[Mlir-commits] [mlir] 2388222 - [MLIR][NVGPU] Adding `nvgpu.warpgroup.mma` Op for Hopper GPUs (#65440)

llvmlistbot at llvm.org llvmlistbot at llvm.org
Fri Sep 22 02:46:34 PDT 2023


Author: Guray Ozen
Date: 2023-09-22T11:46:29+02:00
New Revision: 2388222695d25639cf3a2e08b4a8e97da4d55313

URL: https://github.com/llvm/llvm-project/commit/2388222695d25639cf3a2e08b4a8e97da4d55313
DIFF: https://github.com/llvm/llvm-project/commit/2388222695d25639cf3a2e08b4a8e97da4d55313.diff

LOG: [MLIR][NVGPU] Adding `nvgpu.warpgroup.mma` Op for Hopper GPUs (#65440)

This work introduces a new operation called `warpgroup.mma` to the NVGPU
dialect of MLIR. The purpose of this operation is to facilitate
warpgroup-level matrix multiply and accumulate (WGMMA) operations on
Hopper GPUs with sm_90a architecture.

Previously, the `nvvm.wgmma.mma_async` operation was introduced to
support warpgroup-level matrix operations in NVVM dialect. This op is
used multiple instances of `nvvm.wgmma.mma_async` to achieve the desired
shape. The new `nvgpu.warpgroup.mma` operation abstracts this complexity
and provides a higher-level interface for performing warpgroup-level
matrix operations.

The `nvgpu.warpgroup.mma` does followings:
1) Corresponds multiple `wgmma` instructions.
2) Iterates input matrix descriptors to achieve the desired computation
shape. 3) Groups and runs `wgmma` instructions asynchronously, and
eventually waits them. This are done by `wgmma.fence.aligned`,
`wgmma.commit.group.sync.aligned`, and `wgmma.wait.group.sync.aligned`
4) Results fragmented matrices

Here's an example usage of the `nvgpu.warpgroup.mma` operation:
```
%wgmmaResult, %wgmmaResult2 = nvgpu.warpgroup.mma %descA, %descB, %acc1, %acc2 {transposeB}: 
      !nvgpu.wgmma.descriptor<tensor = memref<128x64xf16, 3>>, 
      !nvgpu.wgmma.descriptor<tensor = memref<64x128xf16, 3>>, 
      !nvgpu.warpgroup.accumulator< fragmented = vector<64x128xf32>>,
      !nvgpu.warpgroup.accumulator< fragmented = vector<64x128xf32>> 
      -> 
      !nvgpu.warpgroup.accumulator< fragmented = vector<64x128xf32>>, 
      !nvgpu.warpgroup.accumulator< fragmented = vector<64x128xf32>>  
```

The op will result following PTX:
```
wgmma.fence.sync.aligned;
wgmma.mma_async.sync.aligned.m64n128k16.f32.f16.f16 {%f1, %f2,    62 more registers}, %descA,     %descB,     p, 1, 1, 0, 1;
wgmma.mma_async.sync.aligned.m64n128k16.f32.f16.f16 {%f1, %f2,    62 more registers}, %descA+2,   %descB+128, p, 1, 1, 0, 1;
wgmma.mma_async.sync.aligned.m64n128k16.f32.f16.f16 {%f1, %f2,    62 more registers}, %descA+4,   %descB+256, p, 1, 1, 0, 1;
wgmma.mma_async.sync.aligned.m64n128k16.f32.f16.f16 {%f1, %f2,    62 more registers}, %descA+8,   %descB+348, p, 1, 1, 0, 1;
wgmma.mma_async.sync.aligned.m64n128k16.f32.f16.f16 {%f500,%f501, 62 more registers}, %descA+512, %descB,     p, 1, 1, 0, 1;
wgmma.mma_async.sync.aligned.m64n128k16.f32.f16.f16 {%f500,%f501, 62 more registers}, %descA+514, %descB+128, p, 1, 1, 0, 1;
wgmma.mma_async.sync.aligned.m64n128k16.f32.f16.f16 {%f500,%f501, 62 more registers}, %descA+516, %descB+256, p, 1, 1, 0, 1;
wgmma.mma_async.sync.aligned.m64n128k16.f32.f16.f16 {%f500,%f501, 62 more registers}, %descA+518, %descB+348, p, 1, 1, 0, 1;
wgmma.commit_group.sync.aligned;
wgmma.wait_group.sync.aligned 1;
```

The Op keeps 
  - first 64 registers (`{%f1, %f2,    62 more registers}`) -> `%acc1` 
- second 64 registers (`{%f500,%f501, 62 more registers}`) -> `%acc2`.

Added: 
    

Modified: 
    mlir/include/mlir/Dialect/LLVMIR/NVVMOps.td
    mlir/include/mlir/Dialect/NVGPU/IR/NVGPU.td
    mlir/include/mlir/Dialect/NVGPU/IR/NVGPUDialect.h
    mlir/lib/Conversion/NVGPUToNVVM/NVGPUToNVVM.cpp
    mlir/lib/Dialect/NVGPU/IR/NVGPUDialect.cpp
    mlir/lib/Dialect/NVGPU/TransformOps/NVGPUTransformOps.cpp
    mlir/test/Conversion/NVGPUToNVVM/nvgpu-to-nvvm.mlir
    mlir/test/Dialect/NVGPU/invalid.mlir

Removed: 
    


################################################################################
diff  --git a/mlir/include/mlir/Dialect/LLVMIR/NVVMOps.td b/mlir/include/mlir/Dialect/LLVMIR/NVVMOps.td
index a528e015523e174..0d4d734edd2b69b 100644
--- a/mlir/include/mlir/Dialect/LLVMIR/NVVMOps.td
+++ b/mlir/include/mlir/Dialect/LLVMIR/NVVMOps.td
@@ -1610,9 +1610,9 @@ def NVVM_WgmmaMmaAsyncOp : NVVM_Op<"wgmma.mma_async",
                 PredOpTrait<"input struct and result struct must be the same type",
                   TCresIsSameAsOpBase<0, 0>>,]> 
 {
-  let results = (outs LLVM_AnyAggregate:$results);
+  let results = (outs LLVM_AnyStruct:$results);
   let arguments = (ins 
-    LLVM_AnyAggregate:$inouts,
+    LLVM_AnyStruct:$inouts,
     I64:$descriptorA, 
     I64:$descriptorB, 
     NVVM_MMAShapeAttr:$shape,

diff  --git a/mlir/include/mlir/Dialect/NVGPU/IR/NVGPU.td b/mlir/include/mlir/Dialect/NVGPU/IR/NVGPU.td
index a3245bf9196eed1..90381648dac6acc 100644
--- a/mlir/include/mlir/Dialect/NVGPU/IR/NVGPU.td
+++ b/mlir/include/mlir/Dialect/NVGPU/IR/NVGPU.td
@@ -192,6 +192,19 @@ def NVGPU_WarpgroupMatrixDescriptor : NVGPU_Type<"WarpgroupMatrixDescriptor", "w
   let assemblyFormat = "`<` struct(params) `>`";
 }
 
+def NVGPU_WarpgroupAccumulator : NVGPU_Type<"WarpgroupAccumulator", "warpgroup.accumulator", []> {
+  let parameters = (ins "VectorType":$fragmented);
+  let assemblyFormat = "`<` struct(params) `>`";
+  let description = [{
+    This type represents the result matrix obtained from `nvgpu.warpgroup.mma`. 
+    The `$fragmented` type signifies the distributed or fragmented result 
+    vector that is collectively owned by all the threads in the warp-group 
+    that executed `nvgpu.warpgroup.mma`.
+    [See the details of register fragment layout for accumulator matrix D]
+    (https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#wgmma-64n16-d) 
+  }];
+}
+
 //===----------------------------------------------------------------------===//
 // NVGPU Op Definitions
 //===----------------------------------------------------------------------===//
@@ -664,5 +677,48 @@ def NVGPU_GenerateGmmaDescriptorOp : NVGPU_Op<"wgmma.generate.descriptor", []> {
   let hasVerifier = 1;
 }
 
+def NVGPU_WarpgroupMmaOp : NVGPU_Op<"warpgroup.mma"> {
+  let description = [{
+    The `nvgpu.warpgroup.mma` op performs the warpgroup-level (4 warps) 
+    matrix-multiply-and-accumulate (mma) operation that results in 
+    `nvvm.wgmma.mma_async`. 
+    
+    The operands are `descriptorA` and `descriptorB` that are wgmma matrix 
+    descriptors that shows the properties of the matrix in shared memory. The 
+    results are thread-level ownership to the warpgroup-level mma operation 
+    shape. The shape is deduced from the descriptor types and output vector.
+
+    The Op corresponds multiple `nvvm.wgmma.mma_async` operations to complete the 
+    given shape. As the instruction `nvvm.wgmma.async` is an asynchronous, 
+    this Op groups the `nvvm.wgmma.async` and surrounds them between 
+    `wgmma.fence.aligned` and `wgmma.commit.group.sync.aligned`, 
+    `wgmma.wait.group.sync.aligned` Ops.
+
+    Example:
+    ```mlir
+      %r1,%r2 = nvgpu.warpgroup.mma %wgmmaDescA, %wgmmaDescB, %acc1, %acc2: 
+                 !nvgpu.wgmma.descriptor<tensor = memref<128x64xf16, 3>>, 
+                 !nvgpu.wgmma.descriptor<tensor = memref<64x128xf16, 3>>, 
+                 !nvgpu.warpgroup.accumulator<fragmented = vector<64x128xf32>>,
+                 !nvgpu.warpgroup.accumulator<fragmented = vector<64x128xf32>>
+                 -> 
+                 !nvgpu.warpgroup.accumulator<fragmented = vector<64x128xf32>>,
+                 !nvgpu.warpgroup.accumulator<fragmented = vector<64x128xf32>>
+    ```
+  }];
+
+  let arguments = (ins NVGPU_WarpgroupMatrixDescriptor:$descriptorA, 
+                       NVGPU_WarpgroupMatrixDescriptor:$descriptorB,                                               
+                       DefaultValuedOptionalAttr<I32Attr, "1">:$waitGroup,
+                       OptionalAttr<UnitAttr>:$transposeA,
+                       OptionalAttr<UnitAttr>:$transposeB,
+                       Variadic<NVGPU_WarpgroupAccumulator>:$matrixC);
+  let results = (outs Variadic<NVGPU_WarpgroupAccumulator>:$matrixD);
+  let assemblyFormat = [{    
+    $descriptorA`,` $descriptorB`,` $matrixC attr-dict
+    `:` type($descriptorA) `,` type($descriptorB) `,` type($matrixC) `->` type($matrixD)
+  }];
+  let hasVerifier = 1;
+}
 
 #endif // NVGPU

diff  --git a/mlir/include/mlir/Dialect/NVGPU/IR/NVGPUDialect.h b/mlir/include/mlir/Dialect/NVGPU/IR/NVGPUDialect.h
index 192afcb2dba7913..96af26842dafea2 100644
--- a/mlir/include/mlir/Dialect/NVGPU/IR/NVGPUDialect.h
+++ b/mlir/include/mlir/Dialect/NVGPU/IR/NVGPUDialect.h
@@ -21,6 +21,8 @@
 
 #include "mlir/Dialect/NVGPU/IR/NVGPUEnums.h.inc"
 
+constexpr int kWarpSize = 32;
+
 #define GET_ATTRDEF_CLASSES
 #include "mlir/Dialect/NVGPU/IR/NVGPUAttrDefs.h.inc"
 

diff  --git a/mlir/lib/Conversion/NVGPUToNVVM/NVGPUToNVVM.cpp b/mlir/lib/Conversion/NVGPUToNVVM/NVGPUToNVVM.cpp
index b045089244ff1a7..f74aa05c0c4c4ff 100644
--- a/mlir/lib/Conversion/NVGPUToNVVM/NVGPUToNVVM.cpp
+++ b/mlir/lib/Conversion/NVGPUToNVVM/NVGPUToNVVM.cpp
@@ -17,10 +17,12 @@
 #include "mlir/Dialect/LLVMIR/NVVMDialect.h"
 #include "mlir/Dialect/MemRef/IR/MemRef.h"
 #include "mlir/Dialect/NVGPU/IR/NVGPUDialect.h"
+#include "mlir/Dialect/SCF/Transforms/Patterns.h"
 #include "mlir/IR/PatternMatch.h"
 #include "mlir/IR/TypeUtilities.h"
 #include "mlir/Pass/Pass.h"
 #include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
 #include "llvm/Support/raw_ostream.h"
 
 #define DEBUG_TYPE "nvgpu-to-nvvm"
@@ -34,6 +36,10 @@ namespace mlir {
 
 using namespace mlir;
 
+/// Number of bits that needs to excluded when building matrix descriptor for
+/// wgmma operations.
+constexpr int exclude4LSB = 4;
+
 /// GPU has 32 bit registers, this function truncates values when larger width
 /// is not needed.
 static Value truncToI32(ConversionPatternRewriter &rewriter, Location loc,
@@ -419,6 +425,15 @@ struct ConvertNVGPUToNVVMPass
     converter.addConversion([&](nvgpu::DeviceAsyncTokenType type) -> Type {
       return converter.convertType(IntegerType::get(type.getContext(), 32));
     });
+    converter.addConversion([&](nvgpu::WarpgroupAccumulatorType type) -> Type {
+      VectorType vtype = type.getFragmented();
+      SmallVector<Type> structBody;
+      for (unsigned i = 0; i < vtype.getDimSize(0); i++)
+        structBody.push_back(vtype.getElementType());
+      auto convertedType =
+          LLVM::LLVMStructType::getLiteral(type.getContext(), structBody);
+      return converter.convertType(convertedType);
+    });
     converter.addConversion([&](nvgpu::MBarrierTokenType type) -> Type {
       return converter.convertType(IntegerType::get(type.getContext(), 64));
     });
@@ -438,6 +453,8 @@ struct ConvertNVGPUToNVVMPass
     target.addLegalDialect<::mlir::LLVM::LLVMDialect>();
     target.addLegalDialect<::mlir::memref::MemRefDialect>();
     target.addLegalDialect<::mlir::NVVM::NVVMDialect>();
+    mlir::scf::populateSCFStructuralTypeConversionsAndLegality(
+        converter, patterns, target);
     if (failed(applyPartialConversion(getOperation(), target,
                                       std::move(patterns))))
       signalPassFailure();
@@ -984,10 +1001,9 @@ struct NVGPUGenerateGmmaDescriptorLowering
                                          shiftLeft(val, startBit));
     };
 
-    int ex4LSB = 4;
     int64_t sizeN = op.getTensorMap().getType().getTensor().getDimSize(0);
-    uint64_t strideDimVal = (layout << 3) >> ex4LSB;
-    uint64_t leadDimVal = (sizeN * layout) >> ex4LSB;
+    uint64_t strideDimVal = (layout << 3) >> exclude4LSB;
+    uint64_t leadDimVal = (sizeN * layout) >> exclude4LSB;
     uint64_t offsetVal = 0;
 
     Value strideDim = makeConst(strideDimVal);
@@ -1141,6 +1157,148 @@ struct NVGPUTmaCreateDescriptorOpLowering
   }
 };
 
+struct NVGPUWarpgroupMmaOpLowering
+    : public ConvertOpToLLVMPattern<nvgpu::WarpgroupMmaOp> {
+  using ConvertOpToLLVMPattern<nvgpu::WarpgroupMmaOp>::ConvertOpToLLVMPattern;
+
+  LogicalResult getWgmmaShape(int64_t sizeM, int64_t sizeN, Type inputElemType,
+                              int &wgmmaShapeM, int &wgmmaShapeN,
+                              int &wgmmaShapeK) const {
+    wgmmaShapeM = 64;
+    wgmmaShapeN = sizeN;
+    if (inputElemType.isTF32()) {
+      wgmmaShapeK = 8;
+    } else if (inputElemType.isF16() || inputElemType.isBF16()) {
+      wgmmaShapeK = 16;
+    } else if (inputElemType.isFloat8E4M3FN() || inputElemType.isFloat8E5M2() ||
+               inputElemType.isInteger(16)) {
+      wgmmaShapeK = 32;
+    } else if (inputElemType.isInteger(1)) {
+      wgmmaShapeK = 256;
+    } else {
+      llvm_unreachable("msg: not supported K shape");
+    }
+    LLVM_DEBUG(DBGS() << "Generating wgmma.mma.async shape[m = " << wgmmaShapeM
+                      << ", n = " << wgmmaShapeN << ", k = " << wgmmaShapeK
+                      << "]\n");
+    return success();
+  }
+
+  Value generateNVVMWgmmaOp(MLIRContext *ctx,
+                            ConversionPatternRewriter &rewriter, Location loc,
+                            int m, int n, int k, Type resultStructType,
+                            Value inout, Value descriptorA,
+                            Value descriptorB) const {
+    auto shape = NVVM::MMAShapeAttr::get(ctx, m, n, k);
+    auto scaleOut = NVVM::WGMMAScaleOutAttr::get(ctx, NVVM::WGMMAScaleOut::one);
+    auto scaleIn = NVVM::WGMMAScaleInAttr::get(ctx, NVVM::WGMMAScaleIn::one);
+    auto layoutA = NVVM::MMALayoutAttr::get(ctx, NVVM::MMALayout::row);
+    auto layoutB = NVVM::MMALayoutAttr::get(ctx, NVVM::MMALayout::col);
+    // todo: handle other input and output types
+    auto itype = NVVM::WGMMATypesAttr::get(ctx, NVVM::WGMMATypes::f16);
+    auto overflow =
+        NVVM::MMAIntOverflowAttr::get(ctx, NVVM::MMAIntOverflow::wrapped);
+    Value res = rewriter.create<NVVM::WgmmaMmaAsyncOp>(
+        loc, resultStructType, inout, descriptorA, descriptorB, shape, itype,
+        itype, scaleOut, scaleIn, scaleIn, layoutA, layoutB, overflow);
+    return res;
+  }
+
+  LogicalResult
+  matchAndRewrite(nvgpu::WarpgroupMmaOp op, OpAdaptor adaptor,
+                  ConversionPatternRewriter &rewriter) const override {
+    int64_t sizeM = op.getDescriptorA().getType().getTensor().getDimSize(0);
+    int64_t sizeN = op.getDescriptorB().getType().getTensor().getDimSize(1);
+    int64_t sizeK = op.getDescriptorA().getType().getTensor().getDimSize(1);
+
+    LLVM_DEBUG(DBGS() << "===--- GEMM D[" << sizeM << "][" << sizeN << "] += A["
+                      << sizeM << "][" << sizeK << "] * B[" << sizeK << "]["
+                      << sizeN << "] ---===\n");
+
+    int wgmmaShapeM, wgmmaShapeN, wgmmaShapeK;
+    if (failed(getWgmmaShape(sizeM, sizeN, rewriter.getF16Type(), wgmmaShapeM,
+                             wgmmaShapeN, wgmmaShapeK))) {
+      return failure();
+    }
+
+    Value descriptorA = adaptor.getDescriptorA();
+    Value descriptorB = adaptor.getDescriptorB();
+
+    //  Generate wgmma group
+
+    auto loc = op->getLoc();
+    MemRefType typeTensorA = op.getDescriptorA().getType().getTensor();
+    MemRefType typeTensorB = op.getDescriptorB().getType().getTensor();
+
+    auto makeAdd = [&](Value lhs, Value rhs) -> Value {
+      return rewriter.create<LLVM::AddOp>(loc, lhs.getType(), lhs, rhs);
+    };
+
+    auto iterateDescA = [&](Value desc, int iterM, int iterN,
+                            int iterK) -> Value {
+      // todo : Handle column major
+      int byte = typeTensorA.getElementTypeBitWidth() / 8;
+      int tileShapeA = typeTensorA.getDimSize(1);
+      int incrementVal =
+          ((wgmmaShapeK * iterK) + (sizeK * tileShapeA * iterM)) * byte;
+      incrementVal = incrementVal >> exclude4LSB;
+      LLVM_DEBUG(DBGS() << "\t\t[m: " << iterM << " n: " << iterN << " k: "
+                        << iterK << "] [wgmma descriptors] Descriptor A + "
+                        << incrementVal << " | \t ");
+      if (!incrementVal)
+        return desc;
+      return makeAdd(desc, makeI64Const(rewriter, op, incrementVal));
+    };
+
+    auto iterateDescB = [&](Value desc, int iterM, int iterN,
+                            int iterK) -> Value {
+      // todo : Handle row major
+      int byte = typeTensorB.getElementTypeBitWidth() / 8;
+      int incrementVal = typeTensorB.getDimSize(0) * wgmmaShapeK * iterK * byte;
+      incrementVal = incrementVal >> exclude4LSB;
+      LLVM_DEBUG(DBGSE() << "Descriptor B + " << incrementVal << "\n");
+      if (!incrementVal)
+        return desc;
+      return makeAdd(desc, makeI64Const(rewriter, op, incrementVal));
+    };
+
+    rewriter.create<NVVM::WgmmaFenceAlignedOp>(loc);
+
+    SmallVector<Value> wgmmaResults;
+    for (int iterM = 0; iterM < (sizeM / wgmmaShapeM); iterM++) {
+      Value matrixC = adaptor.getMatrixC()[iterM];
+      Value matrixD = op.getMatrixD()[iterM];
+      Type structType = getTypeConverter()->convertType(matrixD.getType());
+      LLVM_DEBUG(DBGS() << " D[" << (iterM * wgmmaShapeM) << ":"
+                        << (iterM * wgmmaShapeM) + wgmmaShapeM << "][" << 0
+                        << ":" << wgmmaShapeN << "] += \n");
+      for (int iterK = 0; iterK < (sizeK / wgmmaShapeK); iterK++) {
+        Value descA = iterateDescA(descriptorA, iterM, 0, iterK);
+        Value descB = iterateDescB(descriptorB, iterM, 0, iterK);
+        LLVM_DEBUG(DBGS() << "\t wgmma."
+                          << "m" << wgmmaShapeM << "n" << wgmmaShapeN << "k"
+                          << wgmmaShapeK << "(A[" << (iterM * wgmmaShapeM)
+                          << ":" << (iterM * wgmmaShapeM) + wgmmaShapeM << "]["
+                          << (iterK * wgmmaShapeK) << ":"
+                          << (iterK * wgmmaShapeK + wgmmaShapeK) << "] * "
+                          << " B[" << (iterK * wgmmaShapeK) << ":"
+                          << (iterK * wgmmaShapeK + wgmmaShapeK) << "][" << 0
+                          << ":" << wgmmaShapeN << "])\n");
+        matrixC = generateNVVMWgmmaOp(op->getContext(), rewriter, loc,
+                                      wgmmaShapeM, wgmmaShapeN, wgmmaShapeK,
+                                      structType, matrixC, descA, descB);
+      }
+      wgmmaResults.push_back(matrixC);
+    }
+    rewriter.create<NVVM::WgmmaGroupSyncAlignedOp>(loc);
+    rewriter.create<NVVM::WgmmaWaitGroupSyncOp>(loc, op.getWaitGroup());
+
+    ValueRange myres(wgmmaResults);
+    rewriter.replaceOp(op, myres);
+    return success();
+  }
+};
+
 } // namespace
 
 void mlir::populateNVGPUToNVVMConversionPatterns(LLVMTypeConverter &converter,
@@ -1156,6 +1314,7 @@ void mlir::populateNVGPUToNVVMConversionPatterns(LLVMTypeConverter &converter,
       NVGPUTmaCreateDescriptorOpLowering,    // nvgpu.tma.create.descriptor
       NVGPUMBarrierArriveExpectTxLowering,   // nvgpu.mbarrier.arrive.expect_tx
       NVGPUGenerateGmmaDescriptorLowering,   // nvgpu.wgmma.generate.descriptor
+      NVGPUWarpgroupMmaOpLowering,           // nvgpu.warpgroup.mma
       MmaSyncOptoNVVM, MmaLdMatrixOpToNVVM, NVGPUAsyncCopyLowering,
       NVGPUAsyncCreateGroupLowering, NVGPUAsyncWaitLowering,
       NVGPUMmaSparseSyncLowering>(converter);

diff  --git a/mlir/lib/Dialect/NVGPU/IR/NVGPUDialect.cpp b/mlir/lib/Dialect/NVGPU/IR/NVGPUDialect.cpp
index d832a983a132d61..d96ed69982870b4 100644
--- a/mlir/lib/Dialect/NVGPU/IR/NVGPUDialect.cpp
+++ b/mlir/lib/Dialect/NVGPU/IR/NVGPUDialect.cpp
@@ -22,6 +22,7 @@
 #include "mlir/IR/PatternMatch.h"
 #include "mlir/IR/TypeUtilities.h"
 #include "mlir/IR/Verifier.h"
+#include "llvm/ADT/STLExtras.h"
 #include "llvm/ADT/StringExtras.h"
 #include "llvm/ADT/TypeSwitch.h"
 
@@ -151,7 +152,6 @@ static LogicalResult verifyMmaSyncOp(Operation *op,
   //  - For F32 (TF32), F16, S8, and S4 data
   //    types the fundamental tensor core operation is of shape 8-by-8-by-128b.
   //  - F64 is an exception and is of shape 8-by-8-by-256b.
-  constexpr int kThreads = 32; // 32 threads per warp
   int64_t shapeM = 8;
   int64_t shapeN = 8;
   int64_t shapeK; // set based on data type (128b for all data types except F64)
@@ -206,17 +206,17 @@ static LogicalResult verifyMmaSyncOp(Operation *op,
 
   // verify warp-wide size for vector a
   int64_t sparseFactor = sparse ? 2 : 1;
-  if (aShape[0] * aShape[1] * kThreads != m * k / sparseFactor)
+  if (aShape[0] * aShape[1] * kWarpSize != m * k / sparseFactor)
     return op->emitOpError()
            << "expected " << m * k << " warp-wide matrix A elements";
 
   // verify warp-wide size for vector b
-  if (bShape[0] * bShape[1] * kThreads != k * n)
+  if (bShape[0] * bShape[1] * kWarpSize != k * n)
     return op->emitOpError()
            << "expected " << k * n << " warp-wide matrix B elements";
 
   // verify warp-wide size for vector c
-  if (cShape[0] * cShape[1] * kThreads != m * n)
+  if (cShape[0] * cShape[1] * kWarpSize != m * n)
     return op->emitOpError()
            << "expected " << m * n << " warp-wide matrix C elements";
 
@@ -402,6 +402,133 @@ LogicalResult GenerateGmmaDescriptorOp::verify() {
   return success();
 }
 
+//===----------------------------------------------------------------------===//
+// WarpgroupMmaOp
+//===----------------------------------------------------------------------===//
+
+LogicalResult isAllowedWGMMADataType(Type typeD, Type typeA, Type typeB) {
+  // F32 += F16 + F16
+  // F16 += F16 + F16
+  if (typeA.isF16() && typeB.isF16() && (typeD.isF32() || typeD.isF16()))
+    return success();
+  // F32 += TF32 + TF32
+  if (typeA.isTF32() && typeD.isF32() && typeB.isTF32())
+    return success();
+  // s32 += i8 + i8
+  if (typeA.isInteger(16) && typeB.isInteger(16) && typeD.isInteger(32))
+    return success();
+  // s32 += i1 + i1
+  if (typeA.isInteger(1) && typeB.isInteger(1) && typeD.isInteger(32))
+    return success();
+  // F32 += BF16 + BF16
+  // F16 += BF16 + BF16
+  if (typeA.isBF16() && typeB.isBF16() && (typeD.isF32() || typeD.isF16()))
+    return success();
+  // F16 += f8 + f8
+  // F32 += f8 + f8
+  if ((typeA.isFloat8E5M2() || typeA.isFloat8E4M3FN()) &&
+      (typeB.isFloat8E5M2() || typeB.isFloat8E4M3FN()) &&
+      (typeD.isF32() || typeD.isF16()))
+    return success();
+
+  return failure();
+}
+
+LogicalResult isAllowedSizeN(int sizeN, Type typeA) {
+  SmallVector<int> allowedN = {8,   16,  24,  32,  40,  48,  56,  64,
+                               72,  80,  88,  96,  104, 112, 120, 128,
+                               136, 144, 152, 160, 168, 176, 184, 192,
+                               200, 208, 216, 224, 232, 240, 248, 256};
+  SmallVector<int> allowedNshort = {8,   16,  24,  32,  48,  64,
+                                    80,  96,  112, 128, 144, 160,
+                                    176, 192, 208, 224, 240, 256};
+  if (typeA.isBF16() || typeA.isF16() || typeA.isTF32() ||
+      typeA.isFloat8E4M3FN() || typeA.isFloat8E5M2())
+    if (llvm::any_of(allowedN, [&](int n) { return sizeN == n; }))
+      return success();
+
+  if (typeA.isInteger(8) || typeA.isInteger(1))
+    if (llvm::any_of(allowedNshort, [&](int n) { return sizeN == n; }))
+      return success();
+  return failure();
+}
+
+LogicalResult WarpgroupMmaOp::verify() {
+  if (getTransposeA() && !getTransposeB())
+    return emitOpError() << "supports non-transpose A (Row Major) "
+                            "and transpose B (Column Major) for the time being";
+  MemRefType matrixA = getDescriptorA().getType().getTensor();
+  MemRefType matrixB = getDescriptorB().getType().getTensor();
+  VectorType matrixC = getMatrixC()
+                           .front()
+                           .getType()
+                           .cast<WarpgroupAccumulatorType>()
+                           .getFragmented();
+  VectorType matrixD = getMatrixD()
+                           .front()
+                           .getType()
+                           .cast<WarpgroupAccumulatorType>()
+                           .getFragmented();
+  unsigned sizeAcc = getMatrixC().size();
+
+  if (getMatrixC().size() != getMatrixD().size())
+    return emitOpError() << "number of matrix C and matrix D must be the same";
+
+  if (llvm::all_of(getMatrixC(),
+                   [&](Value rhs) { return rhs.getType() == matrixC; })) {
+    return emitOpError()
+           << "types of all operands in matrix C must be the same";
+  }
+  if (llvm::all_of(getMatrixD(),
+                   [&](Value rhs) { return rhs.getType() == matrixC; })) {
+    return emitOpError()
+           << "types of all operands in matrix D must be the same as matrix C";
+  }
+
+  if (matrixA.getRank() != 2 || matrixB.getRank() != 2 ||
+      matrixC.getRank() != 2 || matrixD.getRank() != 2) {
+    return emitOpError()
+           << "has matrices A, B, C and D, they must be 2 dimensional";
+  }
+
+  if (matrixA.getShape()[1] != matrixB.getShape()[0])
+    return emitOpError() << "2nd dim matrix-A (" << matrixA.getShape()[1]
+                         << ")!= 1st dim matrix-B (" << matrixB.getShape()[0]
+                         << " )";
+  if (matrixA.getShape()[0] != (matrixC.getShape()[0] * sizeAcc))
+    return emitOpError() << "1st dim matrix-A ( " << matrixA.getShape()[0]
+                         << " )!= 1st dim matrix-C ( " << matrixC.getShape()[0]
+                         << " )";
+  if (matrixB.getShape()[1] != matrixC.getShape()[1])
+    return emitOpError() << "2nd dim matrix-B ( " << matrixB.getShape()[1]
+                         << " ) != 2nd dim matrix-C ( " << matrixC.getShape()[1]
+                         << " )";
+
+  if (failed(isAllowedWGMMADataType(matrixC.getElementType(),
+                                    matrixA.getElementType(),
+                                    matrixB.getElementType())))
+    return emitOpError() << matrixC.getElementType()
+                         << " += " << matrixA.getElementType() << " * "
+                         << matrixB.getElementType()
+                         << ", it is not supported.";
+  // Check N
+  if (failed(isAllowedSizeN(matrixB.getDimSize(1), matrixA.getElementType()))) {
+    return emitOpError() << "has input type " << matrixB << " n is set to "
+                         << matrixB.getDimSize(1) << ", it is not supported";
+  }
+
+  // Currently, f16/bf16 supported
+  if (!matrixC.getElementType().isF32() && !matrixA.getElementType().isF16() &&
+      !matrixA.getElementType().isBF16()) {
+    return emitOpError() << "hit a limitation: " << matrixC.getElementType()
+                         << " += " << matrixA.getElementType() << " * "
+                         << matrixB.getElementType()
+                         << ", it is not supported yet";
+  }
+
+  return success();
+}
+
 //===----------------------------------------------------------------------===//
 // TableGen'd dialect, type, and op definitions
 //===----------------------------------------------------------------------===//

diff  --git a/mlir/lib/Dialect/NVGPU/TransformOps/NVGPUTransformOps.cpp b/mlir/lib/Dialect/NVGPU/TransformOps/NVGPUTransformOps.cpp
index a173317bbbdb3f4..680c21ab74fe020 100644
--- a/mlir/lib/Dialect/NVGPU/TransformOps/NVGPUTransformOps.cpp
+++ b/mlir/lib/Dialect/NVGPU/TransformOps/NVGPUTransformOps.cpp
@@ -60,10 +60,25 @@ void transform::ApplyNVGPUToNVVMConversionPatternsOp::populatePatterns(
     return llvmTypeConverter.convertType(
         IntegerType::get(type.getContext(), 64));
   });
+  llvmTypeConverter.addConversion(
+      [&](nvgpu::WarpgroupAccumulatorType type) -> Type {
+        VectorType vtype = type.getFragmented();
+        SmallVector<Type> structBody;
+        for (unsigned i = 0; i < vtype.getDimSize(0); i++)
+          structBody.push_back(vtype.getElementType());
+        auto convertedType =
+            LLVM::LLVMStructType::getLiteral(type.getContext(), structBody);
+        return llvmTypeConverter.convertType(convertedType);
+      });
   llvmTypeConverter.addConversion([&](nvgpu::MBarrierType type) -> Type {
     return llvmTypeConverter.convertType(
         getMBarrierMemrefType(type.getContext(), type));
   });
+  llvmTypeConverter.addConversion(
+      [&](nvgpu::WarpgroupMatrixDescriptorType type) -> Type {
+        return llvmTypeConverter.convertType(
+            IntegerType::get(type.getContext(), 64));
+      });
   llvmTypeConverter.addConversion(
       [&](nvgpu::TensorMapDescriptorType type) -> Type {
         return llvmTypeConverter.getPointerType(

diff  --git a/mlir/test/Conversion/NVGPUToNVVM/nvgpu-to-nvvm.mlir b/mlir/test/Conversion/NVGPUToNVVM/nvgpu-to-nvvm.mlir
index 0d7ace52ccb36c9..f011007e040ce9c 100644
--- a/mlir/test/Conversion/NVGPUToNVVM/nvgpu-to-nvvm.mlir
+++ b/mlir/test/Conversion/NVGPUToNVVM/nvgpu-to-nvvm.mlir
@@ -672,6 +672,66 @@ func.func @create_wgmma_descriptor(%tensorMap : !tensorMap) -> !nvgpu.wgmma.desc
   func.return %descA : !nvgpu.wgmma.descriptor<tensor=memref<128x64xf16,3>>
 }
 
+// CHECK-LABEL: @warpgroup_mma_128_128_64(  
+// CHECK-SAME: %[[arg0:[a-zA-Z0-9_]+]]: !nvgpu.wgmma.descriptor<tensor = memref<128x64xf16, 3>>, %[[arg1:[a-zA-Z0-9_]+]]: !nvgpu.wgmma.descriptor<tensor = memref<64x128xf16, 3>>, %[[arg2:[a-zA-Z0-9_]+]]: !nvgpu.warpgroup.accumulator<fragmented = vector<64x128xf32>>, %[[arg3:[a-zA-Z0-9_]+]]: !nvgpu.warpgroup.accumulator<fragmented = vector<64x128xf32>>)
+func.func @warpgroup_mma_128_128_64(
+      %descA: !nvgpu.wgmma.descriptor<tensor = memref<128x64xf16, 3>>, 
+      %descB: !nvgpu.wgmma.descriptor<tensor = memref<64x128xf16, 3>>, 
+      %acc1: !nvgpu.warpgroup.accumulator< fragmented = vector<64x128xf32>>,
+      %acc2: !nvgpu.warpgroup.accumulator< fragmented = vector<64x128xf32>>) 
+{
+// CHECK: %[[S0:.+]] = builtin.unrealized_conversion_cast %[[arg0]] : !nvgpu.wgmma.descriptor<tensor = memref<128x64xf16, 3>> to i64
+// CHECK: %[[S1:.+]] = builtin.unrealized_conversion_cast %[[arg1]] : !nvgpu.wgmma.descriptor<tensor = memref<64x128xf16, 3>> to i64
+// CHECK: %[[S2:.+]] = builtin.unrealized_conversion_cast %[[arg2]] : !nvgpu.warpgroup.accumulator<fragmented = vector<64x128xf32>> to !llvm.struct<(f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32)>
+// CHECK: %[[S3:.+]] = builtin.unrealized_conversion_cast %[[arg3]] : !nvgpu.warpgroup.accumulator<fragmented = vector<64x128xf32>> to !llvm.struct<(f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32)>
+// CHECK: nvvm.wgmma.fence.aligned
+// CHECK: %[[S4:.+]] = nvvm.wgmma.mma_async %[[S0]], %[[S1]], <m = 64, n = 128, k = 16>, D[%[[S2]], <one>, <wrapped>], A[<f16>, <one>, <row>], B[<f16>, <one>, <col>] : !llvm.struct<(f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32)> -> !llvm.struct<(f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32)>
+// CHECK: %[[S5:.+]] = llvm.mlir.constant(2 : i32) : i64
+// CHECK: %[[S6:.+]] = llvm.add %[[S0]], %[[S5]] : i64
+// CHECK: %[[S7:.+]] = llvm.mlir.constant(128 : i32) : i64
+// CHECK: %[[S8:.+]] = llvm.add %[[S1]], %[[S7]]  : i64
+// CHECK: %[[S9:.+]] = nvvm.wgmma.mma_async %[[S6]], %[[S8]], <m = 64, n = 128, k = 16>, D[%[[S4]], <one>, <wrapped>], A[<f16>, <one>, <row>], B[<f16>, <one>, <col>] : !llvm.struct
+// CHECK: %[[S10:.+]] = llvm.mlir.constant(4 : i32) : i64
+// CHECK: %[[S11:.+]] = llvm.add %[[S0]], %[[S10]]  : i64
+// CHECK: %[[S12:.+]] = llvm.mlir.constant(256 : i32) : i64
+// CHECK: %[[S13:.+]] = llvm.add %[[S1]], %[[S12]]  : i64
+// CHECK: %[[S14:.+]] = nvvm.wgmma.mma_async %[[S11]], %[[S13]], <m = 64, n = 128, k = 16>, D[%[[S9]], <one>, <wrapped>], A[<f16>, <one>, <row>], B[<f16>, <one>, <col>] : !llvm.struct
+// CHECK: %[[S15:.+]] = llvm.mlir.constant(6 : i32) : i64
+// CHECK: %[[S16:.+]] = llvm.add %[[S0]], %[[S15]]  : i64
+// CHECK: %[[S17:.+]] = llvm.mlir.constant(384 : i32) : i64
+// CHECK: %[[S18:.+]] = llvm.add %[[S1]], %[[S17]]  : i64
+// CHECK: %[[S19:.+]] = nvvm.wgmma.mma_async %[[S16]], %[[S18]], <m = 64, n = 128, k = 16>, D[%[[S14]], <one>, <wrapped>], A[<f16>, <one>, <row>], B[<f16>, <one>, <col>] : !llvm.struct
+// CHECK: %[[S21:.+]] = llvm.mlir.constant(512 : i32) : i64
+// CHECK: %[[S22:.+]] = llvm.add %[[S0]], %[[S21]]  : i64
+// CHECK: %[[S23:.+]] = nvvm.wgmma.mma_async %[[S22]], %[[S1]], <m = 64, n = 128, k = 16>, D[%[[S3]], <one>, <wrapped>], A[<f16>, <one>, <row>], B[<f16>, <one>, <col>] : !llvm.struct
+// CHECK: %[[S24:.+]] = llvm.mlir.constant(514 : i32) : i64
+// CHECK: %[[S25:.+]] = llvm.add %[[S0]], %[[S24]]  : i64
+// CHECK: %[[S26:.+]] = llvm.mlir.constant(128 : i32) : i64
+// CHECK: %[[S27:.+]] = llvm.add %[[S1]], %[[S26]]  : i64
+// CHECK: %[[S28:.+]] = nvvm.wgmma.mma_async %[[S25]], %[[S27]], <m = 64, n = 128, k = 16>, D[%[[S23]], <one>, <wrapped>], A[<f16>, <one>, <row>], B[<f16>, <one>, <col>] : !llvm.struct
+// CHECK: %[[S29:.+]] = llvm.mlir.constant(516 : i32) : i64
+// CHECK: %[[S30:.+]] = llvm.add %[[S0]], %[[S29]]  : i64
+// CHECK: %[[S31:.+]] = llvm.mlir.constant(256 : i32) : i64
+// CHECK: %[[S32:.+]] = llvm.add %[[S1]], %[[S31]]  : i64
+// CHECK: %[[S33:.+]] = nvvm.wgmma.mma_async %[[S30]], %[[S32]], <m = 64, n = 128, k = 16>, D[%[[S28]], <one>, <wrapped>], A[<f16>, <one>, <row>], B[<f16>, <one>, <col>] : !llvm.struct
+// CHECK: %[[S34:.+]] = llvm.mlir.constant(518 : i32) : i64
+// CHECK: %[[S35:.+]] = llvm.add %[[S0]], %[[S34]]  : i64
+// CHECK: %[[S36:.+]] = llvm.mlir.constant(384 : i32) : i64
+// CHECK: %[[S37:.+]] = llvm.add %[[S1]], %[[S36]]  : i64
+// CHECK: %[[S38:.+]] = nvvm.wgmma.mma_async %[[S35]], %[[S37]], <m = 64, n = 128, k = 16>, D[%[[S33]], <one>, <wrapped>], A[<f16>, <one>, <row>], B[<f16>, <one>, <col>] : !llvm.struct
+// CHECK: nvvm.wgmma.commit.group.sync.aligned
+// CHECK: nvvm.wgmma.wait.group.sync.aligned 1  
+  %wgmmaResult, %wgmmaResult2 = nvgpu.warpgroup.mma %descA, %descB, %acc1, %acc2 {transposeB}: 
+      !nvgpu.wgmma.descriptor<tensor = memref<128x64xf16, 3>>, 
+      !nvgpu.wgmma.descriptor<tensor = memref<64x128xf16, 3>>, 
+      !nvgpu.warpgroup.accumulator< fragmented = vector<64x128xf32>>,
+      !nvgpu.warpgroup.accumulator< fragmented = vector<64x128xf32>> 
+      -> 
+      !nvgpu.warpgroup.accumulator< fragmented = vector<64x128xf32>>, 
+      !nvgpu.warpgroup.accumulator< fragmented = vector<64x128xf32>>  
+  return
+}
+
 transform.sequence failures(propagate) {
 ^bb1(%arg1: !transform.any_op):
   %0 = transform.structured.match ops{["func.func"]} in %arg1 
@@ -681,5 +741,5 @@ transform.sequence failures(propagate) {
   } with type_converter {
     transform.apply_conversion_patterns.memref.memref_to_llvm_type_converter
       {use_opaque_pointers = true}
-  } {legal_dialects = ["arith", "func", "llvm", "memref", "nvvm", "scf"], partial_conversion} : !transform.any_op
-}
\ No newline at end of file
+  } {legal_dialects = ["arith", "func", "llvm", "memref", "nvvm", "vector", "scf"], partial_conversion} : !transform.any_op
+}

diff  --git a/mlir/test/Dialect/NVGPU/invalid.mlir b/mlir/test/Dialect/NVGPU/invalid.mlir
index ef721b18014071a..ff391e469815d74 100644
--- a/mlir/test/Dialect/NVGPU/invalid.mlir
+++ b/mlir/test/Dialect/NVGPU/invalid.mlir
@@ -221,3 +221,47 @@ func.func @async_cp_size_invalid_f64(
   %0 = nvgpu.device_async_copy %src[%i, %i], %dst[%i, %i, %i], 3: memref<128x128xf64> to memref<3x16x128xf64, 3>
   return
 }
+
+// -----
+
+!tResult = !nvgpu.warpgroup.accumulator<fragmented = vector<64x128xf32>>
+!tDescA  = !nvgpu.wgmma.descriptor<tensor = memref<128x64xf16, 3>>
+!tDescB  = !nvgpu.wgmma.descriptor<tensor = memref<64x121xf16, 3>>
+
+func.func @warpgroup_mma_wrong_input(%descA: !tDescA, %descB: !tDescB, %acc1: !tResult, %acc2: !tResult) {
+  // expected-error @+1 {{'nvgpu.warpgroup.mma' op 2nd dim matrix-B ( 121 ) != 2nd dim matrix-C ( 128 )}}  
+  %0:2 = nvgpu.warpgroup.mma %descA, %descB, %acc1, %acc1: !tDescA, !tDescB, !tResult, !tResult -> !tResult, !tResult
+  return
+}
+
+// -----
+
+!tResult = !nvgpu.warpgroup.accumulator<fragmented = vector<128xf32>>
+!tDescA  = !nvgpu.wgmma.descriptor<tensor = memref<128x64xf16, 3>>
+!tDescB  = !nvgpu.wgmma.descriptor<tensor = memref<64x128xf16, 3>>
+func.func @warpgroup_mma_wrong_input(%descA: !tDescA, %descB: !tDescB, %acc1: !tResult, %acc2: !tResult) {
+  // expected-error @+1 {{'nvgpu.warpgroup.mma' op has matrices A, B, C and D, they must be 2 dimensional}}  
+  %0:2 = nvgpu.warpgroup.mma %descA, %descB, %acc1, %acc1: !tDescA, !tDescB, !tResult, !tResult -> !tResult, !tResult
+  return
+}
+
+// -----
+!tResult = !nvgpu.warpgroup.accumulator<fragmented = vector<64x128xf32>>
+!tDescA  = !nvgpu.wgmma.descriptor<tensor = memref<128x64xf16, 3>>
+!tDescB  = !nvgpu.wgmma.descriptor<tensor = memref<64x128xf32, 3>>
+func.func @warpgroup_mma_wrong_input(%descA: !tDescA, %descB: !tDescB, %acc1: !tResult, %acc2: !tResult) {
+  // expected-error @+1 {{'nvgpu.warpgroup.mma' op 'f32' += 'f16' * 'f32', it is not supported.}}  
+  %0:2 = nvgpu.warpgroup.mma %descA, %descB, %acc1, %acc1: !tDescA, !tDescB, !tResult, !tResult -> !tResult, !tResult
+  return
+}
+
+// -----
+
+!tResult = !nvgpu.warpgroup.accumulator<fragmented = vector<64x128xf32>>
+!tDescA  = !nvgpu.wgmma.descriptor<tensor = memref<128x64xf16, 3>>
+!tDescB  = !nvgpu.wgmma.descriptor<tensor = memref<64x512xf16, 3>>
+func.func @warpgroup_mma_wrong_input(%descA: !tDescA, %descB: !tDescB, %acc1: !tResult, %acc2: !tResult) {
+  // expected-error @+1 {{'nvgpu.warpgroup.mma' op 2nd dim matrix-B ( 512 ) != 2nd dim matrix-C ( 128 )}}
+  %0:2 = nvgpu.warpgroup.mma %descA, %descB, %acc1, %acc1: !tDescA, !tDescB, !tResult, !tResult -> !tResult, !tResult
+  return
+}


        


More information about the Mlir-commits mailing list