[Mlir-commits] [mlir] 45e2e03 - [mlir][SVE] Add an e2e test for vectorization of linalg.matmul (#70372)
llvmlistbot at llvm.org
llvmlistbot at llvm.org
Fri Oct 27 03:06:24 PDT 2023
Author: Andrzej Warzyński
Date: 2023-10-27T11:06:20+01:00
New Revision: 45e2e0377a08fbf3661e84912f39dbc6b251744c
URL: https://github.com/llvm/llvm-project/commit/45e2e0377a08fbf3661e84912f39dbc6b251744c
DIFF: https://github.com/llvm/llvm-project/commit/45e2e0377a08fbf3661e84912f39dbc6b251744c.diff
LOG: [mlir][SVE] Add an e2e test for vectorization of linalg.matmul (#70372)
Adds an end-to-end test for scalable vectorization of linalg.matmul.
Added:
mlir/test/Integration/Dialect/Linalg/CPU/ArmSVE/matmul.mlir
Modified:
Removed:
################################################################################
diff --git a/mlir/test/Integration/Dialect/Linalg/CPU/ArmSVE/matmul.mlir b/mlir/test/Integration/Dialect/Linalg/CPU/ArmSVE/matmul.mlir
new file mode 100644
index 000000000000000..2024da2a585d99f
--- /dev/null
+++ b/mlir/test/Integration/Dialect/Linalg/CPU/ArmSVE/matmul.mlir
@@ -0,0 +1,68 @@
+// RUN: mlir-opt %s -test-transform-dialect-interpreter -test-transform-dialect-erase-schedule \
+// RUN: -one-shot-bufferize -func-bufferize -cse -canonicalize -convert-vector-to-scf -arm-sve-legalize-vector-storage \
+// RUN: -convert-vector-to-llvm="enable-arm-sve" -test-lower-to-llvm | \
+// RUN: %mcr_aarch64_cmd -e=matmul_f32 -entry-point-result=void --march=aarch64 --mattr="+sve" -shared-libs=%mlir_runner_utils,%mlir_c_runner_utils | \
+// RUN: FileCheck %s
+
+func.func @matmul_f32() {
+ // Matrix dimensions
+ %K = arith.constant 3 : index
+ %M = arith.constant 5 : index
+ %N = arith.constant 15 : index
+ %c0_f32 = arith.constant 0.0 : f32
+
+ // Allocate the matrices
+ %A_alloc = bufferization.alloc_tensor(%M, %K) : tensor<?x?xf32>
+ %B_alloc = bufferization.alloc_tensor(%K, %N) : tensor<?x?xf32>
+ %C_alloc = bufferization.alloc_tensor(%M, %N) : tensor<?x?xf32>
+
+ // Initialise the matrices
+ %pi = arith.constant 3.14 : f32
+ %A = linalg.fill ins(%pi : f32) outs(%A_alloc : tensor<?x?xf32>) -> tensor<?x?xf32>
+ %B = linalg.fill ins(%pi : f32) outs(%B_alloc : tensor<?x?xf32>) -> tensor<?x?xf32>
+ %C_in = linalg.fill ins(%c0_f32 : f32) outs(%C_alloc : tensor<?x?xf32>) -> tensor<?x?xf32>
+
+ // Matmul
+ %C_out = linalg.matmul ins(%A, %B: tensor<?x?xf32>, tensor<?x?xf32>) outs(%C_in: tensor<?x?xf32>) -> tensor<?x?xf32>
+
+ // Print and verify the output
+ // CHECK-LABEL: SVE: START OF TEST OUTPUT
+ vector.print str "SVE: START OF TEST OUTPUT"
+
+ // CHECK-NEXT: Unranked Memref {{.*}} rank = 2 offset = 0 sizes = [5, 15] strides = [15, 1] data =
+ // CHECK-COUNT-5: [29.5788, 29.5788, 29.5788, 29.5788, 29.5788, 29.5788, 29.5788, 29.5788, 29.5788, 29.5788, 29.5788, 29.5788, 29.5788, 29.5788, 29.5788]
+ %xf = tensor.cast %C_out : tensor<?x?xf32> to tensor<*xf32>
+ call @printMemrefF32(%xf) : (tensor<*xf32>) -> ()
+
+ // CHECK-NEXT: SVE: END OF TEST OUTPUT
+ vector.print str "SVE: END OF TEST OUTPUT"
+
+ return
+}
+
+transform.sequence failures(propagate) {
+^bb1(%module_op: !transform.any_op):
+ // Step 1: Tile
+ %matmul = transform.structured.match ops{["linalg.matmul"]} in %module_op : (!transform.any_op) -> !transform.any_op
+ %func_op = get_parent_op %matmul : (!transform.any_op) -> !transform.op<"func.func">
+ %module_with_tiled_loops, %loops:3 = transform.structured.tile_using_for %matmul [2, [4], 1] : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op)
+
+ // Step 2: Vectorize
+ %tiled_matmul = transform.structured.match ops{["linalg.matmul"]} in %module_with_tiled_loops : (!transform.any_op) -> !transform.any_op
+ transform.structured.vectorize %tiled_matmul vector_sizes [2, [4], 1] : !transform.any_op
+
+ // Step 3: Lower vector.multi_reduction to vector.contract (+ some helpful patterns)
+ transform.apply_patterns to %func_op {
+ transform.apply_patterns.vector.reduction_to_contract
+ transform.apply_patterns.vector.transfer_permutation_patterns
+ transform.apply_patterns.vector.lower_masked_transfers
+ } : !transform.op<"func.func">
+
+ // Step 4: Lower vector.contract to vector.fma
+ transform.apply_patterns to %func_op {
+ transform.apply_patterns.vector.lower_contraction lowering_strategy = "outerproduct"
+ transform.apply_patterns.vector.lower_outerproduct
+ } : !transform.op<"func.func">
+}
+
+func.func private @printMemrefF32(%ptr : tensor<*xf32>)
More information about the Mlir-commits
mailing list