100xf64, #SparseVector>
out_lvls(%op, %oi : tensor<2xindex>, tensor<6x1xi32>)
out_vals(%od : tensor<6xf64>)
-> (tensor<2xindex>, tensor<6x1xi32>), tensor<6xf64>, (index, index), index
- return %rp, %ri, %rd : tensor<2xindex>, tensor<6x1xi32>, tensor<6xf64>
+ return %rp, %ri, %d : tensor<2xindex>, tensor<6x1xi32>, tensor<6xf64>
}
// -----
diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_pack.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_pack.mlir
index 7ecccad212cdbe..5415625ff05d6d 100644
--- a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_pack.mlir
+++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_pack.mlir
@@ -231,7 +231,7 @@ module {
%od = tensor.empty() : tensor<3xf64>
%op = tensor.empty() : tensor<2xi32>
%oi = tensor.empty() : tensor<3x2xi32>
- %p, %i, %d, %dl, %pl, %il = sparse_tensor.disassemble %s5 : tensor<10x10xf64, #SortedCOOI32>
+ %p, %i, %d, %pl, %il, %dl = sparse_tensor.disassemble %s5 : tensor<10x10xf64, #SortedCOOI32>
out_lvls(%op, %oi : tensor<2xi32>, tensor<3x2xi32>)
out_vals(%od : tensor<3xf64>)
-> (tensor<2xi32>, tensor<3x2xi32>), tensor<3xf64>, (i32, i64), index
@@ -244,10 +244,13 @@ module {
%vi = vector.transfer_read %i[%c0, %c0], %i0 : tensor<3x2xi32>, vector<3x2xi32>
vector.print %vi : vector<3x2xi32>
+ // CHECK-NEXT: 3
+ vector.print %dl : index
+
%d_csr = tensor.empty() : tensor<4xf64>
%p_csr = tensor.empty() : tensor<3xi32>
%i_csr = tensor.empty() : tensor<3xi32>
- %rp_csr, %ri_csr, %rd_csr, %ld_csr, %lp_csr, %li_csr = sparse_tensor.disassemble %csr : tensor<2x2xf64, #CSR>
+ %rp_csr, %ri_csr, %rd_csr, %lp_csr, %li_csr, %ld_csr = sparse_tensor.disassemble %csr : tensor<2x2xf64, #CSR>
out_lvls(%p_csr, %i_csr : tensor<3xi32>, tensor<3xi32>)
out_vals(%d_csr : tensor<4xf64>)
-> (tensor<3xi32>, tensor<3xi32>), tensor<4xf64>, (i32, i64), index
@@ -256,6 +259,9 @@ module {
%vd_csr = vector.transfer_read %rd_csr[%c0], %f0 : tensor<4xf64>, vector<3xf64>
vector.print %vd_csr : vector<3xf64>
+ // CHECK-NEXT: 3
+ vector.print %ld_csr : index
+
%bod = tensor.empty() : tensor<6xf64>
%bop = tensor.empty() : tensor<4xindex>
%boi = tensor.empty() : tensor<6x2xindex>
More information about the Mlir-commits
mailing list