[Mlir-commits] [mlir] 7e83a1a - [mlir][sparse] add verification of absent value in sparse_tensor.unary (#70248)

llvmlistbot at llvm.org llvmlistbot at llvm.org
Wed Oct 25 13:56:47 PDT 2023


Author: Aart Bik
Date: 2023-10-25T13:56:43-07:00
New Revision: 7e83a1af5dc764943d77917f30bf4dbdb7277c35

URL: https://github.com/llvm/llvm-project/commit/7e83a1af5dc764943d77917f30bf4dbdb7277c35
DIFF: https://github.com/llvm/llvm-project/commit/7e83a1af5dc764943d77917f30bf4dbdb7277c35.diff

LOG: [mlir][sparse] add verification of absent value in sparse_tensor.unary (#70248)

This value should always be a plain contant or something invariant
computed outside the surrounding linalg operation, since there is no
co-iteration defined on anything done in this branch.

Fixes:
https://github.com/llvm/llvm-project/issues/69395

Added: 
    

Modified: 
    mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorOps.td
    mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp
    mlir/test/Dialect/SparseTensor/invalid.mlir

Removed: 
    


################################################################################
diff  --git a/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorOps.td b/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorOps.td
index 8c33e8651b1694e..50f5e7335dc923b 100644
--- a/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorOps.td
+++ b/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorOps.td
@@ -624,11 +624,11 @@ def SparseTensor_InsertOp : SparseTensor_Op<"insert",
   string summary = "Inserts a value into the sparse tensor";
   string description = [{
     Inserts the value into the underlying storage of the tensor at the
-    given level-coordinates.  The arity of `lvlCoords` must match the
-    level-rank of the tensor.  This operation can only be applied when
-    the tensor materializes unintialized from a `bufferization.alloc_tensor`
-    operation and the final tensor is constructed with a `load` operation
-    which has the `hasInserts` attribute set.
+    given level-coordinates. The arity of `lvlCoords` must match the
+    level-rank of the tensor. This operation can only be applied when
+    the tensor materializes unintialized from a `tensor.empty` operation
+    and the final tensor is constructed with a `load` operation which
+    has the `hasInserts` attribute set.
 
     The level-properties of the sparse tensor type fully describe what
     kind of insertion order is allowed.  When all levels have "unique"
@@ -974,7 +974,7 @@ def SparseTensor_BinaryOp : SparseTensor_Op<"binary", [Pure]>,
       Example of isEqual applied to intersecting elements only:
 
       ```mlir
-      %C = bufferization.alloc_tensor...
+      %C = tensor.empty(...)
       %0 = linalg.generic #trait
         ins(%A: tensor<?xf64, #SparseVector>,
             %B: tensor<?xf64, #SparseVector>)
@@ -996,7 +996,7 @@ def SparseTensor_BinaryOp : SparseTensor_Op<"binary", [Pure]>,
       Example of A+B in upper triangle, A-B in lower triangle:
 
       ```mlir
-      %C = bufferization.alloc_tensor...
+      %C = tensor.empty(...)
       %1 = linalg.generic #trait
         ins(%A: tensor<?x?xf64, #CSR>, %B: tensor<?x?xf64, #CSR>
         outs(%C: tensor<?x?xf64, #CSR> {
@@ -1029,7 +1029,7 @@ def SparseTensor_BinaryOp : SparseTensor_Op<"binary", [Pure]>,
       because we never use its values, only its sparse structure:
 
       ```mlir
-      %C = bufferization.alloc_tensor...
+      %C = tensor.empty(...)
       %2 = linalg.generic #trait
         ins(%A: tensor<?x?xf64, #CSR>, %B: tensor<?x?xi32, #CSR>
         outs(%C: tensor<?x?xf64, #CSR> {
@@ -1069,7 +1069,9 @@ def SparseTensor_UnaryOp : SparseTensor_Op<"unary", [Pure]>,
       Each region contains a single block describing the computation and result.
       A non-empty block must end with a sparse_tensor.yield and the return type
       must match the type of `output`. The primary region's block has one
-      argument, while the missing region's block has zero arguments.
+      argument, while the missing region's block has zero arguments. The
+      absent region may only generate constants or values already computed
+      on entry of the `linalg.generic` operation.
 
       A region may also be declared empty (i.e. `absent={}`), indicating that the
       region does not contribute to the output.
@@ -1082,17 +1084,17 @@ def SparseTensor_UnaryOp : SparseTensor_Op<"unary", [Pure]>,
       Example of A+1, restricted to existing elements:
 
       ```mlir
-      %C = bufferization.alloc_tensor...
+      %C = tensor.empty(...) : tensor<?xf64, #SparseVector>
       %0 = linalg.generic #trait
          ins(%A: tensor<?xf64, #SparseVector>)
         outs(%C: tensor<?xf64, #SparseVector>) {
         ^bb0(%a: f64, %c: f64) :
           %result = sparse_tensor.unary %a : f64 to f64
             present={
-              ^bb0(%arg0: f64):
-                %cf1 = arith.constant 1.0 : f64
-                %ret = arith.addf %arg0, %cf1 : f64
-                sparse_tensor.yield %ret : f64
+            ^bb0(%arg0: f64):
+              %cf1 = arith.constant 1.0 : f64
+              %ret = arith.addf %arg0, %cf1 : f64
+              sparse_tensor.yield %ret : f64
             }
             absent={}
           linalg.yield %result : f64
@@ -1102,41 +1104,42 @@ def SparseTensor_UnaryOp : SparseTensor_Op<"unary", [Pure]>,
       Example returning +1 for existing values and -1 for missing values:
 
       ```mlir
-      %C = bufferization.alloc_tensor...
+      %p1 = arith.constant  1 : i32
+      %m1 = arith.constant -1 : i32
+      %C = tensor.empty(...) : tensor<?xi32, #SparseVector>
       %1 = linalg.generic #trait
          ins(%A: tensor<?xf64, #SparseVector>)
-        outs(%C: tensor<?xf64, #SparseVector>) {
-        ^bb0(%a: f64, %c: f64) :
+        outs(%C: tensor<?xi32, #SparseVector>) {
+        ^bb0(%a: f64, %c: i32) :
           %result = sparse_tensor.unary %a : f64 to i32
             present={
             ^bb0(%x: f64):
-              %ret = arith.constant 1 : i32
-              sparse_tensor.yield %ret : i32
-          }
-          absent={
-            %ret = arith.constant -1 : i32
-            sparse_tensor.yield %ret : i32
-          }
-          linalg.yield %result : f64
-      } -> tensor<?xf64, #SparseVector>
+              sparse_tensor.yield %p1 : i32
+            }
+            absent={
+              sparse_tensor.yield %m1 : i32
+            }
+          linalg.yield %result : i32
+      } -> tensor<?xi32, #SparseVector>
       ```
 
       Example showing a structural inversion (existing values become missing in
       the output, while missing values are filled with 1):
 
       ```mlir
-      %C = bufferization.alloc_tensor...
+      %c1 = arith.constant 1 : i64
+      %C = tensor.empty(...) : tensor<?xi64, #SparseVector>
       %2 = linalg.generic #trait
-          ins(%A: tensor<?xf64, #SparseVector>)
-          outs(%C: tensor<?xf64, #SparseVector>) {
-            %result = sparse_tensor.unary %a : f64 to i64
-              present={}
-              absent={
-                %ret = arith.constant 1 : i64
-                sparse_tensor.yield %ret : i64
-              }
-          linalg.yield %result : f64
-      } -> tensor<?xf64, #SparseVector>
+         ins(%A: tensor<?xf64, #SparseVector>)
+        outs(%C: tensor<?xi64, #SparseVector>) {
+        ^bb0(%a: f64, %c: i64) :
+          %result = sparse_tensor.unary %a : f64 to i64
+            present={}
+            absent={
+              sparse_tensor.yield %c1 : i64
+            }
+          linalg.yield %result : i64
+      } -> tensor<?xi64, #SparseVector>
       ```
   }];
 
@@ -1177,7 +1180,7 @@ def SparseTensor_ReduceOp : SparseTensor_Op<"reduce", [Pure, SameOperandsAndResu
       ```mlir
       %cf1 = arith.constant 1.0 : f64
       %cf100 = arith.constant 100.0 : f64
-      %C = bufferization.alloc_tensor...
+      %C = tensor.empty(...)
       %0 = linalg.generic #trait
          ins(%A: tensor<?x?xf64, #SparseMatrix>)
         outs(%C: tensor<?xf64, #SparseVector>) {
@@ -1220,7 +1223,7 @@ def SparseTensor_SelectOp : SparseTensor_Op<"select", [Pure, SameOperandsAndResu
       Example of selecting A >= 4.0:
 
       ```mlir
-      %C = bufferization.alloc_tensor...
+      %C = tensor.empty(...)
       %0 = linalg.generic #trait
          ins(%A: tensor<?xf64, #SparseVector>)
         outs(%C: tensor<?xf64, #SparseVector>) {
@@ -1238,7 +1241,7 @@ def SparseTensor_SelectOp : SparseTensor_Op<"select", [Pure, SameOperandsAndResu
       Example of selecting lower triangle of a matrix:
 
       ```mlir
-      %C = bufferization.alloc_tensor...
+      %C = tensor.empty(...)
       %1 = linalg.generic #trait
          ins(%A: tensor<?x?xf64, #CSR>)
         outs(%C: tensor<?x?xf64, #CSR>) {

diff  --git a/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp b/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp
index 17e6ef53fe596e0..f05cbd8d16d9a76 100644
--- a/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp
+++ b/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp
@@ -34,8 +34,13 @@
 using namespace mlir;
 using namespace mlir::sparse_tensor;
 
+#define RETURN_FAILURE_IF_FAILED(X)                                            \
+  if (failed(X)) {                                                             \
+    return failure();                                                          \
+  }
+
 //===----------------------------------------------------------------------===//
-// Additional convenience methods.
+// Local convenience methods.
 //===----------------------------------------------------------------------===//
 
 static constexpr bool acceptBitWidth(unsigned bitWidth) {
@@ -52,7 +57,7 @@ static constexpr bool acceptBitWidth(unsigned bitWidth) {
 }
 
 //===----------------------------------------------------------------------===//
-// StorageLayout
+// SparseTensorDialect StorageLayout.
 //===----------------------------------------------------------------------===//
 
 static constexpr Level kInvalidLevel = -1u;
@@ -183,7 +188,7 @@ StorageLayout::getFieldIndexAndStride(SparseTensorFieldKind kind,
 }
 
 //===----------------------------------------------------------------------===//
-// TensorDialect Attribute Methods.
+// SparseTensorDialect Attribute Methods.
 //===----------------------------------------------------------------------===//
 
 std::optional<uint64_t> SparseTensorDimSliceAttr::getStatic(int64_t v) {
@@ -658,11 +663,6 @@ SparseTensorEncodingAttr::verify(function_ref<InFlightDiagnostic()> emitError,
   return success();
 }
 
-#define RETURN_FAILURE_IF_FAILED(X)                                            \
-  if (failed(X)) {                                                             \
-    return failure();                                                          \
-  }
-
 LogicalResult SparseTensorEncodingAttr::verifyEncoding(
     ArrayRef<DynSize> dimShape, Type elementType,
     function_ref<InFlightDiagnostic()> emitError) const {
@@ -685,7 +685,7 @@ LogicalResult SparseTensorEncodingAttr::verifyEncoding(
 }
 
 //===----------------------------------------------------------------------===//
-// Convenience Methods.
+// Convenience methods.
 //===----------------------------------------------------------------------===//
 
 SparseTensorEncodingAttr
@@ -1365,10 +1365,6 @@ LogicalResult SetStorageSpecifierOp::verify() {
   return success();
 }
 
-//===----------------------------------------------------------------------===//
-// TensorDialect Linalg.Generic Operations.
-//===----------------------------------------------------------------------===//
-
 template <class T>
 static LogicalResult verifyNumBlockArgs(T *op, Region &region,
                                         const char *regionName,
@@ -1445,6 +1441,18 @@ LogicalResult UnaryOp::verify() {
   if (!absent.empty()) {
     RETURN_FAILURE_IF_FAILED(
         verifyNumBlockArgs(this, absent, "absent", TypeRange{}, outputType))
+    // Absent branch can only yield invariant values.
+    Block *absentBlock = &absent.front();
+    Block *parent = getOperation()->getBlock();
+    Value absentVal = cast<YieldOp>(absentBlock->getTerminator()).getResult();
+    if (auto arg = dyn_cast<BlockArgument>(absentVal)) {
+      if (arg.getOwner() == parent)
+        return emitError("absent region cannot yield linalg argument");
+    } else if (Operation *def = absentVal.getDefiningOp()) {
+      if (!isa<arith::ConstantOp>(def) &&
+          (def->getBlock() == absentBlock || def->getBlock() == parent))
+        return emitError("absent region cannot yield locally computed value");
+    }
   }
   return success();
 }
@@ -1719,10 +1727,6 @@ LogicalResult YieldOp::verify() {
 
 #undef RETURN_FAILURE_IF_FAILED
 
-//===----------------------------------------------------------------------===//
-// TensorDialect Methods.
-//===----------------------------------------------------------------------===//
-
 /// Materialize a single constant operation from a given attribute value with
 /// the desired resultant type.
 Operation *SparseTensorDialect::materializeConstant(OpBuilder &builder,

diff  --git a/mlir/test/Dialect/SparseTensor/invalid.mlir b/mlir/test/Dialect/SparseTensor/invalid.mlir
index 33aa81c5a747d9b..0217ef152be6a0d 100644
--- a/mlir/test/Dialect/SparseTensor/invalid.mlir
+++ b/mlir/test/Dialect/SparseTensor/invalid.mlir
@@ -544,6 +544,57 @@ func.func @invalid_unary_wrong_yield(%arg0: f64) -> f64 {
 
 // -----
 
+
+#SparseVector = #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed) }>
+
+#trait = {
+  indexing_maps = [ affine_map<(i) -> (i)>, affine_map<(i) -> (i)> ],
+  iterator_types = ["parallel"]
+}
+
+func.func @invalid_absent_value(%arg0 : tensor<100xf64, #SparseVector>) -> tensor<100xf64, #SparseVector> {
+  %C = tensor.empty() : tensor<100xf64, #SparseVector>
+  %0 = linalg.generic #trait
+    ins(%arg0: tensor<100xf64, #SparseVector>)
+    outs(%C: tensor<100xf64, #SparseVector>) {
+     ^bb0(%a: f64, %c: f64) :
+        // expected-error at +1 {{absent region cannot yield linalg argument}}
+        %result = sparse_tensor.unary %a : f64 to f64
+           present={}
+           absent={ sparse_tensor.yield %a : f64 }
+        linalg.yield %result : f64
+    } -> tensor<100xf64, #SparseVector>
+  return %0 : tensor<100xf64, #SparseVector>
+}
+
+// -----
+
+#SparseVector = #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed) }>
+
+#trait = {
+  indexing_maps = [ affine_map<(i) -> (i)>, affine_map<(i) -> (i)> ],
+  iterator_types = ["parallel"]
+}
+
+func.func @invalid_absent_computation(%arg0 : tensor<100xf64, #SparseVector>) -> tensor<100xf64, #SparseVector> {
+  %f0 = arith.constant 0.0 : f64
+  %C = tensor.empty() : tensor<100xf64, #SparseVector>
+  %0 = linalg.generic #trait
+    ins(%arg0: tensor<100xf64, #SparseVector>)
+    outs(%C: tensor<100xf64, #SparseVector>) {
+     ^bb0(%a: f64, %c: f64) :
+        %v = arith.addf %a, %f0 : f64
+        // expected-error at +1 {{absent region cannot yield locally computed value}}
+        %result = sparse_tensor.unary %a : f64 to f64
+           present={}
+           absent={ sparse_tensor.yield %v : f64 }
+        linalg.yield %result : f64
+    } -> tensor<100xf64, #SparseVector>
+  return %0 : tensor<100xf64, #SparseVector>
+}
+
+// -----
+
 func.func @invalid_reduce_num_args_mismatch(%arg0: f64, %arg1: f64) -> f64 {
   %cf1 = arith.constant 1.0 : f64
   // expected-error at +1 {{reduce region must have exactly 2 arguments}}


        


More information about the Mlir-commits mailing list