[Mlir-commits] [mlir] 8a6e54c - [mlir][arith] Rename operations: `maxf` → `maximumf`, `minf` → `minimumf` (#65800)

llvmlistbot at llvm.org llvmlistbot at llvm.org
Mon Sep 11 22:02:26 PDT 2023


Author: Daniil Dudkin
Date: 2023-09-11T22:02:19-07:00
New Revision: 8a6e54c9b3080f1b8e1a925bf1a39730223b99f9

URL: https://github.com/llvm/llvm-project/commit/8a6e54c9b3080f1b8e1a925bf1a39730223b99f9
DIFF: https://github.com/llvm/llvm-project/commit/8a6e54c9b3080f1b8e1a925bf1a39730223b99f9.diff

LOG: [mlir][arith] Rename operations: `maxf` → `maximumf`, `minf` → `minimumf` (#65800)

This patch is part of a larger initiative aimed at fixing floating-point `max` and `min` operations in MLIR: https://discourse.llvm.org/t/rfc-fix-floating-point-max-and-min-operations-in-mlir/72671.

This commit addresses Task 1.2 of the mentioned RFC. By renaming these operations, we align their names with LLVM intrinsics that have corresponding semantics.

Added: 
    

Modified: 
    flang/lib/Lower/OpenMP.cpp
    flang/test/Lower/OpenMP/wsloop-reduction-max.f90
    flang/test/Lower/OpenMP/wsloop-reduction-min.f90
    mlir/include/mlir/Dialect/Arith/IR/ArithOps.td
    mlir/lib/Conversion/ArithToLLVM/ArithToLLVM.cpp
    mlir/lib/Conversion/ArithToSPIRV/ArithToSPIRV.cpp
    mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp
    mlir/lib/Conversion/VectorToGPU/VectorToGPU.cpp
    mlir/lib/Dialect/AMDGPU/Transforms/EmulateAtomics.cpp
    mlir/lib/Dialect/Affine/Analysis/AffineAnalysis.cpp
    mlir/lib/Dialect/Arith/IR/ArithOps.cpp
    mlir/lib/Dialect/Arith/Transforms/ExpandOps.cpp
    mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
    mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
    mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorRewriting.cpp
    mlir/lib/Dialect/Tosa/Utils/ConversionUtils.cpp
    mlir/lib/Dialect/Vector/IR/VectorOps.cpp
    mlir/lib/Dialect/Vector/Transforms/LowerVectorScan.cpp
    mlir/python/mlir/dialects/linalg/opdsl/lang/emitter.py
    mlir/test/Conversion/ArithToLLVM/arith-to-llvm.mlir
    mlir/test/Conversion/ArithToSPIRV/arith-to-spirv.mlir
    mlir/test/Conversion/ArithToSPIRV/fast-math.mlir
    mlir/test/Conversion/TosaToLinalg/tosa-to-linalg.mlir
    mlir/test/Conversion/VectorToLLVM/vector-to-llvm.mlir
    mlir/test/Dialect/AMDGPU/amdgpu-emulate-atomics.mlir
    mlir/test/Dialect/Affine/SuperVectorize/vectorize_reduction.mlir
    mlir/test/Dialect/Arith/canonicalize.mlir
    mlir/test/Dialect/Arith/expand-ops.mlir
    mlir/test/Dialect/Arith/ops.mlir
    mlir/test/Dialect/Linalg/fusion-elementwise-ops.mlir
    mlir/test/Dialect/Linalg/generalize-named-ops.mlir
    mlir/test/Dialect/Linalg/generalize-named-polymorphic-ops.mlir
    mlir/test/Dialect/Linalg/one-shot-bufferize-analysis.mlir
    mlir/test/Dialect/Linalg/transform-op-decompose.mlir
    mlir/test/Dialect/Linalg/transform-op-fuse-into-containing.mlir
    mlir/test/Dialect/Linalg/transform-op-split-reduction.mlir
    mlir/test/Dialect/Linalg/transform-tile-and-fuse.mlir
    mlir/test/Dialect/Linalg/vectorization.mlir
    mlir/test/Dialect/Linalg/vectorize-convolution.mlir
    mlir/test/Dialect/SparseTensor/sparse_fusion.mlir
    mlir/test/Dialect/SparseTensor/unsparsifiable_dense_op.mlir
    mlir/test/Dialect/Vector/canonicalize.mlir
    mlir/test/Dialect/Vector/vector-multi-reduction-outer-lowering.mlir
    mlir/test/Interfaces/TilingInterface/lower-to-loops-using-interface.mlir
    mlir/test/Interfaces/TilingInterface/tile-and-fuse-using-interface.mlir
    mlir/test/python/dialects/linalg/opdsl/emit_pooling.py
    mlir/utils/tree-sitter-mlir/dialect/arith.js
    mlir/utils/tree-sitter-mlir/queries/highlights.scm
    mlir/utils/tree-sitter-mlir/test/corpus/type.txt

Removed: 
    


################################################################################
diff  --git a/flang/lib/Lower/OpenMP.cpp b/flang/lib/Lower/OpenMP.cpp
index e4532c5e9ed8971..b960bb369dd4dd2 100644
--- a/flang/lib/Lower/OpenMP.cpp
+++ b/flang/lib/Lower/OpenMP.cpp
@@ -803,11 +803,11 @@ createReductionDecl(fir::FirOpBuilder &builder, llvm::StringRef reductionOpName,
           Fortran::parser::Unwrap<Fortran::parser::Name>(procDesignator)}) {
     if (name->source == "max") {
       reductionOp =
-          getReductionOperation<mlir::arith::MaxFOp, mlir::arith::MaxSIOp>(
+          getReductionOperation<mlir::arith::MaximumFOp, mlir::arith::MaxSIOp>(
               builder, type, loc, op1, op2);
     } else if (name->source == "min") {
       reductionOp =
-          getReductionOperation<mlir::arith::MinFOp, mlir::arith::MinSIOp>(
+          getReductionOperation<mlir::arith::MinimumFOp, mlir::arith::MinSIOp>(
               builder, type, loc, op1, op2);
     } else if (name->source == "ior") {
       assert((type.isIntOrIndex()) && "only integer is expected");

diff  --git a/flang/test/Lower/OpenMP/wsloop-reduction-max.f90 b/flang/test/Lower/OpenMP/wsloop-reduction-max.f90
index 433b1d63dc9849f..a1cc9d6bd4d02c6 100644
--- a/flang/test/Lower/OpenMP/wsloop-reduction-max.f90
+++ b/flang/test/Lower/OpenMP/wsloop-reduction-max.f90
@@ -6,7 +6,7 @@
 !CHECK:   omp.yield(%[[MINIMUM_VAL_F]] : f32)
 !CHECK: combiner
 !CHECK: ^bb0(%[[ARG0_F:.*]]: f32, %[[ARG1_F:.*]]: f32):
-!CHECK:   %[[COMB_VAL_F:.*]] = arith.maxf %[[ARG0_F]], %[[ARG1_F]] {{.*}}: f32
+!CHECK:   %[[COMB_VAL_F:.*]] = arith.maximumf %[[ARG0_F]], %[[ARG1_F]] {{.*}}: f32
 !CHECK:   omp.yield(%[[COMB_VAL_F]] : f32)
 
 !CHECK: omp.reduction.declare @[[MAX_DECLARE_I:.*]] : i32 init {

diff  --git a/flang/test/Lower/OpenMP/wsloop-reduction-min.f90 b/flang/test/Lower/OpenMP/wsloop-reduction-min.f90
index de7107792756646..e60c64e7816af98 100644
--- a/flang/test/Lower/OpenMP/wsloop-reduction-min.f90
+++ b/flang/test/Lower/OpenMP/wsloop-reduction-min.f90
@@ -6,7 +6,7 @@
 !CHECK:   omp.yield(%[[MAXIMUM_VAL_F]] : f32)
 !CHECK: combiner
 !CHECK: ^bb0(%[[ARG0_F:.*]]: f32, %[[ARG1_F:.*]]: f32):
-!CHECK:   %[[COMB_VAL_F:.*]] = arith.minf %[[ARG0_F]], %[[ARG1_F]] {{.*}}: f32
+!CHECK:   %[[COMB_VAL_F:.*]] = arith.minimumf %[[ARG0_F]], %[[ARG1_F]] {{.*}}: f32
 !CHECK:   omp.yield(%[[COMB_VAL_F]] : f32)
 
 !CHECK: omp.reduction.declare @[[MIN_DECLARE_I:.*]] : i32 init {

diff  --git a/mlir/include/mlir/Dialect/Arith/IR/ArithOps.td b/mlir/include/mlir/Dialect/Arith/IR/ArithOps.td
index 2ffd49c5034e698..07708cf2d78a964 100644
--- a/mlir/include/mlir/Dialect/Arith/IR/ArithOps.td
+++ b/mlir/include/mlir/Dialect/Arith/IR/ArithOps.td
@@ -832,16 +832,16 @@ def Arith_SubFOp : Arith_FloatBinaryOp<"subf"> {
 }
 
 //===----------------------------------------------------------------------===//
-// MaxFOp
+// MaximumFOp
 //===----------------------------------------------------------------------===//
 
-def Arith_MaxFOp : Arith_FloatBinaryOp<"maxf", [Commutative]> {
+def Arith_MaximumFOp : Arith_FloatBinaryOp<"maximumf", [Commutative]> {
   let summary = "floating-point maximum operation";
   let description = [{
     Syntax:
 
     ```
-    operation ::= ssa-id `=` `arith.maxf` ssa-use `,` ssa-use `:` type
+    operation ::= ssa-id `=` `arith.maximumf` ssa-use `,` ssa-use `:` type
     ```
 
     Returns the maximum of the two arguments, treating -0.0 as less than +0.0.
@@ -851,7 +851,7 @@ def Arith_MaxFOp : Arith_FloatBinaryOp<"maxf", [Commutative]> {
 
     ```mlir
     // Scalar floating-point maximum.
-    %a = arith.maxf %b, %c : f64
+    %a = arith.maximumf %b, %c : f64
     ```
   }];
   let hasFolder = 1;
@@ -876,16 +876,16 @@ def Arith_MaxUIOp : Arith_TotalIntBinaryOp<"maxui", [Commutative]> {
 }
 
 //===----------------------------------------------------------------------===//
-// MinFOp
+// MinimumFOp
 //===----------------------------------------------------------------------===//
 
-def Arith_MinFOp : Arith_FloatBinaryOp<"minf", [Commutative]> {
+def Arith_MinimumFOp : Arith_FloatBinaryOp<"minimumf", [Commutative]> {
   let summary = "floating-point minimum operation";
   let description = [{
     Syntax:
 
     ```
-    operation ::= ssa-id `=` `arith.minf` ssa-use `,` ssa-use `:` type
+    operation ::= ssa-id `=` `arith.minimumf` ssa-use `,` ssa-use `:` type
     ```
 
     Returns the minimum of the two arguments, treating -0.0 as less than +0.0.
@@ -895,7 +895,7 @@ def Arith_MinFOp : Arith_FloatBinaryOp<"minf", [Commutative]> {
 
     ```mlir
     // Scalar floating-point minimum.
-    %a = arith.minf %b, %c : f64
+    %a = arith.minimumf %b, %c : f64
     ```
   }];
   let hasFolder = 1;

diff  --git a/mlir/lib/Conversion/ArithToLLVM/ArithToLLVM.cpp b/mlir/lib/Conversion/ArithToLLVM/ArithToLLVM.cpp
index 2607017daa55ed4..a695441fd8dd750 100644
--- a/mlir/lib/Conversion/ArithToLLVM/ArithToLLVM.cpp
+++ b/mlir/lib/Conversion/ArithToLLVM/ArithToLLVM.cpp
@@ -54,15 +54,15 @@ using FPToSIOpLowering =
     VectorConvertToLLVMPattern<arith::FPToSIOp, LLVM::FPToSIOp>;
 using FPToUIOpLowering =
     VectorConvertToLLVMPattern<arith::FPToUIOp, LLVM::FPToUIOp>;
-using MaxFOpLowering =
-    VectorConvertToLLVMPattern<arith::MaxFOp, LLVM::MaximumOp,
+using MaximumFOpLowering =
+    VectorConvertToLLVMPattern<arith::MaximumFOp, LLVM::MaximumOp,
                                arith::AttrConvertFastMathToLLVM>;
 using MaxSIOpLowering =
     VectorConvertToLLVMPattern<arith::MaxSIOp, LLVM::SMaxOp>;
 using MaxUIOpLowering =
     VectorConvertToLLVMPattern<arith::MaxUIOp, LLVM::UMaxOp>;
-using MinFOpLowering =
-    VectorConvertToLLVMPattern<arith::MinFOp, LLVM::MinimumOp,
+using MinimumFOpLowering =
+    VectorConvertToLLVMPattern<arith::MinimumFOp, LLVM::MinimumOp,
                                arith::AttrConvertFastMathToLLVM>;
 using MinSIOpLowering =
     VectorConvertToLLVMPattern<arith::MinSIOp, LLVM::SMinOp>;
@@ -495,10 +495,10 @@ void mlir::arith::populateArithToLLVMConversionPatterns(
     FPToUIOpLowering,
     IndexCastOpSILowering,
     IndexCastOpUILowering,
-    MaxFOpLowering,
+    MaximumFOpLowering,
     MaxSIOpLowering,
     MaxUIOpLowering,
-    MinFOpLowering,
+    MinimumFOpLowering,
     MinSIOpLowering,
     MinUIOpLowering,
     MulFOpLowering,

diff  --git a/mlir/lib/Conversion/ArithToSPIRV/ArithToSPIRV.cpp b/mlir/lib/Conversion/ArithToSPIRV/ArithToSPIRV.cpp
index 9a1b7ade788e68c..a589fb8050f34db 100644
--- a/mlir/lib/Conversion/ArithToSPIRV/ArithToSPIRV.cpp
+++ b/mlir/lib/Conversion/ArithToSPIRV/ArithToSPIRV.cpp
@@ -1039,12 +1039,13 @@ class SelectOpPattern final : public OpConversionPattern<arith::SelectOp> {
 };
 
 //===----------------------------------------------------------------------===//
-// MaxFOp
+// MinimumFOp, MaximumFOp
 //===----------------------------------------------------------------------===//
 
-/// Converts arith.maxf to spirv.GL.FMax or spirv.CL.fmax.
+/// Converts arith.maximumf/minimumf to spirv.GL.FMax/FMin or
+/// spirv.CL.fmax/fmin.
 template <typename Op, typename SPIRVOp>
-class MinMaxFOpPattern final : public OpConversionPattern<Op> {
+class MinimumMaximumFOpPattern final : public OpConversionPattern<Op> {
 public:
   using OpConversionPattern<Op>::OpConversionPattern;
   LogicalResult
@@ -1055,7 +1056,7 @@ class MinMaxFOpPattern final : public OpConversionPattern<Op> {
     if (!dstType)
       return getTypeConversionFailure(rewriter, op);
 
-    // arith.maxf/minf:
+    // arith.maximumf/minimumf:
     //   "if one of the arguments is NaN, then the result is also NaN."
     // spirv.GL.FMax/FMin
     //   "which operand is the result is undefined if one of the operands
@@ -1135,15 +1136,15 @@ void mlir::arith::populateArithToSPIRVPatterns(
     MulIExtendedOpPattern<arith::MulUIExtendedOp, spirv::UMulExtendedOp>,
     SelectOpPattern,
 
-    MinMaxFOpPattern<arith::MaxFOp, spirv::GLFMaxOp>,
-    MinMaxFOpPattern<arith::MinFOp, spirv::GLFMinOp>,
+    MinimumMaximumFOpPattern<arith::MaximumFOp, spirv::GLFMaxOp>,
+    MinimumMaximumFOpPattern<arith::MinimumFOp, spirv::GLFMinOp>,
     spirv::ElementwiseOpPattern<arith::MaxSIOp, spirv::GLSMaxOp>,
     spirv::ElementwiseOpPattern<arith::MaxUIOp, spirv::GLUMaxOp>,
     spirv::ElementwiseOpPattern<arith::MinSIOp, spirv::GLSMinOp>,
     spirv::ElementwiseOpPattern<arith::MinUIOp, spirv::GLUMinOp>,
 
-    MinMaxFOpPattern<arith::MaxFOp, spirv::CLFMaxOp>,
-    MinMaxFOpPattern<arith::MinFOp, spirv::CLFMinOp>,
+    MinimumMaximumFOpPattern<arith::MaximumFOp, spirv::CLFMaxOp>,
+    MinimumMaximumFOpPattern<arith::MinimumFOp, spirv::CLFMinOp>,
     spirv::ElementwiseOpPattern<arith::MaxSIOp, spirv::CLSMaxOp>,
     spirv::ElementwiseOpPattern<arith::MaxUIOp, spirv::CLUMaxOp>,
     spirv::ElementwiseOpPattern<arith::MinSIOp, spirv::CLSMinOp>,

diff  --git a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp
index cf560d49b5094f0..0fb3cddb0120810 100644
--- a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp
+++ b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp
@@ -344,7 +344,7 @@ createLinalgBodyCalculationForElementwiseOp(Operation *op, ValueRange args,
 
   // tosa::MaximumOp
   if (isa<tosa::MaximumOp>(op) && isa<FloatType>(elementTy)) {
-    return rewriter.create<arith::MaxFOp>(loc, args[0], args[1]);
+    return rewriter.create<arith::MaximumFOp>(loc, args[0], args[1]);
   }
 
   if (isa<tosa::MaximumOp>(op) && elementTy.isSignlessInteger()) {
@@ -355,7 +355,7 @@ createLinalgBodyCalculationForElementwiseOp(Operation *op, ValueRange args,
 
   // tosa::MinimumOp
   if (isa<tosa::MinimumOp>(op) && isa<FloatType>(elementTy)) {
-    return rewriter.create<arith::MinFOp>(loc, args[0], args[1]);
+    return rewriter.create<arith::MinimumFOp>(loc, args[0], args[1]);
   }
 
   if (isa<tosa::MinimumOp>(op) && elementTy.isSignlessInteger()) {
@@ -931,7 +931,7 @@ static Value createLinalgBodyCalculationForReduceOp(Operation *op,
   }
 
   if (isa<tosa::ReduceMinOp>(op) && isa<FloatType>(elementTy)) {
-    return rewriter.create<arith::MinFOp>(loc, args[0], args[1]);
+    return rewriter.create<arith::MinimumFOp>(loc, args[0], args[1]);
   }
 
   if (isa<tosa::ReduceMinOp>(op) && isa<IntegerType>(elementTy)) {
@@ -941,7 +941,7 @@ static Value createLinalgBodyCalculationForReduceOp(Operation *op,
   }
 
   if (isa<tosa::ReduceMaxOp>(op) && isa<FloatType>(elementTy)) {
-    return rewriter.create<arith::MaxFOp>(loc, args[0], args[1]);
+    return rewriter.create<arith::MaximumFOp>(loc, args[0], args[1]);
   }
 
   if (isa<tosa::ReduceMaxOp>(op) && isa<IntegerType>(elementTy)) {

diff  --git a/mlir/lib/Conversion/VectorToGPU/VectorToGPU.cpp b/mlir/lib/Conversion/VectorToGPU/VectorToGPU.cpp
index 2c18de1c5b662ee..8a46357acd7bf1f 100644
--- a/mlir/lib/Conversion/VectorToGPU/VectorToGPU.cpp
+++ b/mlir/lib/Conversion/VectorToGPU/VectorToGPU.cpp
@@ -226,9 +226,9 @@ convertElementwiseOpToMMA(Operation *op) {
     return gpu::MMAElementwiseOp::MULF;
   if (isa<arith::SubFOp>(op))
     return gpu::MMAElementwiseOp::SUBF;
-  if (isa<arith::MaxFOp>(op))
+  if (isa<arith::MaximumFOp>(op))
     return gpu::MMAElementwiseOp::MAXF;
-  if (isa<arith::MinFOp>(op))
+  if (isa<arith::MinimumFOp>(op))
     return gpu::MMAElementwiseOp::MINF;
   if (isa<arith::DivFOp>(op))
     return gpu::MMAElementwiseOp::DIVF;

diff  --git a/mlir/lib/Dialect/AMDGPU/Transforms/EmulateAtomics.cpp b/mlir/lib/Dialect/AMDGPU/Transforms/EmulateAtomics.cpp
index e6154a329aaccb2..8147de5ba5c3ba7 100644
--- a/mlir/lib/Dialect/AMDGPU/Transforms/EmulateAtomics.cpp
+++ b/mlir/lib/Dialect/AMDGPU/Transforms/EmulateAtomics.cpp
@@ -163,10 +163,10 @@ void mlir::amdgpu::populateAmdgpuEmulateAtomicsPatterns(
       target.addIllegalOp<RawBufferAtomicFmaxOp>();
     }
   }
-  patterns
-      .add<RawBufferAtomicByCasPattern<RawBufferAtomicFaddOp, arith::AddFOp>,
-           RawBufferAtomicByCasPattern<RawBufferAtomicFmaxOp, arith::MaxFOp>>(
-          patterns.getContext());
+  patterns.add<
+      RawBufferAtomicByCasPattern<RawBufferAtomicFaddOp, arith::AddFOp>,
+      RawBufferAtomicByCasPattern<RawBufferAtomicFmaxOp, arith::MaximumFOp>>(
+      patterns.getContext());
 }
 
 void AmdgpuEmulateAtomicsPass::runOnOperation() {

diff  --git a/mlir/lib/Dialect/Affine/Analysis/AffineAnalysis.cpp b/mlir/lib/Dialect/Affine/Analysis/AffineAnalysis.cpp
index 47224de14776347..ab1dfbdb419b891 100644
--- a/mlir/lib/Dialect/Affine/Analysis/AffineAnalysis.cpp
+++ b/mlir/lib/Dialect/Affine/Analysis/AffineAnalysis.cpp
@@ -60,8 +60,8 @@ static Value getSupportedReduction(AffineForOp forOp, unsigned pos,
           .Case([](arith::AndIOp) { return arith::AtomicRMWKind::andi; })
           .Case([](arith::OrIOp) { return arith::AtomicRMWKind::ori; })
           .Case([](arith::MulIOp) { return arith::AtomicRMWKind::muli; })
-          .Case([](arith::MinFOp) { return arith::AtomicRMWKind::minf; })
-          .Case([](arith::MaxFOp) { return arith::AtomicRMWKind::maxf; })
+          .Case([](arith::MinimumFOp) { return arith::AtomicRMWKind::minf; })
+          .Case([](arith::MaximumFOp) { return arith::AtomicRMWKind::maxf; })
           .Case([](arith::MinSIOp) { return arith::AtomicRMWKind::mins; })
           .Case([](arith::MaxSIOp) { return arith::AtomicRMWKind::maxs; })
           .Case([](arith::MinUIOp) { return arith::AtomicRMWKind::minu; })

diff  --git a/mlir/lib/Dialect/Arith/IR/ArithOps.cpp b/mlir/lib/Dialect/Arith/IR/ArithOps.cpp
index c87b4185722fb01..77bf8a438d6db84 100644
--- a/mlir/lib/Dialect/Arith/IR/ArithOps.cpp
+++ b/mlir/lib/Dialect/Arith/IR/ArithOps.cpp
@@ -923,10 +923,10 @@ OpFoldResult arith::SubFOp::fold(FoldAdaptor adaptor) {
 }
 
 //===----------------------------------------------------------------------===//
-// MaxFOp
+// MaximumFOp
 //===----------------------------------------------------------------------===//
 
-OpFoldResult arith::MaxFOp::fold(FoldAdaptor adaptor) {
+OpFoldResult arith::MaximumFOp::fold(FoldAdaptor adaptor) {
   // maxf(x,x) -> x
   if (getLhs() == getRhs())
     return getRhs();
@@ -991,10 +991,10 @@ OpFoldResult MaxUIOp::fold(FoldAdaptor adaptor) {
 }
 
 //===----------------------------------------------------------------------===//
-// MinFOp
+// MinimumFOp
 //===----------------------------------------------------------------------===//
 
-OpFoldResult arith::MinFOp::fold(FoldAdaptor adaptor) {
+OpFoldResult arith::MinimumFOp::fold(FoldAdaptor adaptor) {
   // minf(x,x) -> x
   if (getLhs() == getRhs())
     return getRhs();
@@ -2426,8 +2426,8 @@ std::optional<TypedAttr> mlir::arith::getNeutralElement(Operation *op) {
           // Floating-point operations.
           .Case([](arith::AddFOp op) { return AtomicRMWKind::addf; })
           .Case([](arith::MulFOp op) { return AtomicRMWKind::mulf; })
-          .Case([](arith::MaxFOp op) { return AtomicRMWKind::maxf; })
-          .Case([](arith::MinFOp op) { return AtomicRMWKind::minf; })
+          .Case([](arith::MaximumFOp op) { return AtomicRMWKind::maxf; })
+          .Case([](arith::MinimumFOp op) { return AtomicRMWKind::minf; })
           // Integer operations.
           .Case([](arith::AddIOp op) { return AtomicRMWKind::addi; })
           .Case([](arith::OrIOp op) { return AtomicRMWKind::ori; })
@@ -2483,9 +2483,9 @@ Value mlir::arith::getReductionOp(AtomicRMWKind op, OpBuilder &builder,
   case AtomicRMWKind::muli:
     return builder.create<arith::MulIOp>(loc, lhs, rhs);
   case AtomicRMWKind::maxf:
-    return builder.create<arith::MaxFOp>(loc, lhs, rhs);
+    return builder.create<arith::MaximumFOp>(loc, lhs, rhs);
   case AtomicRMWKind::minf:
-    return builder.create<arith::MinFOp>(loc, lhs, rhs);
+    return builder.create<arith::MinimumFOp>(loc, lhs, rhs);
   case AtomicRMWKind::maxs:
     return builder.create<arith::MaxSIOp>(loc, lhs, rhs);
   case AtomicRMWKind::mins:

diff  --git a/mlir/lib/Dialect/Arith/Transforms/ExpandOps.cpp b/mlir/lib/Dialect/Arith/Transforms/ExpandOps.cpp
index 9810d2923da40a4..b8630da2ea83302 100644
--- a/mlir/lib/Dialect/Arith/Transforms/ExpandOps.cpp
+++ b/mlir/lib/Dialect/Arith/Transforms/ExpandOps.cpp
@@ -161,7 +161,7 @@ struct FloorDivSIOpConverter : public OpRewritePattern<arith::FloorDivSIOp> {
 };
 
 template <typename OpTy, arith::CmpFPredicate pred>
-struct MaxMinFOpConverter : public OpRewritePattern<OpTy> {
+struct MaximumMinimumFOpConverter : public OpRewritePattern<OpTy> {
 public:
   using OpRewritePattern<OpTy>::OpRewritePattern;
 
@@ -321,8 +321,8 @@ struct ArithExpandOpsPass
       arith::CeilDivSIOp,
       arith::CeilDivUIOp,
       arith::FloorDivSIOp,
-      arith::MaxFOp,
-      arith::MinFOp
+      arith::MaximumFOp,
+      arith::MinimumFOp
     >();
 
     if (includeBf16) {
@@ -367,8 +367,8 @@ void mlir::arith::populateArithExpandOpsPatterns(RewritePatternSet &patterns) {
   populateCeilFloorDivExpandOpsPatterns(patterns);
   // clang-format off
   patterns.add<
-    MaxMinFOpConverter<MaxFOp, arith::CmpFPredicate::UGT>,
-    MaxMinFOpConverter<MinFOp, arith::CmpFPredicate::ULT>
+    MaximumMinimumFOpConverter<MaximumFOp, arith::CmpFPredicate::UGT>,
+    MaximumMinimumFOpConverter<MinimumFOp, arith::CmpFPredicate::ULT>
    >(patterns.getContext());
   // clang-format on
 }

diff  --git a/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp b/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
index e05a82855c66bd0..d26e68cb47ac1e0 100644
--- a/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
+++ b/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
@@ -449,22 +449,22 @@ class RegionBuilderHelper {
     case BinaryFn::max_signed:
       assert(!allComplex);
       if (allFloatingPoint)
-        return builder.create<arith::MaxFOp>(arg0.getLoc(), arg0, arg1);
+        return builder.create<arith::MaximumFOp>(arg0.getLoc(), arg0, arg1);
       return builder.create<arith::MaxSIOp>(arg0.getLoc(), arg0, arg1);
     case BinaryFn::min_signed:
       assert(!allComplex);
       if (allFloatingPoint)
-        return builder.create<arith::MinFOp>(arg0.getLoc(), arg0, arg1);
+        return builder.create<arith::MinimumFOp>(arg0.getLoc(), arg0, arg1);
       return builder.create<arith::MinSIOp>(arg0.getLoc(), arg0, arg1);
     case BinaryFn::max_unsigned:
       assert(!allComplex);
       if (allFloatingPoint)
-        return builder.create<arith::MaxFOp>(arg0.getLoc(), arg0, arg1);
+        return builder.create<arith::MaximumFOp>(arg0.getLoc(), arg0, arg1);
       return builder.create<arith::MaxUIOp>(arg0.getLoc(), arg0, arg1);
     case BinaryFn::min_unsigned:
       assert(!allComplex);
       if (allFloatingPoint)
-        return builder.create<arith::MinFOp>(arg0.getLoc(), arg0, arg1);
+        return builder.create<arith::MinimumFOp>(arg0.getLoc(), arg0, arg1);
       return builder.create<arith::MinUIOp>(arg0.getLoc(), arg0, arg1);
     }
     llvm_unreachable("unsupported binary function");
@@ -2555,8 +2555,8 @@ FailureOr<SmallVector<Value>> SoftmaxOp::decomposeOperation(OpBuilder &b) {
   Value neutralForMaxFInit =
       b.create<linalg::FillOp>(loc, Value{neutralForMaxF}, outputReduce)
           .result();
-  Value max =
-      reduce<arith::MaxFOp>(b, loc, input, neutralForMaxFInit, reductionDim);
+  Value max = reduce<arith::MaximumFOp>(b, loc, input, neutralForMaxFInit,
+                                        reductionDim);
 
   // Step 2: Subtract max from input and exponentiate.
   Value numerator = buildSubAndExpOp(b, loc, input, max, output, reductionDim);

diff  --git a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
index df814d02e0b195c..cf1278a8c6806e7 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
@@ -505,10 +505,10 @@ mlir::linalg::getCombinerOpKind(Operation *combinerOp) {
       .Case<arith::AndIOp>([&](auto op) { return CombiningKind::AND; })
       .Case<arith::MaxSIOp>([&](auto op) { return CombiningKind::MAXSI; })
       .Case<arith::MaxUIOp>([&](auto op) { return CombiningKind::MAXUI; })
-      .Case<arith::MaxFOp>([&](auto op) { return CombiningKind::MAXF; })
+      .Case<arith::MaximumFOp>([&](auto op) { return CombiningKind::MAXF; })
       .Case<arith::MinSIOp>([&](auto op) { return CombiningKind::MINSI; })
       .Case<arith::MinUIOp>([&](auto op) { return CombiningKind::MINUI; })
-      .Case<arith::MinFOp>([&](auto op) { return CombiningKind::MINF; })
+      .Case<arith::MinimumFOp>([&](auto op) { return CombiningKind::MINF; })
       .Case<arith::MulIOp, arith::MulFOp>(
           [&](auto op) { return CombiningKind::MUL; })
       .Case<arith::OrIOp>([&](auto op) { return CombiningKind::OR; })

diff  --git a/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorRewriting.cpp b/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorRewriting.cpp
index 2a290f202c70a50..38e6621d54b331d 100644
--- a/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorRewriting.cpp
+++ b/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorRewriting.cpp
@@ -556,8 +556,8 @@ struct GenSemiRingReduction : public OpRewritePattern<GenericOp> {
     auto red = cast<linalg::YieldOp>(op.getRegion().front().getTerminator())
                    .getOperand(0)
                    .getDefiningOp();
-    if (!isa<arith::AndIOp, arith::MulIOp, arith::MulFOp, arith::MinFOp,
-             arith::MinSIOp, arith::MinUIOp, arith::MaxFOp, arith::MaxSIOp,
+    if (!isa<arith::AndIOp, arith::MulIOp, arith::MulFOp, arith::MinimumFOp,
+             arith::MinSIOp, arith::MinUIOp, arith::MaximumFOp, arith::MaxSIOp,
              arith::MaxUIOp>(red))
       return failure();
     Value s0 = op.getBlock()->getArgument(0);

diff  --git a/mlir/lib/Dialect/Tosa/Utils/ConversionUtils.cpp b/mlir/lib/Dialect/Tosa/Utils/ConversionUtils.cpp
index d260c93e1cf444c..ee428b201d0073a 100644
--- a/mlir/lib/Dialect/Tosa/Utils/ConversionUtils.cpp
+++ b/mlir/lib/Dialect/Tosa/Utils/ConversionUtils.cpp
@@ -33,8 +33,8 @@ mlir::tosa::condenseValues(const SmallVector<Value> &values) {
 
 Value mlir::tosa::clampFloatHelper(Location loc, Value arg, Value min,
                                    Value max, OpBuilder &rewriter) {
-  Value minValue = rewriter.create<arith::MinFOp>(loc, arg, max);
-  return rewriter.create<arith::MaxFOp>(loc, minValue, min);
+  Value minValue = rewriter.create<arith::MinimumFOp>(loc, arg, max);
+  return rewriter.create<arith::MaximumFOp>(loc, minValue, min);
 }
 
 Value mlir::tosa::clampIntHelper(Location loc, Value arg, Value min, Value max,

diff  --git a/mlir/lib/Dialect/Vector/IR/VectorOps.cpp b/mlir/lib/Dialect/Vector/IR/VectorOps.cpp
index 14dd8d53b193dd7..9422936bf21e357 100644
--- a/mlir/lib/Dialect/Vector/IR/VectorOps.cpp
+++ b/mlir/lib/Dialect/Vector/IR/VectorOps.cpp
@@ -5949,12 +5949,12 @@ Value mlir::vector::makeArithReduction(OpBuilder &b, Location loc,
   case CombiningKind::MAXF:
     assert(llvm::isa<FloatType>(t1) && llvm::isa<FloatType>(tAcc) &&
            "expected float values");
-    result = b.createOrFold<arith::MaxFOp>(loc, v1, acc);
+    result = b.createOrFold<arith::MaximumFOp>(loc, v1, acc);
     break;
   case CombiningKind::MINF:
     assert(llvm::isa<FloatType>(t1) && llvm::isa<FloatType>(tAcc) &&
            "expected float values");
-    result = b.createOrFold<arith::MinFOp>(loc, v1, acc);
+    result = b.createOrFold<arith::MinimumFOp>(loc, v1, acc);
     break;
   case CombiningKind::MAXSI:
     assert(t1.isIntOrIndex() && tAcc.isIntOrIndex() && "expected int values");

diff  --git a/mlir/lib/Dialect/Vector/Transforms/LowerVectorScan.cpp b/mlir/lib/Dialect/Vector/Transforms/LowerVectorScan.cpp
index 463aab1ead38f3c..93c056be972ca76 100644
--- a/mlir/lib/Dialect/Vector/Transforms/LowerVectorScan.cpp
+++ b/mlir/lib/Dialect/Vector/Transforms/LowerVectorScan.cpp
@@ -87,10 +87,10 @@ static Value genOperator(Location loc, Value x, Value y,
     combinedResult = rewriter.create<arith::XOrIOp>(loc, x, y);
     break;
   case CombiningKind::MINF:
-    combinedResult = rewriter.create<arith::MinFOp>(loc, x, y);
+    combinedResult = rewriter.create<arith::MinimumFOp>(loc, x, y);
     break;
   case CombiningKind::MAXF:
-    combinedResult = rewriter.create<arith::MaxFOp>(loc, x, y);
+    combinedResult = rewriter.create<arith::MaximumFOp>(loc, x, y);
     break;
   }
   return combinedResult;

diff  --git a/mlir/python/mlir/dialects/linalg/opdsl/lang/emitter.py b/mlir/python/mlir/dialects/linalg/opdsl/lang/emitter.py
index 62730d9ca4d8ec9..6f9d72164429eea 100644
--- a/mlir/python/mlir/dialects/linalg/opdsl/lang/emitter.py
+++ b/mlir/python/mlir/dialects/linalg/opdsl/lang/emitter.py
@@ -527,28 +527,28 @@ def _binary_mul(self, lhs: Value, rhs: Value) -> Value:
 
     def _binary_max_signed(self, lhs: Value, rhs: Value) -> Value:
         if _is_floating_point_type(lhs.type):
-            return arith.MaxFOp(lhs, rhs).result
+            return arith.MaximumFOp(lhs, rhs).result
         if _is_integer_type(lhs.type) or _is_index_type(lhs.type):
             return arith.MaxSIOp(lhs, rhs).result
         raise NotImplementedError("Unsupported 'max' operands: {lhs}, {rhs}")
 
     def _binary_max_unsigned(self, lhs: Value, rhs: Value) -> Value:
         if _is_floating_point_type(lhs.type):
-            return arith.MaxFOp(lhs, rhs).result
+            return arith.MaximumFOp(lhs, rhs).result
         if _is_integer_type(lhs.type) or _is_index_type(lhs.type):
             return arith.MaxUIOp(lhs, rhs).result
         raise NotImplementedError("Unsupported 'max_unsigned' operands: {lhs}, {rhs}")
 
     def _binary_min_signed(self, lhs: Value, rhs: Value) -> Value:
         if _is_floating_point_type(lhs.type):
-            return arith.MinFOp(lhs, rhs).result
+            return arith.MinimumFOp(lhs, rhs).result
         if _is_integer_type(lhs.type) or _is_index_type(lhs.type):
             return arith.MinSIOp(lhs, rhs).result
         raise NotImplementedError("Unsupported 'min' operands: {lhs}, {rhs}")
 
     def _binary_min_unsigned(self, lhs: Value, rhs: Value) -> Value:
         if _is_floating_point_type(lhs.type):
-            return arith.MinFOp(lhs, rhs).result
+            return arith.MinimumFOp(lhs, rhs).result
         if _is_integer_type(lhs.type) or _is_index_type(lhs.type):
             return arith.MinUIOp(lhs, rhs).result
         raise NotImplementedError("Unsupported 'min_unsigned' operands: {lhs}, {rhs}")

diff  --git a/mlir/test/Conversion/ArithToLLVM/arith-to-llvm.mlir b/mlir/test/Conversion/ArithToLLVM/arith-to-llvm.mlir
index cbbe41a1899b7c8..5855f7b3b9904fd 100644
--- a/mlir/test/Conversion/ArithToLLVM/arith-to-llvm.mlir
+++ b/mlir/test/Conversion/ArithToLLVM/arith-to-llvm.mlir
@@ -523,9 +523,9 @@ func.func @minmaxi(%arg0 : i32, %arg1 : i32) -> i32 {
 // CHECK-LABEL: @minmaxf
 func.func @minmaxf(%arg0 : f32, %arg1 : f32) -> f32 {
   // CHECK: = llvm.intr.minimum(%arg0, %arg1) : (f32, f32) -> f32
-  %0 = arith.minf %arg0, %arg1 : f32
+  %0 = arith.minimumf %arg0, %arg1 : f32
   // CHECK: = llvm.intr.maximum(%arg0, %arg1) : (f32, f32) -> f32
-  %1 = arith.maxf %arg0, %arg1 : f32
+  %1 = arith.maximumf %arg0, %arg1 : f32
   return %0 : f32
 }
 
@@ -555,9 +555,9 @@ func.func @ops_supporting_fastmath(%arg0: f32, %arg1: f32, %arg2: i32) {
 // CHECK: llvm.fdiv %arg0, %arg1  {fastmathFlags = #llvm.fastmath<fast>} : f32
   %1 = arith.divf %arg0, %arg1 fastmath<fast> : f32
 // CHECK: llvm.intr.maximum(%arg0, %arg1) {fastmathFlags = #llvm.fastmath<fast>} : (f32, f32) -> f32
-  %2 = arith.maxf %arg0, %arg1 fastmath<fast> : f32
+  %2 = arith.maximumf %arg0, %arg1 fastmath<fast> : f32
 // CHECK: llvm.intr.minimum(%arg0, %arg1) {fastmathFlags = #llvm.fastmath<fast>} : (f32, f32) -> f32
-  %3 = arith.minf %arg0, %arg1 fastmath<fast> : f32
+  %3 = arith.minimumf %arg0, %arg1 fastmath<fast> : f32
 // CHECK: llvm.fmul %arg0, %arg1  {fastmathFlags = #llvm.fastmath<fast>} : f32
   %4 = arith.mulf %arg0, %arg1 fastmath<fast> : f32
 // CHECK: llvm.fneg %arg0  {fastmathFlags = #llvm.fastmath<fast>} : f32

diff  --git a/mlir/test/Conversion/ArithToSPIRV/arith-to-spirv.mlir b/mlir/test/Conversion/ArithToSPIRV/arith-to-spirv.mlir
index aa2cd649ecd7894..165877eb554e245 100644
--- a/mlir/test/Conversion/ArithToSPIRV/arith-to-spirv.mlir
+++ b/mlir/test/Conversion/ArithToSPIRV/arith-to-spirv.mlir
@@ -1132,7 +1132,7 @@ func.func @float32_minf_scalar(%arg0 : f32, %arg1 : f32) -> f32 {
   // CHECK: %[[RHS_NAN:.+]] = spirv.IsNan %[[RHS]] : f32
   // CHECK: %[[SELECT1:.+]] = spirv.Select %[[LHS_NAN]], %[[LHS]], %[[MIN]]
   // CHECK: %[[SELECT2:.+]] = spirv.Select %[[RHS_NAN]], %[[RHS]], %[[SELECT1]]
-  %0 = arith.minf %arg0, %arg1 : f32
+  %0 = arith.minimumf %arg0, %arg1 : f32
   // CHECK: return %[[SELECT2]]
   return %0: f32
 }
@@ -1145,7 +1145,7 @@ func.func @float32_maxf_scalar(%arg0 : vector<2xf32>, %arg1 : vector<2xf32>) ->
   // CHECK: %[[RHS_NAN:.+]] = spirv.IsNan %[[RHS]] : vector<2xf32>
   // CHECK: %[[SELECT1:.+]] = spirv.Select %[[LHS_NAN]], %[[LHS]], %[[MAX]]
   // CHECK: %[[SELECT2:.+]] = spirv.Select %[[RHS_NAN]], %[[RHS]], %[[SELECT1]]
-  %0 = arith.maxf %arg0, %arg1 : vector<2xf32>
+  %0 = arith.maximumf %arg0, %arg1 : vector<2xf32>
   // CHECK: return %[[SELECT2]]
   return %0: vector<2xf32>
 }
@@ -1278,7 +1278,7 @@ func.func @float32_minf_scalar(%arg0 : f32, %arg1 : f32) -> f32 {
   // CHECK: %[[RHS_NAN:.+]] = spirv.IsNan %[[RHS]] : f32
   // CHECK: %[[SELECT1:.+]] = spirv.Select %[[LHS_NAN]], %[[LHS]], %[[MIN]]
   // CHECK: %[[SELECT2:.+]] = spirv.Select %[[RHS_NAN]], %[[RHS]], %[[SELECT1]]
-  %0 = arith.minf %arg0, %arg1 : f32
+  %0 = arith.minimumf %arg0, %arg1 : f32
   // CHECK: return %[[SELECT2]]
   return %0: f32
 }
@@ -1291,7 +1291,7 @@ func.func @float32_maxf_scalar(%arg0 : vector<2xf32>, %arg1 : vector<2xf32>) ->
   // CHECK: %[[RHS_NAN:.+]] = spirv.IsNan %[[RHS]] : vector<2xf32>
   // CHECK: %[[SELECT1:.+]] = spirv.Select %[[LHS_NAN]], %[[LHS]], %[[MAX]]
   // CHECK: %[[SELECT2:.+]] = spirv.Select %[[RHS_NAN]], %[[RHS]], %[[SELECT1]]
-  %0 = arith.maxf %arg0, %arg1 : vector<2xf32>
+  %0 = arith.maximumf %arg0, %arg1 : vector<2xf32>
   // CHECK: return %[[SELECT2]]
   return %0: vector<2xf32>
 }

diff  --git a/mlir/test/Conversion/ArithToSPIRV/fast-math.mlir b/mlir/test/Conversion/ArithToSPIRV/fast-math.mlir
index 7bac4894078d610..9dea7d6623885e4 100644
--- a/mlir/test/Conversion/ArithToSPIRV/fast-math.mlir
+++ b/mlir/test/Conversion/ArithToSPIRV/fast-math.mlir
@@ -34,7 +34,7 @@ module attributes {
 // CHECK-SAME: %[[LHS:.+]]: f32, %[[RHS:.+]]: f32
 func.func @minf(%arg0 : f32, %arg1 : f32) -> f32 {
   // CHECK: %[[F:.+]] = spirv.GL.FMin %[[LHS]], %[[RHS]]
-  %0 = arith.minf %arg0, %arg1 : f32
+  %0 = arith.minimumf %arg0, %arg1 : f32
   // CHECK: return %[[F]]
   return %0: f32
 }
@@ -43,7 +43,7 @@ func.func @minf(%arg0 : f32, %arg1 : f32) -> f32 {
 // CHECK-SAME: %[[LHS:.+]]: vector<4xf32>, %[[RHS:.+]]: vector<4xf32>
 func.func @maxf(%arg0 : vector<4xf32>, %arg1 : vector<4xf32>) -> vector<4xf32> {
   // CHECK: %[[F:.+]] = spirv.GL.FMax %[[LHS]], %[[RHS]]
-  %0 = arith.maxf %arg0, %arg1 : vector<4xf32>
+  %0 = arith.maximumf %arg0, %arg1 : vector<4xf32>
   // CHECK: return %[[F]]
   return %0: vector<4xf32>
 }

diff  --git a/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg.mlir b/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg.mlir
index c12b801e39ad6f0..b08f4969ef50813 100644
--- a/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg.mlir
+++ b/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg.mlir
@@ -486,11 +486,11 @@ func.func @test_simple_f32(%arg0: tensor<1xf32>) -> () {
   %13 = tosa.select %10, %0, %1 : (tensor<1xi1>, tensor<1xf32>, tensor<1xf32>) -> tensor<1xf32>
 
   // CHECK: linalg.generic
-  // CHECK: arith.maxf
+  // CHECK: arith.maximumf
   %14 = tosa.maximum %0, %1 : (tensor<1xf32>, tensor<1xf32>) -> tensor<1xf32>
 
   // CHECK: linalg.generic
-  // CHECK: arith.minf
+  // CHECK: arith.minimumf
   %15 = tosa.minimum %0, %1 : (tensor<1xf32>, tensor<1xf32>) -> tensor<1xf32>
 
   // CHECK: linalg.generic
@@ -502,8 +502,8 @@ func.func @test_simple_f32(%arg0: tensor<1xf32>) -> () {
   %17 = tosa.floor %0 : (tensor<1xf32>) -> tensor<1xf32>
 
   // CHECK: linalg.generic
-  // CHECK: arith.minf
-  // CHECK: arith.maxf
+  // CHECK: arith.minimumf
+  // CHECK: arith.maximumf
   %18 = tosa.clamp %0 {min_int = 1 : i64, max_int = 5 : i64, min_fp = 1.0 : f32, max_fp = 5.0 : f32} : (tensor<1xf32>) -> tensor<1xf32>
 
   // CHECK: linalg.generic
@@ -517,8 +517,8 @@ func.func @test_simple_f32(%arg0: tensor<1xf32>) -> () {
   // CHECK: arith.constant -2.14748365E+9
   // CHECK: arith.constant 2.14748365E+9
   // CHECK: math.roundeven
-  // CHECK: arith.minf
-  // CHECK: arith.maxf
+  // CHECK: arith.minimumf
+  // CHECK: arith.maximumf
   // CHECK: arith.fptosi
   %20 = tosa.cast %0 : (tensor<1xf32>) -> tensor<1xi32>
 
@@ -555,8 +555,8 @@ func.func @test_simple_f16(%arg0: tensor<1xf16>) -> () {
   // CHECK: arith.constant -1.280000e+02
   // CHECK: arith.constant 1.270000e+02
   // CHECK: math.roundeven
-  // CHECK: arith.minf
-  // CHECK: arith.maxf
+  // CHECK: arith.minimumf
+  // CHECK: arith.maximumf
   // CHECK: arith.fptosi
   %1 = "tosa.cast"(%arg0) : (tensor<1xf16>) -> tensor<1xi8>
   return
@@ -757,8 +757,8 @@ func.func @test_clamp_f16(%arg0: tensor<1xf16>) -> () {
   // CHECK: ^bb0(%[[ARG1:.+]]: f16,
   // CHECK-DAG: %[[C0:.+]] = arith.constant 0.0
   // CHECK-DAG: %[[C6:.+]] = arith.constant 6.0
-  // CHECK-DAG: %[[MIN:.+]] = arith.minf %[[ARG1]], %[[C6]]
-  // CHECK-DAG: %[[MAX:.+]] = arith.maxf %[[MIN]], %[[C0]]
+  // CHECK-DAG: %[[MIN:.+]] = arith.minimumf %[[ARG1]], %[[C6]]
+  // CHECK-DAG: %[[MAX:.+]] = arith.maximumf %[[MIN]], %[[C0]]
   %0 = tosa.clamp %arg0 {min_int = 0 : i64, max_int = 0 : i64, min_fp = 0.0 : f32, max_fp = 6.0 : f32} : (tensor<1xf16>) -> tensor<1xf16>
 
   return
@@ -932,13 +932,13 @@ func.func @reduce_float(%arg0: tensor<5x4xf32>) -> () {
   // CHECK: arith.constant 3.40282347E+38 : f32
   // CHECK: linalg.fill
   // CHECK: linalg.generic
-  // CHECK: arith.minf
+  // CHECK: arith.minimumf
   %3 = tosa.reduce_min %arg0 {axis = 0 : i32} : (tensor<5x4xf32>) -> tensor<1x4xf32>
 
   // CHECK: arith.constant -3.40282347E+38 : f32
   // CHECK: linalg.fill
   // CHECK: linalg.generic
-  // CHECK: arith.maxf
+  // CHECK: arith.maximumf
   %4 = tosa.reduce_max %arg0 {axis = 0 : i32} : (tensor<5x4xf32>) -> tensor<1x4xf32>
   return
 }
@@ -1022,7 +1022,7 @@ func.func @reduce_float_dyn_multiple(%arg0: tensor<?x?xf32>) -> () {
   // CHECK: %[[FILL:.+]] = linalg.fill ins(%[[CMIN]]{{.*}}outs(%[[INIT]]
   // CHECK: %[[GENERIC:.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]]], iterator_types = ["parallel", "reduction"]} ins(%[[ARG0]] : tensor<?x?xf32>) outs(%[[FILL]] : tensor<?xf32>)
   // CHECK: ^bb0(%[[ARG1:.*]]: f32, %[[ARG2:.*]]: f32)
-  // CHECK:   %[[MAX:.+]] = arith.maxf %[[ARG1]], %[[ARG2]] : f32
+  // CHECK:   %[[MAX:.+]] = arith.maximumf %[[ARG1]], %[[ARG2]] : f32
   // CHECK:   linalg.yield %[[MAX]] : f32
   // CHECK: tensor.expand_shape %[[GENERIC]] {{\[}}[0, 1]] : tensor<?xf32> into tensor<?x1xf32>
   %0 = tosa.reduce_max %arg0 {axis = 1 : i32} : (tensor<?x?xf32>) -> tensor<?x1xf32>

diff  --git a/mlir/test/Conversion/VectorToLLVM/vector-to-llvm.mlir b/mlir/test/Conversion/VectorToLLVM/vector-to-llvm.mlir
index a1c9aa6edeaa46b..44d6b637ede0a96 100644
--- a/mlir/test/Conversion/VectorToLLVM/vector-to-llvm.mlir
+++ b/mlir/test/Conversion/VectorToLLVM/vector-to-llvm.mlir
@@ -451,7 +451,7 @@ func.func @masked_float_max_outerprod(%arg0: vector<2xf32>, %arg1: f32, %arg2: v
 // CHECK-LABEL:   func.func @masked_float_max_outerprod(
 // CHECK-SAME:                                          %[[VAL_0:.*]]: vector<2xf32>, %[[VAL_1:.*]]: f32, %[[VAL_2:.*]]: vector<2xf32>, %[[VAL_3:.*]]: vector<2xi1>) -> vector<2xf32> {
 // CHECK:           %[[VAL_8:.*]] = arith.mulf %[[VAL_0]], %{{.*}} : vector<2xf32>
-// CHECK:           %[[VAL_9:.*]] = arith.maxf %[[VAL_8]], %[[VAL_2]] : vector<2xf32>
+// CHECK:           %[[VAL_9:.*]] = arith.maximumf %[[VAL_8]], %[[VAL_2]] : vector<2xf32>
 // CHECK:           %[[VAL_10:.*]] = arith.select %[[VAL_3]], %[[VAL_9]], %[[VAL_2]] : vector<2xi1>, vector<2xf32>
 
 // -----
@@ -464,7 +464,7 @@ func.func @masked_float_min_outerprod(%arg0: vector<2xf32>, %arg1: f32, %arg2: v
 // CHECK-LABEL:   func.func @masked_float_min_outerprod(
 // CHECK-SAME:                                          %[[VAL_0:.*]]: vector<2xf32>, %[[VAL_1:.*]]: f32, %[[VAL_2:.*]]: vector<2xf32>, %[[VAL_3:.*]]: vector<2xi1>) -> vector<2xf32> {
 // CHECK:           %[[VAL_8:.*]] = arith.mulf %[[VAL_0]], %{{.*}} : vector<2xf32>
-// CHECK:           %[[VAL_9:.*]] = arith.minf %[[VAL_8]], %[[VAL_2]] : vector<2xf32>
+// CHECK:           %[[VAL_9:.*]] = arith.minimumf %[[VAL_8]], %[[VAL_2]] : vector<2xf32>
 // CHECK:           %[[VAL_10:.*]] = arith.select %[[VAL_3]], %[[VAL_9]], %[[VAL_2]] : vector<2xi1>, vector<2xf32>
 
 // -----

diff  --git a/mlir/test/Dialect/AMDGPU/amdgpu-emulate-atomics.mlir b/mlir/test/Dialect/AMDGPU/amdgpu-emulate-atomics.mlir
index 95355e13b8ecb83..b1c7c1b45b32ecb 100644
--- a/mlir/test/Dialect/AMDGPU/amdgpu-emulate-atomics.mlir
+++ b/mlir/test/Dialect/AMDGPU/amdgpu-emulate-atomics.mlir
@@ -11,7 +11,7 @@ func.func @atomic_fmax(%val: f32, %buffer: memref<?xf32>, %idx: i32) {
 // GFX9:  [[ld:%.+]] = amdgpu.raw_buffer_load {foo, indexOffset = 4 : i32} [[buffer]][[[idx]]]
 // GFX9:  cf.br [[loop:\^.+]]([[ld]] : f32)
 // GFX9:  [[loop]]([[arg:%.+]]: f32):
-// GFX9:  [[operated:%.+]] = arith.maxf [[val]], [[arg]]
+// GFX9:  [[operated:%.+]] = arith.maximumf [[val]], [[arg]]
 // GFX9:  [[atomicRes:%.+]] = amdgpu.raw_buffer_atomic_cmpswap {foo, indexOffset = 4 : i32} [[operated]], [[arg]] -> [[buffer]][[[idx]]]
 // GFX9:  [[argCast:%.+]] = arith.bitcast [[arg]] : f32 to i32
 // GFX9:  [[resCast:%.+]] = arith.bitcast [[atomicRes]] : f32 to i32

diff  --git a/mlir/test/Dialect/Affine/SuperVectorize/vectorize_reduction.mlir b/mlir/test/Dialect/Affine/SuperVectorize/vectorize_reduction.mlir
index 9aef9b12b0d5066..e6ce0446924d501 100644
--- a/mlir/test/Dialect/Affine/SuperVectorize/vectorize_reduction.mlir
+++ b/mlir/test/Dialect/Affine/SuperVectorize/vectorize_reduction.mlir
@@ -34,7 +34,7 @@ func.func @vecdim_reduction_minf(%in: memref<256x512xf32>, %out: memref<256xf32>
  affine.for %i = 0 to 256 {
    %final_red = affine.for %j = 0 to 512 iter_args(%red_iter = %cst) -> (f32) {
      %ld = affine.load %in[%i, %j] : memref<256x512xf32>
-     %min = arith.minf %red_iter, %ld : f32
+     %min = arith.minimumf %red_iter, %ld : f32
      affine.yield %min : f32
    }
    affine.store %final_red, %out[%i] : memref<256xf32>
@@ -47,7 +47,7 @@ func.func @vecdim_reduction_minf(%in: memref<256x512xf32>, %out: memref<256xf32>
 // CHECK:         %[[vmax:.*]] = arith.constant dense<0x7F800000> : vector<128xf32>
 // CHECK:         %[[vred:.*]] = affine.for %{{.*}} = 0 to 512 step 128 iter_args(%[[red_iter:.*]] = %[[vmax]]) -> (vector<128xf32>) {
 // CHECK:           %[[ld:.*]] = vector.transfer_read %{{.*}} : memref<256x512xf32>, vector<128xf32>
-// CHECK:           %[[min:.*]] = arith.minf %[[red_iter]], %[[ld]] : vector<128xf32>
+// CHECK:           %[[min:.*]] = arith.minimumf %[[red_iter]], %[[ld]] : vector<128xf32>
 // CHECK:           affine.yield %[[min]] : vector<128xf32>
 // CHECK:         }
 // CHECK:         %[[final_min:.*]] = vector.reduction <minf>, %[[vred:.*]] : vector<128xf32> into f32
@@ -61,7 +61,7 @@ func.func @vecdim_reduction_maxf(%in: memref<256x512xf32>, %out: memref<256xf32>
  affine.for %i = 0 to 256 {
    %final_red = affine.for %j = 0 to 512 iter_args(%red_iter = %cst) -> (f32) {
      %ld = affine.load %in[%i, %j] : memref<256x512xf32>
-     %max = arith.maxf %red_iter, %ld : f32
+     %max = arith.maximumf %red_iter, %ld : f32
      affine.yield %max : f32
    }
    affine.store %final_red, %out[%i] : memref<256xf32>
@@ -74,7 +74,7 @@ func.func @vecdim_reduction_maxf(%in: memref<256x512xf32>, %out: memref<256xf32>
 // CHECK:         %[[vmin:.*]] = arith.constant dense<0xFF800000> : vector<128xf32>
 // CHECK:         %[[vred:.*]] = affine.for %{{.*}} = 0 to 512 step 128 iter_args(%[[red_iter:.*]] = %[[vmin]]) -> (vector<128xf32>) {
 // CHECK:           %[[ld:.*]] = vector.transfer_read %{{.*}} : memref<256x512xf32>, vector<128xf32>
-// CHECK:           %[[max:.*]] = arith.maxf %[[red_iter]], %[[ld]] : vector<128xf32>
+// CHECK:           %[[max:.*]] = arith.maximumf %[[red_iter]], %[[ld]] : vector<128xf32>
 // CHECK:           affine.yield %[[max]] : vector<128xf32>
 // CHECK:         }
 // CHECK:         %[[final_max:.*]] = vector.reduction <maxf>, %[[vred:.*]] : vector<128xf32> into f32

diff  --git a/mlir/test/Dialect/Arith/canonicalize.mlir b/mlir/test/Dialect/Arith/canonicalize.mlir
index 347b6346b786279..5c93be887107bb6 100644
--- a/mlir/test/Dialect/Arith/canonicalize.mlir
+++ b/mlir/test/Dialect/Arith/canonicalize.mlir
@@ -1638,13 +1638,13 @@ func.func @test_minui2(%arg0 : i8) -> (i8, i8, i8, i8) {
 // CHECK-LABEL: @test_minf(
 func.func @test_minf(%arg0 : f32) -> (f32, f32, f32) {
   // CHECK-DAG:   %[[C0:.+]] = arith.constant 0.0
-  // CHECK-NEXT:  %[[X:.+]] = arith.minf %arg0, %[[C0]]
+  // CHECK-NEXT:  %[[X:.+]] = arith.minimumf %arg0, %[[C0]]
   // CHECK-NEXT:  return %[[X]], %arg0, %arg0
   %c0 = arith.constant 0.0 : f32
   %inf = arith.constant 0x7F800000 : f32
-  %0 = arith.minf %c0, %arg0 : f32
-  %1 = arith.minf %arg0, %arg0 : f32
-  %2 = arith.minf %inf, %arg0 : f32
+  %0 = arith.minimumf %c0, %arg0 : f32
+  %1 = arith.minimumf %arg0, %arg0 : f32
+  %2 = arith.minimumf %inf, %arg0 : f32
   return %0, %1, %2 : f32, f32, f32
 }
 
@@ -1653,13 +1653,13 @@ func.func @test_minf(%arg0 : f32) -> (f32, f32, f32) {
 // CHECK-LABEL: @test_maxf(
 func.func @test_maxf(%arg0 : f32) -> (f32, f32, f32) {
   // CHECK-DAG:   %[[C0:.+]] = arith.constant
-  // CHECK-NEXT:  %[[X:.+]] = arith.maxf %arg0, %[[C0]]
+  // CHECK-NEXT:  %[[X:.+]] = arith.maximumf %arg0, %[[C0]]
   // CHECK-NEXT:   return %[[X]], %arg0, %arg0
   %c0 = arith.constant 0.0 : f32
   %-inf = arith.constant 0xFF800000 : f32
-  %0 = arith.maxf %c0, %arg0 : f32
-  %1 = arith.maxf %arg0, %arg0 : f32
-  %2 = arith.maxf %-inf, %arg0 : f32
+  %0 = arith.maximumf %c0, %arg0 : f32
+  %1 = arith.maximumf %arg0, %arg0 : f32
+  %2 = arith.maximumf %-inf, %arg0 : f32
   return %0, %1, %2 : f32, f32, f32
 }
 

diff  --git a/mlir/test/Dialect/Arith/expand-ops.mlir b/mlir/test/Dialect/Arith/expand-ops.mlir
index 9f63c941353631e..2c41f098c6c15c0 100644
--- a/mlir/test/Dialect/Arith/expand-ops.mlir
+++ b/mlir/test/Dialect/Arith/expand-ops.mlir
@@ -178,7 +178,7 @@ func.func @ceildivui_index(%arg0: index, %arg1: index) -> (index) {
 
 // CHECK-LABEL: func @maxf
 func.func @maxf(%a: f32, %b: f32) -> f32 {
-  %result = arith.maxf %a, %b : f32
+  %result = arith.maximumf %a, %b : f32
   return %result : f32
 }
 // CHECK-SAME: %[[LHS:.*]]: f32, %[[RHS:.*]]: f32)
@@ -192,7 +192,7 @@ func.func @maxf(%a: f32, %b: f32) -> f32 {
 
 // CHECK-LABEL: func @maxf_vector
 func.func @maxf_vector(%a: vector<4xf16>, %b: vector<4xf16>) -> vector<4xf16> {
-  %result = arith.maxf %a, %b : vector<4xf16>
+  %result = arith.maximumf %a, %b : vector<4xf16>
   return %result : vector<4xf16>
 }
 // CHECK-SAME: %[[LHS:.*]]: vector<4xf16>, %[[RHS:.*]]: vector<4xf16>)
@@ -206,7 +206,7 @@ func.func @maxf_vector(%a: vector<4xf16>, %b: vector<4xf16>) -> vector<4xf16> {
 
 // CHECK-LABEL: func @minf
 func.func @minf(%a: f32, %b: f32) -> f32 {
-  %result = arith.minf %a, %b : f32
+  %result = arith.minimumf %a, %b : f32
   return %result : f32
 }
 

diff  --git a/mlir/test/Dialect/Arith/ops.mlir b/mlir/test/Dialect/Arith/ops.mlir
index faa138a170ddfac..5b5618bb03676bf 100644
--- a/mlir/test/Dialect/Arith/ops.mlir
+++ b/mlir/test/Dialect/Arith/ops.mlir
@@ -1071,9 +1071,9 @@ func.func @maximum(%v1: vector<4xf32>, %v2: vector<4xf32>,
                %sv1: vector<[4]xf32>, %sv2: vector<[4]xf32>,
                %f1: f32, %f2: f32,
                %i1: i32, %i2: i32) {
-  %max_vector = arith.maxf %v1, %v2 : vector<4xf32>
-  %max_scalable_vector = arith.maxf %sv1, %sv2 : vector<[4]xf32>
-  %max_float = arith.maxf %f1, %f2 : f32
+  %max_vector = arith.maximumf %v1, %v2 : vector<4xf32>
+  %max_scalable_vector = arith.maximumf %sv1, %sv2 : vector<[4]xf32>
+  %max_float = arith.maximumf %f1, %f2 : f32
   %max_signed = arith.maxsi %i1, %i2 : i32
   %max_unsigned = arith.maxui %i1, %i2 : i32
   return
@@ -1084,9 +1084,9 @@ func.func @minimum(%v1: vector<4xf32>, %v2: vector<4xf32>,
                %sv1: vector<[4]xf32>, %sv2: vector<[4]xf32>,
                %f1: f32, %f2: f32,
                %i1: i32, %i2: i32) {
-  %min_vector = arith.minf %v1, %v2 : vector<4xf32>
-  %min_scalable_vector = arith.minf %sv1, %sv2 : vector<[4]xf32>
-  %min_float = arith.minf %f1, %f2 : f32
+  %min_vector = arith.minimumf %v1, %v2 : vector<4xf32>
+  %min_scalable_vector = arith.minimumf %sv1, %sv2 : vector<[4]xf32>
+  %min_float = arith.minimumf %f1, %f2 : f32
   %min_signed = arith.minsi %i1, %i2 : i32
   %min_unsigned = arith.minui %i1, %i2 : i32
   return

diff  --git a/mlir/test/Dialect/Linalg/fusion-elementwise-ops.mlir b/mlir/test/Dialect/Linalg/fusion-elementwise-ops.mlir
index 5bcae368b83b080..9d8421cbab49d8e 100644
--- a/mlir/test/Dialect/Linalg/fusion-elementwise-ops.mlir
+++ b/mlir/test/Dialect/Linalg/fusion-elementwise-ops.mlir
@@ -940,7 +940,7 @@ func.func @no_fusion_missing_reduction_shape(%arg0: tensor<f32>, %arg1: index) -
     iterator_types = ["parallel", "reduction"]
   } ins(%5 : tensor<?x?xf32>) outs(%7 : tensor<?xf32>) {
   ^bb0(%arg2: f32, %arg3: f32):
-    %9 = arith.maxf %arg2, %arg3 : f32
+    %9 = arith.maximumf %arg2, %arg3 : f32
     linalg.yield %9 : f32
   } -> tensor<?xf32>
   return %8 : tensor<?xf32>

diff  --git a/mlir/test/Dialect/Linalg/generalize-named-ops.mlir b/mlir/test/Dialect/Linalg/generalize-named-ops.mlir
index af616a0a7bd8dad..54cc0defc1f8cd8 100644
--- a/mlir/test/Dialect/Linalg/generalize-named-ops.mlir
+++ b/mlir/test/Dialect/Linalg/generalize-named-ops.mlir
@@ -560,5 +560,5 @@ func.func @generalize_max(%lhs: memref<7x14x21xf32>, %rhs: memref<7x14x21xf32>,
 // CHECK-SAME: outs(%[[OUT]] : memref<7x14x21xf32>)
 
 // CHECK:         ^{{.+}}(%[[BBARG0:.+]]: f32, %[[BBARG1:.+]]: f32, %[[BBARG2:.+]]: f32)
-// CHECK-NEXT:      %[[max:.+]] = arith.maxf %[[BBARG0]], %[[BBARG1]] : f32
+// CHECK-NEXT:      %[[max:.+]] = arith.maximumf %[[BBARG0]], %[[BBARG1]] : f32
 // CHECK-NEXT:      linalg.yield %[[max]] : f32

diff  --git a/mlir/test/Dialect/Linalg/generalize-named-polymorphic-ops.mlir b/mlir/test/Dialect/Linalg/generalize-named-polymorphic-ops.mlir
index 225cd583c4256ff..1940a4a2912cbed 100644
--- a/mlir/test/Dialect/Linalg/generalize-named-polymorphic-ops.mlir
+++ b/mlir/test/Dialect/Linalg/generalize-named-polymorphic-ops.mlir
@@ -125,7 +125,7 @@ func.func @generalize_pooling_nhwc_max_f32(%input : tensor<1x4x16x1xf32>, %shape
 
 // CHECK-LABEL: @generalize_pooling_nhwc_max_f32
 // CHECK:      ^{{.*}}(%[[IN_ARG:.+]]: f32, %[[SHAPE_ARG:.+]]: f32, %[[OUT_ARG:.+]]: f32)
-// CHECK-NEXT:   %[[MAX:.+]] = arith.maxf %[[OUT_ARG]], %[[IN_ARG]] : f32
+// CHECK-NEXT:   %[[MAX:.+]] = arith.maximumf %[[OUT_ARG]], %[[IN_ARG]] : f32
 // CHECK-NEXT:   linalg.yield %[[MAX]] : f32
 // CHECK-NEXT: -> tensor<1x2x4x1xf32>
 
@@ -139,7 +139,7 @@ func.func @generalize_pooling_nwc_max_f32(%input : tensor<1x16x1xf32>, %shape: t
 
 // CHECK-LABEL: @generalize_pooling_nwc_max_f32
 // CHECK:      ^{{.*}}(%[[IN_ARG:.+]]: f32, %[[SHAPE_ARG:.+]]: f32, %[[OUT_ARG:.+]]: f32)
-// CHECK-NEXT:   %[[MAX:.+]] = arith.maxf %[[OUT_ARG]], %[[IN_ARG]] : f32
+// CHECK-NEXT:   %[[MAX:.+]] = arith.maximumf %[[OUT_ARG]], %[[IN_ARG]] : f32
 // CHECK-NEXT:   linalg.yield %[[MAX]] : f32
 // CHECK-NEXT: -> tensor<1x4x1xf32>
 
@@ -201,7 +201,7 @@ func.func @generalize_pooling_nhwc_min_f32(%input : tensor<1x4x16x1xf32>, %shape
 
 // CHECK-LABEL: @generalize_pooling_nhwc_min_f32
 // CHECK:      ^{{.*}}(%[[IN_ARG:.+]]: f32, %[[SHAPE_ARG:.+]]: f32, %[[OUT_ARG:.+]]: f32)
-// CHECK-NEXT:   %[[MIN:.+]] = arith.minf %[[OUT_ARG]], %[[IN_ARG]] : f32
+// CHECK-NEXT:   %[[MIN:.+]] = arith.minimumf %[[OUT_ARG]], %[[IN_ARG]] : f32
 // CHECK-NEXT:   linalg.yield %[[MIN]] : f32
 // CHECK-NEXT: -> tensor<1x2x4x1xf32>
 
@@ -215,7 +215,7 @@ func.func @generalize_pooling_nwc_min_f32(%input : tensor<1x16x1xf32>, %shape: t
 
 // CHECK-LABEL: @generalize_pooling_nwc_min_f32
 // CHECK:      ^{{.*}}(%[[IN_ARG:.+]]: f32, %[[SHAPE_ARG:.+]]: f32, %[[OUT_ARG:.+]]: f32)
-// CHECK-NEXT:   %[[MIN:.+]] = arith.minf %[[OUT_ARG]], %[[IN_ARG]] : f32
+// CHECK-NEXT:   %[[MIN:.+]] = arith.minimumf %[[OUT_ARG]], %[[IN_ARG]] : f32
 // CHECK-NEXT:   linalg.yield %[[MIN]] : f32
 // CHECK-NEXT: -> tensor<1x4x1xf32>
 

diff  --git a/mlir/test/Dialect/Linalg/one-shot-bufferize-analysis.mlir b/mlir/test/Dialect/Linalg/one-shot-bufferize-analysis.mlir
index b4230314302f6e8..4905e2405c60ea3 100644
--- a/mlir/test/Dialect/Linalg/one-shot-bufferize-analysis.mlir
+++ b/mlir/test/Dialect/Linalg/one-shot-bufferize-analysis.mlir
@@ -96,7 +96,7 @@ func.func @elementwise_no_conflict_4(%arg0: tensor<8x32x32x32xf32>, %arg1: tenso
     // They are 
diff erent SSA values, but %6 and %extract_slice are equivalent.
     %7 = linalg.generic {indexing_maps = [#map, #map], iterator_types = ["parallel", "parallel"]} ins(%6 : tensor<32x32xf32>) outs(%extracted_slice : tensor<32x32xf32>) {
     ^bb0(%in: f32, %out: f32):
-      %8 = arith.maxf %in, %cst_1 : f32
+      %8 = arith.maximumf %in, %cst_1 : f32
       linalg.yield %8 : f32
     } -> tensor<32x32xf32>
     scf.forall.in_parallel {

diff  --git a/mlir/test/Dialect/Linalg/transform-op-decompose.mlir b/mlir/test/Dialect/Linalg/transform-op-decompose.mlir
index a8520b45275bb26..e02b029b2fdc993 100644
--- a/mlir/test/Dialect/Linalg/transform-op-decompose.mlir
+++ b/mlir/test/Dialect/Linalg/transform-op-decompose.mlir
@@ -215,7 +215,7 @@ func.func @softmax(%arg0: tensor<2x16x32xf32>, %dst: tensor<2x16x32xf32>) -> ten
 // CHECK:        %[[D3:.+]] = linalg.generic {indexing_maps = [#[[$MAP]], #[[$MAP1]]], iterator_types = ["parallel",
 // CHECK-SAME:     "parallel", "reduction"]} ins(%[[ARG0]] : tensor<2x16x32xf32>) outs(%[[D2]] : tensor<2x16xf32>) {
 // CHECK:        ^bb0(%[[IN:.+]]: f32, %[[OUT:.+]]: f32):
-// CHECK:          %[[D8:.+]] = arith.maxf %[[IN]], %[[OUT]] : f32
+// CHECK:          %[[D8:.+]] = arith.maximumf %[[IN]], %[[OUT]] : f32
 // CHECK:          linalg.yield %[[D8]] : f32
 // CHECK:        } -> tensor<2x16xf32>
 // CHECK:        %[[D4:.+]] = linalg.generic {indexing_maps = [#[[$MAP]], #[[$MAP1]], #[[$MAP]]], iterator_types =

diff  --git a/mlir/test/Dialect/Linalg/transform-op-fuse-into-containing.mlir b/mlir/test/Dialect/Linalg/transform-op-fuse-into-containing.mlir
index 799d21db130049c..533063f6eb5f7aa 100644
--- a/mlir/test/Dialect/Linalg/transform-op-fuse-into-containing.mlir
+++ b/mlir/test/Dialect/Linalg/transform-op-fuse-into-containing.mlir
@@ -447,7 +447,7 @@ module {
       indexing_maps = [#map3, #map4], iterator_types = ["parallel", "reduction"]
       } ins(%in : tensor<?x?xf32>) outs(%out_1 : tensor<?xf32>) {
         ^bb0(%a: f32, %b: f32):
-          %d = arith.maxf %a, %b : f32
+          %d = arith.maximumf %a, %b : f32
           linalg.yield %d : f32
         } -> tensor<?xf32>
     %d0 = tensor.dim %out_1, %c0 : tensor<?xf32>
@@ -580,7 +580,7 @@ module {
     %4 = linalg.fill ins(%cst_1 : f32) outs(%1 : tensor<16x128xf32>) -> tensor<16x128xf32>
     %5 = linalg.generic {producer, indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1, d2)>, affine_map<(d0, d1, d2) -> (d0, d1)>], iterator_types = ["parallel", "parallel", "reduction"]} ins(%cst : tensor<16x128x128xf32>) outs(%4 : tensor<16x128xf32>) {
     ^bb0(%in: f32, %out: f32):
-      %8 = arith.maxf %in, %out : f32
+      %8 = arith.maximumf %in, %out : f32
       linalg.yield %8 : f32
     } -> tensor<16x128xf32>
     %c16 = arith.constant 16 : index

diff  --git a/mlir/test/Dialect/Linalg/transform-op-split-reduction.mlir b/mlir/test/Dialect/Linalg/transform-op-split-reduction.mlir
index 783632cc73f623a..7b16546fb189084 100644
--- a/mlir/test/Dialect/Linalg/transform-op-split-reduction.mlir
+++ b/mlir/test/Dialect/Linalg/transform-op-split-reduction.mlir
@@ -102,7 +102,7 @@ func.func @generic_split_3d(%input: tensor<32x2xf32>, %input_2: tensor<5x32xf32>
     } ins(%input, %input_2 : tensor<32x2xf32>, tensor<5x32xf32>) outs(%output : tensor<5x2xf32>) {
     ^bb0(%arg0: f32, %arg1: f32, %arg2: f32):
       %3 = arith.addf %arg0, %arg1 : f32
-      %4 = arith.maxf %3, %arg2 : f32
+      %4 = arith.maximumf %3, %arg2 : f32
       linalg.yield %4 : f32
     } -> tensor<5x2xf32>
   return %0 : tensor<5x2xf32>
@@ -122,12 +122,12 @@ func.func @generic_split_3d(%input: tensor<32x2xf32>, %input_2: tensor<5x32xf32>
 //      CHECK: %[[G:.*]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP2]]], iterator_types = ["parallel", "reduction", "parallel", "parallel"]}
 // CHECK-SAME:   ins(%[[I1]], %[[I2]] : tensor<4x8x2xf32>, tensor<5x4x8xf32>) outs(%[[F]] : tensor<5x2x4xf32>) {
 //      CHECK:   arith.addf
-//      CHECK:   arith.maxf
+//      CHECK:   arith.maximumf
 //      CHECK:   linalg.yield
 //      CHECK: } -> tensor<5x2x4xf32>
 //      CHECK: %[[R:.*]] = linalg.generic {indexing_maps = [#[[$MAP3]], #[[$MAP4]]], iterator_types = ["parallel", "parallel", "reduction"]}
 // CHECK-SAME:   ins(%[[G]] : tensor<5x2x4xf32>) outs(%{{.*}} : tensor<5x2xf32>) {
-//      CHECK:   arith.maxf
+//      CHECK:   arith.maximumf
 //      CHECK:   linalg.yield
 //      CHECK:  } -> tensor<5x2xf32>
 //      CHECK: return %[[R]] : tensor<5x2xf32>
@@ -158,7 +158,7 @@ func.func @generic_split_3d_ninf(%input: tensor<32x2xf32>, %input_2: tensor<5x32
     } ins(%input, %input_2 : tensor<32x2xf32>, tensor<5x32xf32>) outs(%output : tensor<5x2xf32>) {
     ^bb0(%arg0: f32, %arg1: f32, %arg2: f32):
       %3 = arith.addf %arg0, %arg1 : f32
-      %4 = arith.maxf %3, %arg2 fastmath<nnan,ninf> : f32
+      %4 = arith.maximumf %3, %arg2 fastmath<nnan,ninf> : f32
       linalg.yield %4 : f32
     } -> tensor<5x2xf32>
   return %0 : tensor<5x2xf32>
@@ -178,12 +178,12 @@ func.func @generic_split_3d_ninf(%input: tensor<32x2xf32>, %input_2: tensor<5x32
 //      CHECK: %[[G:.*]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP2]]], iterator_types = ["parallel", "reduction", "parallel", "parallel"]}
 // CHECK-SAME:   ins(%[[I1]], %[[I2]] : tensor<4x8x2xf32>, tensor<5x4x8xf32>) outs(%[[F]] : tensor<5x2x4xf32>) {
 //      CHECK:   arith.addf
-//      CHECK:   arith.maxf {{.*}} fastmath<nnan,ninf>
+//      CHECK:   arith.maximumf {{.*}} fastmath<nnan,ninf>
 //      CHECK:   linalg.yield
 //      CHECK: } -> tensor<5x2x4xf32>
 //      CHECK: %[[R:.*]] = linalg.generic {indexing_maps = [#[[$MAP3]], #[[$MAP4]]], iterator_types = ["parallel", "parallel", "reduction"]}
 // CHECK-SAME:   ins(%[[G]] : tensor<5x2x4xf32>) outs(%{{.*}} : tensor<5x2xf32>) {
-//      CHECK:   arith.maxf {{.*}} fastmath<nnan,ninf>
+//      CHECK:   arith.maximumf {{.*}} fastmath<nnan,ninf>
 //      CHECK:   linalg.yield
 //      CHECK:  } -> tensor<5x2xf32>
 //      CHECK: return %[[R]] : tensor<5x2xf32>
@@ -299,7 +299,7 @@ func.func @generic_split_3d(%input: tensor<32x2xf32>, %input_2: tensor<5x32xf32>
     } ins(%input, %input_2 : tensor<32x2xf32>, tensor<5x32xf32>) outs(%output : tensor<5x2xf32>) {
     ^bb0(%arg0: f32, %arg1: f32, %arg2: f32):
       %3 = arith.addf %arg0, %arg1 : f32
-      %4 = arith.minf %3, %arg2 : f32
+      %4 = arith.minimumf %3, %arg2 : f32
       linalg.yield %4 : f32
     } -> tensor<5x2xf32>
   return %0 : tensor<5x2xf32>
@@ -319,12 +319,12 @@ func.func @generic_split_3d(%input: tensor<32x2xf32>, %input_2: tensor<5x32xf32>
 //      CHECK: %[[G:.*]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP2]]], iterator_types = ["parallel", "reduction", "parallel", "parallel"]}
 // CHECK-SAME:   ins(%[[I1]], %[[I2]] : tensor<8x4x2xf32>, tensor<5x8x4xf32>) outs(%[[F]] : tensor<5x2x4xf32>) {
 //      CHECK:   arith.addf
-//      CHECK:   arith.minf
+//      CHECK:   arith.minimumf
 //      CHECK:   linalg.yield
 //      CHECK: } -> tensor<5x2x4xf32>
 //      CHECK: %[[R:.*]] = linalg.generic {indexing_maps = [#[[$MAP3]], #[[$MAP4]]], iterator_types = ["parallel", "parallel", "reduction"]}
 // CHECK-SAME:   ins(%[[G]] : tensor<5x2x4xf32>) outs(%{{.*}} : tensor<5x2xf32>) {
-//      CHECK:   arith.minf
+//      CHECK:   arith.minimumf
 //      CHECK:   linalg.yield
 //      CHECK:  } -> tensor<5x2xf32>
 //      CHECK: return %[[R]] : tensor<5x2xf32>
@@ -355,7 +355,7 @@ func.func @generic_split_3d(%input: tensor<32x2xf32>, %input_2: tensor<5x32xf32>
     } ins(%input, %input_2 : tensor<32x2xf32>, tensor<5x32xf32>) outs(%output : tensor<5x2xf32>) {
     ^bb0(%arg0: f32, %arg1: f32, %arg2: f32):
       %3 = arith.addf %arg0, %arg1 : f32
-      %4 = arith.minf %3, %arg2 fastmath<ninf> : f32
+      %4 = arith.minimumf %3, %arg2 fastmath<ninf> : f32
       linalg.yield %4 : f32
     } -> tensor<5x2xf32>
   return %0 : tensor<5x2xf32>
@@ -375,12 +375,12 @@ func.func @generic_split_3d(%input: tensor<32x2xf32>, %input_2: tensor<5x32xf32>
 //      CHECK: %[[G:.*]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP2]]], iterator_types = ["parallel", "reduction", "parallel", "parallel"]}
 // CHECK-SAME:   ins(%[[I1]], %[[I2]] : tensor<8x4x2xf32>, tensor<5x8x4xf32>) outs(%[[F]] : tensor<5x2x4xf32>) {
 //      CHECK:   arith.addf
-//      CHECK:   arith.minf {{.*}} fastmath<ninf>
+//      CHECK:   arith.minimumf {{.*}} fastmath<ninf>
 //      CHECK:   linalg.yield
 //      CHECK: } -> tensor<5x2x4xf32>
 //      CHECK: %[[R:.*]] = linalg.generic {indexing_maps = [#[[$MAP3]], #[[$MAP4]]], iterator_types = ["parallel", "parallel", "reduction"]}
 // CHECK-SAME:   ins(%[[G]] : tensor<5x2x4xf32>) outs(%{{.*}} : tensor<5x2xf32>) {
-//      CHECK:   arith.minf {{.*}} fastmath<ninf>
+//      CHECK:   arith.minimumf {{.*}} fastmath<ninf>
 //      CHECK:   linalg.yield
 //      CHECK:  } -> tensor<5x2xf32>
 //      CHECK: return %[[R]] : tensor<5x2xf32>

diff  --git a/mlir/test/Dialect/Linalg/transform-tile-and-fuse.mlir b/mlir/test/Dialect/Linalg/transform-tile-and-fuse.mlir
index 7dd31835ce84f99..f144a61125569d5 100644
--- a/mlir/test/Dialect/Linalg/transform-tile-and-fuse.mlir
+++ b/mlir/test/Dialect/Linalg/transform-tile-and-fuse.mlir
@@ -32,7 +32,7 @@ module {
         ins(%C, %6 : tensor<?xf32>, tensor<?x?xf32>)
         outs(%D : tensor<?x?xf32>) {
     ^bb0(%arg2: f32, %arg3: f32, %arg4: f32):
-      %16 = arith.maxf %arg3, %cst : f32
+      %16 = arith.maximumf %arg3, %cst : f32
       %17 = arith.cmpf ogt, %arg2, %cst : f32
       %18 = arith.select %17, %cst, %16 : f32
       linalg.yield %18 : f32
@@ -91,7 +91,7 @@ module {
         ins(%C, %6 : tensor<?xf32>, tensor<?x?xf32>)
         outs(%D : tensor<?x?xf32>) {
     ^bb0(%arg2: f32, %arg3: f32, %arg4: f32):
-      %16 = arith.maxf %arg3, %cst : f32
+      %16 = arith.maximumf %arg3, %cst : f32
       %17 = arith.cmpf ogt, %arg2, %cst : f32
       %18 = arith.select %17, %cst, %16 : f32
       linalg.yield %18 : f32

diff  --git a/mlir/test/Dialect/Linalg/vectorization.mlir b/mlir/test/Dialect/Linalg/vectorization.mlir
index d14246b18fd1333..da9ef1f70de4b79 100644
--- a/mlir/test/Dialect/Linalg/vectorization.mlir
+++ b/mlir/test/Dialect/Linalg/vectorization.mlir
@@ -1182,7 +1182,7 @@ func.func @red_max_2d(%arg0: tensor<4x4xf32>) -> tensor<4xf32> {
                          iterator_types = ["parallel", "reduction"]}
                          ins(%arg0 : tensor<4x4xf32>) outs(%fill : tensor<4xf32>) {
   ^bb0(%in0: f32, %out0: f32):
-    %max = arith.maxf %in0, %out0 : f32
+    %max = arith.maximumf %in0, %out0 : f32
     linalg.yield %max : f32
   } -> tensor<4xf32>
   return %red : tensor<4xf32>
@@ -1213,7 +1213,7 @@ func.func @red_min_2d(%arg0: tensor<4x4xf32>) -> tensor<4xf32> {
                          iterator_types = ["parallel", "reduction"]}
                          ins(%arg0 : tensor<4x4xf32>) outs(%fill : tensor<4xf32>) {
   ^bb0(%in0: f32, %out0: f32):
-    %min = arith.minf %out0, %in0 : f32
+    %min = arith.minimumf %out0, %in0 : f32
     linalg.yield %min : f32
   } -> tensor<4xf32>
   return %red : tensor<4xf32>

diff  --git a/mlir/test/Dialect/Linalg/vectorize-convolution.mlir b/mlir/test/Dialect/Linalg/vectorize-convolution.mlir
index 29dd016b803a4f2..979ad109b12f31a 100644
--- a/mlir/test/Dialect/Linalg/vectorize-convolution.mlir
+++ b/mlir/test/Dialect/Linalg/vectorize-convolution.mlir
@@ -700,8 +700,8 @@ func.func @pooling_nwc_max_memref_1_2_1_3(%input: memref<4x4x3xf32>, %filter: me
 // CHECK: %[[V3:.+]] = vector.extract_strided_slice %[[V0]] {offsets = [0, 3, 0], sizes = [4, 1, 3], strides = [1, 1, 1]} : vector<4x4x3xf32> to vector<4x1x3xf32>
 // CHECK: %[[V4:.+]] = vector.extract_strided_slice %[[V1]] {offsets = [0, 0, 0], sizes = [4, 1, 3], strides = [1, 1, 1]} : vector<4x2x3xf32> to vector<4x1x3xf32>
 // CHECK: %[[V5:.+]] = vector.extract_strided_slice %[[V1]] {offsets = [0, 1, 0], sizes = [4, 1, 3], strides = [1, 1, 1]} : vector<4x2x3xf32> to vector<4x1x3xf32>
-// CHECK: %[[V6:.+]] = arith.maxf %[[V2]], %[[V4]] : vector<4x1x3xf32>
-// CHECK: %[[V7:.+]] = arith.maxf %[[V3]], %[[V5]] : vector<4x1x3xf32>
+// CHECK: %[[V6:.+]] = arith.maximumf %[[V2]], %[[V4]] : vector<4x1x3xf32>
+// CHECK: %[[V7:.+]] = arith.maximumf %[[V3]], %[[V5]] : vector<4x1x3xf32>
 // CHECK: %[[V8:.+]] = vector.insert_strided_slice %[[V6]], %[[V1]] {offsets = [0, 0, 0], strides = [1, 1, 1]} : vector<4x1x3xf32> into vector<4x2x3xf32>
 // CHECK: %[[V9:.+]] = vector.insert_strided_slice %[[V7]], %[[V8]] {offsets = [0, 1, 0], strides = [1, 1, 1]} : vector<4x1x3xf32> into vector<4x2x3xf32>
 // CHECK: vector.transfer_write %[[V9]], %[[OUTPUT]][%[[Vc0]], %[[Vc0]], %[[Vc0]]] {in_bounds = [true, true, true]} : vector<4x2x3xf32>, memref<4x2x3xf32>

diff  --git a/mlir/test/Dialect/SparseTensor/sparse_fusion.mlir b/mlir/test/Dialect/SparseTensor/sparse_fusion.mlir
index d6f4ca58ac642aa..49af2b85f2fa693 100644
--- a/mlir/test/Dialect/SparseTensor/sparse_fusion.mlir
+++ b/mlir/test/Dialect/SparseTensor/sparse_fusion.mlir
@@ -16,7 +16,7 @@
 // CHECK:       arith.addf
 // CHECK:     linalg.generic
 // CHECK:       math.exp
-// CHECK:       arith.maxf
+// CHECK:       arith.maximumf
 // CHECK-NOT: linalg.generic
 // CHECK:     return
 func.func @sparse_fusion(%argA: tensor<100xf64, #SV>) -> tensor<100xf64> {
@@ -51,7 +51,7 @@ func.func @sparse_fusion(%argA: tensor<100xf64, #SV>) -> tensor<100xf64> {
   %l2 = linalg.generic #trait
       ins(%l1: tensor<100xf64>) outs(%t2: tensor<100xf64>) {
     ^bb0(%in2: f64, %out2: f64):
-      %b2 = arith.maxf %in2, %c100 : f64
+      %b2 = arith.maximumf %in2, %c100 : f64
       linalg.yield %b2 : f64
   } -> tensor<100xf64>
 

diff  --git a/mlir/test/Dialect/SparseTensor/unsparsifiable_dense_op.mlir b/mlir/test/Dialect/SparseTensor/unsparsifiable_dense_op.mlir
index 636a41e64b07a85..3304d00d96a1d12 100644
--- a/mlir/test/Dialect/SparseTensor/unsparsifiable_dense_op.mlir
+++ b/mlir/test/Dialect/SparseTensor/unsparsifiable_dense_op.mlir
@@ -42,7 +42,7 @@ func.func @dense_op_without_sp_dep(%169: tensor<2x10x8xf32>,
       %180 = arith.mulf %in_60, %in_60 : f32
       %181 = arith.mulf %in_59, %cst_13 : f32
       %182 = arith.subf %181, %180 : f32
-      %183 = arith.maxf %182, %cst_13 : f32
+      %183 = arith.maximumf %182, %cst_13 : f32
       %184 = arith.addf %183, %cst_13 : f32
       %185 = math.rsqrt %184 : f32 // data dependent on sparse value.
       %186 = arith.mulf %185, %in_61 : f32
@@ -80,7 +80,7 @@ func.func @dense_op_with_sp_dep(%169: tensor<2x10x8xf32>,
       %180 = arith.mulf %in_60, %in_60 : f32
       %181 = arith.mulf %in_59, %cst_13 : f32
       %182 = arith.subf %181, %180 : f32
-      %183 = arith.maxf %182, %cst_13 : f32
+      %183 = arith.maximumf %182, %cst_13 : f32
       %184 = arith.addf %183, %cst_13 : f32
       %185 = math.rsqrt %184 : f32
       %186 = arith.mulf %185, %in_61 : f32

diff  --git a/mlir/test/Dialect/Vector/canonicalize.mlir b/mlir/test/Dialect/Vector/canonicalize.mlir
index 8b709eb643d9189..c22e68b986961d0 100644
--- a/mlir/test/Dialect/Vector/canonicalize.mlir
+++ b/mlir/test/Dialect/Vector/canonicalize.mlir
@@ -1995,7 +1995,7 @@ func.func @dont_reduce_one_element_vector(%a : vector<4xf32>) -> f32 {
 // CHECK-LABEL: func @reduce_one_element_vector_maxf
 //  CHECK-SAME: (%[[V:.+]]: vector<1xf32>, %[[B:.+]]: f32)
 //       CHECK:   %[[A:.+]] = vector.extract %[[V]][0] : vector<1xf32>
-//       CHECK:   %[[S:.+]] = arith.maxf %[[A]], %[[B]] : f32
+//       CHECK:   %[[S:.+]] = arith.maximumf %[[A]], %[[B]] : f32
 //       CHECK:   return %[[S]]
 func.func @reduce_one_element_vector_maxf(%a : vector<1xf32>, %b: f32) -> f32 {
   %s = vector.reduction <maxf>, %a, %b : vector<1xf32> into f32

diff  --git a/mlir/test/Dialect/Vector/vector-multi-reduction-outer-lowering.mlir b/mlir/test/Dialect/Vector/vector-multi-reduction-outer-lowering.mlir
index 8bf1bfe892055dd..4f3d6a54315d3a1 100644
--- a/mlir/test/Dialect/Vector/vector-multi-reduction-outer-lowering.mlir
+++ b/mlir/test/Dialect/Vector/vector-multi-reduction-outer-lowering.mlir
@@ -27,13 +27,13 @@ func.func @vector_multi_reduction_min(%arg0: vector<2x4xf32>, %acc: vector<2xf32
 //  CHECK-SAME:   %[[INPUT:.+]]: vector<2x4xf32>, %[[ACC:.*]]: vector<2xf32>
 //       CHECK:   %[[TRANSPOSED:.+]] = vector.transpose %[[INPUT]], [1, 0] : vector<2x4xf32> to vector<4x2xf32>
 //       CHECK:   %[[V0:.+]] = vector.extract %[[TRANSPOSED]][0] : vector<4x2xf32>
-//       CHECK:   %[[RV0:.+]] = arith.minf %[[V0]], %[[ACC]] : vector<2xf32>
+//       CHECK:   %[[RV0:.+]] = arith.minimumf %[[V0]], %[[ACC]] : vector<2xf32>
 //       CHECK:   %[[V1:.+]] = vector.extract %[[TRANSPOSED]][1] : vector<4x2xf32>
-//       CHECK:   %[[RV01:.+]] = arith.minf %[[V1]], %[[RV0]] : vector<2xf32>
+//       CHECK:   %[[RV01:.+]] = arith.minimumf %[[V1]], %[[RV0]] : vector<2xf32>
 //       CHECK:   %[[V2:.+]] = vector.extract %[[TRANSPOSED]][2] : vector<4x2xf32>
-//       CHECK:   %[[RV012:.+]] = arith.minf %[[V2]], %[[RV01]] : vector<2xf32>
+//       CHECK:   %[[RV012:.+]] = arith.minimumf %[[V2]], %[[RV01]] : vector<2xf32>
 //       CHECK:   %[[V3:.+]] = vector.extract %[[TRANSPOSED]][3] : vector<4x2xf32>
-//       CHECK:   %[[RESULT_VEC:.+]] = arith.minf %[[V3]], %[[RV012]] : vector<2xf32>
+//       CHECK:   %[[RESULT_VEC:.+]] = arith.minimumf %[[V3]], %[[RV012]] : vector<2xf32>
 //       CHECK:   return %[[RESULT_VEC]] : vector<2xf32>
 
 func.func @vector_multi_reduction_max(%arg0: vector<2x4xf32>, %acc: vector<2xf32>) -> vector<2xf32> {
@@ -45,13 +45,13 @@ func.func @vector_multi_reduction_max(%arg0: vector<2x4xf32>, %acc: vector<2xf32
 //  CHECK-SAME:   %[[INPUT:.+]]: vector<2x4xf32>, %[[ACC:.*]]: vector<2xf32>
 //       CHECK:   %[[TRANSPOSED:.+]] = vector.transpose %[[INPUT]], [1, 0] : vector<2x4xf32> to vector<4x2xf32>
 //       CHECK:   %[[V0:.+]] = vector.extract %[[TRANSPOSED]][0] : vector<4x2xf32>
-//       CHECK:   %[[RV0:.+]] = arith.maxf %[[V0]], %[[ACC]] : vector<2xf32>
+//       CHECK:   %[[RV0:.+]] = arith.maximumf %[[V0]], %[[ACC]] : vector<2xf32>
 //       CHECK:   %[[V1:.+]] = vector.extract %[[TRANSPOSED]][1] : vector<4x2xf32>
-//       CHECK:   %[[RV01:.+]] = arith.maxf %[[V1]], %[[RV0]] : vector<2xf32>
+//       CHECK:   %[[RV01:.+]] = arith.maximumf %[[V1]], %[[RV0]] : vector<2xf32>
 //       CHECK:   %[[V2:.+]] = vector.extract %[[TRANSPOSED]][2] : vector<4x2xf32>
-//       CHECK:   %[[RV012:.+]] = arith.maxf %[[V2]], %[[RV01]] : vector<2xf32>
+//       CHECK:   %[[RV012:.+]] = arith.maximumf %[[V2]], %[[RV01]] : vector<2xf32>
 //       CHECK:   %[[V3:.+]] = vector.extract %[[TRANSPOSED]][3] : vector<4x2xf32>
-//       CHECK:   %[[RESULT_VEC:.+]] = arith.maxf %[[V3]], %[[RV012]] : vector<2xf32>
+//       CHECK:   %[[RESULT_VEC:.+]] = arith.maximumf %[[V3]], %[[RV012]] : vector<2xf32>
 //       CHECK:   return %[[RESULT_VEC]] : vector<2xf32>
 
 func.func @vector_multi_reduction_and(%arg0: vector<2x4xi32>, %acc: vector<2xi32>) -> vector<2xi32> {

diff  --git a/mlir/test/Interfaces/TilingInterface/lower-to-loops-using-interface.mlir b/mlir/test/Interfaces/TilingInterface/lower-to-loops-using-interface.mlir
index f0d1938e79dd7ab..c8199c325abfecb 100644
--- a/mlir/test/Interfaces/TilingInterface/lower-to-loops-using-interface.mlir
+++ b/mlir/test/Interfaces/TilingInterface/lower-to-loops-using-interface.mlir
@@ -157,7 +157,7 @@ func.func @pool_strides_and_dilation(%arg0 : memref<?x?x?x?xf32>, %arg1 : memref
 //   CHECK-DAG:               %[[J:.+]] = affine.apply #[[MAP1]](%[[IV0]], %[[IV1]], %[[IV2]], %[[IV3]], %[[IV4]], %[[IV5]])
 //   CHECK-DAG:               %[[T8:.+]] = memref.load %[[ARG0]][%[[IV0]], %[[I]], %[[J]], %[[IV3]]]
 //   CHECK-DAG:               %[[T9:.+]] = memref.load %[[ARG2]][%[[IV0]], %[[IV1]], %[[IV2]], %[[IV3]]]
-//       CHECK:               %[[T10:.+]] = arith.maxf %[[T9]], %[[T8]]
+//       CHECK:               %[[T10:.+]] = arith.maximumf %[[T9]], %[[T8]]
 //       CHECK:               memref.store %[[T10]], %[[ARG2]][%[[IV0]], %[[IV1]], %[[IV2]], %[[IV3]]]
 
 // -----

diff  --git a/mlir/test/Interfaces/TilingInterface/tile-and-fuse-using-interface.mlir b/mlir/test/Interfaces/TilingInterface/tile-and-fuse-using-interface.mlir
index 682aaafb878eac2..4f5900fda3e76bd 100644
--- a/mlir/test/Interfaces/TilingInterface/tile-and-fuse-using-interface.mlir
+++ b/mlir/test/Interfaces/TilingInterface/tile-and-fuse-using-interface.mlir
@@ -408,7 +408,7 @@ func.func @reduction_sequence(%arg0: tensor<30x3xf32>) -> tensor<30x3xf32> {
       iterator_types = ["parallel", "reduction"]}
       ins(%arg0 : tensor<30x3xf32>) outs(%1 : tensor<30xf32>) {
     ^bb0(%arg1: f32, %arg2: f32):
-      %8 = arith.maxf %arg2, %arg1 : f32
+      %8 = arith.maximumf %arg2, %arg1 : f32
       linalg.yield %8 : f32
     } -> tensor<30xf32>
   %3 = tensor.empty() : tensor<30x3xf32>

diff  --git a/mlir/test/python/dialects/linalg/opdsl/emit_pooling.py b/mlir/test/python/dialects/linalg/opdsl/emit_pooling.py
index ab049d3dfae5709..4ce0fbc1dbe537c 100644
--- a/mlir/test/python/dialects/linalg/opdsl/emit_pooling.py
+++ b/mlir/test/python/dialects/linalg/opdsl/emit_pooling.py
@@ -81,7 +81,7 @@ def test_f32i32_max_unsigned_pooling(input, shape, init_result):
         # CHECK-SAME: indexing_maps = [#[[$POOL_MAP_I]], #[[$POOL_MAP_K]], #[[$POOL_MAP_O]]]
         # CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "reduction", "reduction", "parallel"]
         # CHECK:      ^{{.*}}(%[[IN:.+]]: f32, %[[SHAPE:.+]]: f32, %[[OUT:.+]]: f32)
-        # CHECK-NEXT:   %[[MAX:.+]] = arith.maxf %[[OUT]], %[[IN:.+]] : f32
+        # CHECK-NEXT:   %[[MAX:.+]] = arith.maximumf %[[OUT]], %[[IN:.+]] : f32
         # CHECK-NEXT:   linalg.yield %[[MAX]] : f32
         # CHECK-NEXT: -> tensor<1x2x4x1xf32>
         @func.FuncOp.from_py_func(
@@ -132,7 +132,7 @@ def test_f32i32_min_unsigned_pooling(input, shape, init_result):
             )
 
         # CHECK-LABEL: @test_f32f32_min_pooling
-        # CHECK:   = arith.minf
+        # CHECK:   = arith.minimumf
         @func.FuncOp.from_py_func(
             RankedTensorType.get((1, 4, 16, 1), f32),
             RankedTensorType.get((2, 2), f32),

diff  --git a/mlir/utils/tree-sitter-mlir/dialect/arith.js b/mlir/utils/tree-sitter-mlir/dialect/arith.js
index 2172ed7753ec8c1..f77e2a758edfd83 100644
--- a/mlir/utils/tree-sitter-mlir/dialect/arith.js
+++ b/mlir/utils/tree-sitter-mlir/dialect/arith.js
@@ -64,10 +64,10 @@ module.exports = {
                     // operation ::= `arith.divf` $lhs `,` $rhs (`fastmath` ``
                     // $fastmath^)?
                     //                attr-dict `:` type($result)
-                    // operation ::= `arith.maxf` $lhs `,` $rhs (`fastmath` ``
+                    // operation ::= `arith.maximumf` $lhs `,` $rhs (`fastmath` ``
                     // $fastmath^)?
                     //                attr-dict `:` type($result)
-                    // operation ::= `arith.minf` $lhs `,` $rhs (`fastmath` ``
+                    // operation ::= `arith.minimumf` $lhs `,` $rhs (`fastmath` ``
                     // $fastmath^)?
                     //                attr-dict `:` type($result)
                     // operation ::= `arith.mulf` $lhs `,` $rhs (`fastmath` ``
@@ -79,8 +79,8 @@ module.exports = {
                     // operation ::= `arith.subf` $lhs `,` $rhs (`fastmath` ``
                     // $fastmath^)?
                     //                attr-dict `:` type($result)
-                    seq(choice('arith.addf', 'arith.divf', 'arith.maxf',
-                               'arith.minf', 'arith.mulf', 'arith.remf',
+                    seq(choice('arith.addf', 'arith.divf', 'arith.maximumf',
+                               'arith.minimumf', 'arith.mulf', 'arith.remf',
                                'arith.subf'),
                         field('lhs', $.value_use), ',',
                         field('rhs', $.value_use),

diff  --git a/mlir/utils/tree-sitter-mlir/queries/highlights.scm b/mlir/utils/tree-sitter-mlir/queries/highlights.scm
index b038409d38df7a0..97aba2b266eca86 100644
--- a/mlir/utils/tree-sitter-mlir/queries/highlights.scm
+++ b/mlir/utils/tree-sitter-mlir/queries/highlights.scm
@@ -99,8 +99,8 @@
   "arith.addui_extended"
   "arith.addf"
   "arith.divf"
-  "arith.maxf"
-  "arith.minf"
+  "arith.maximumf"
+  "arith.minimumf"
   "arith.mulf"
   "arith.remf"
   "arith.subf"

diff  --git a/mlir/utils/tree-sitter-mlir/test/corpus/type.txt b/mlir/utils/tree-sitter-mlir/test/corpus/type.txt
index 574ba8e20a32ebd..25bf80df65a4381 100644
--- a/mlir/utils/tree-sitter-mlir/test/corpus/type.txt
+++ b/mlir/utils/tree-sitter-mlir/test/corpus/type.txt
@@ -1239,7 +1239,7 @@ inf value_use
 func.func @test_maxf(%arg0 : f32) -> f32 {
   %c0 = arith.constant 0.0 : f32
   %-inf = arith.constant 0xFF800000 : f32
-  %0 = arith.maxf %-inf, %arg0 : f32
+  %0 = arith.maximumf %-inf, %arg0 : f32
   return %0 : f32
 }
 --------------------------------------------------------------------------------


        


More information about the Mlir-commits mailing list