[Mlir-commits] [mlir] ed2d0b0 - [mlir][sparse] extend sparse output test (#69986)

llvmlistbot at llvm.org llvmlistbot at llvm.org
Mon Oct 23 21:33:58 PDT 2023


Author: Aart Bik
Date: 2023-10-23T21:33:54-07:00
New Revision: ed2d0b0e9b6c56ed5bb5669d07a6036d087464b8

URL: https://github.com/llvm/llvm-project/commit/ed2d0b0e9b6c56ed5bb5669d07a6036d087464b8
DIFF: https://github.com/llvm/llvm-project/commit/ed2d0b0e9b6c56ed5bb5669d07a6036d087464b8.diff

LOG: [mlir][sparse] extend sparse output test (#69986)

This adds COO and loose compressed to output testing. Also prepares BSR
for output testing, but needs the conversion to work first. Cleanup of
stale TODOs

Added: 
    

Modified: 
    mlir/test/Integration/Dialect/SparseTensor/python/test_SDDMM.py
    mlir/test/Integration/Dialect/SparseTensor/python/test_SpMM.py
    mlir/test/Integration/Dialect/SparseTensor/python/test_output.py
    mlir/test/Integration/Dialect/SparseTensor/python/test_stress.py

Removed: 
    


################################################################################
diff  --git a/mlir/test/Integration/Dialect/SparseTensor/python/test_SDDMM.py b/mlir/test/Integration/Dialect/SparseTensor/python/test_SDDMM.py
index 1f9b6360383180c..e8bb0f727a7ce9c 100644
--- a/mlir/test/Integration/Dialect/SparseTensor/python/test_SDDMM.py
+++ b/mlir/test/Integration/Dialect/SparseTensor/python/test_SDDMM.py
@@ -108,7 +108,6 @@ def build_compile_and_run_SDDMMM(attr: st.EncodingAttr, compiler):
 
     # Invoke the kernel and get numpy output.
     # Built-in bufferization uses in-out buffers.
-    # TODO: replace with inplace comprehensive bufferization.
     engine.invoke("main", mem_out, mem_a, mem_b, mem_c)
 
     # Sanity check on computed result. Only a few elements

diff  --git a/mlir/test/Integration/Dialect/SparseTensor/python/test_SpMM.py b/mlir/test/Integration/Dialect/SparseTensor/python/test_SpMM.py
index 69f6cdcea967fae..7ca1fdd8e5d0ed9 100644
--- a/mlir/test/Integration/Dialect/SparseTensor/python/test_SpMM.py
+++ b/mlir/test/Integration/Dialect/SparseTensor/python/test_SpMM.py
@@ -96,7 +96,6 @@ def build_compile_and_run_SpMM(attr: st.EncodingAttr, compiler):
 
     # Invoke the kernel and get numpy output.
     # Built-in bufferization uses in-out buffers.
-    # TODO: replace with inplace comprehensive bufferization.
     engine.invoke("main", mem_out, mem_a, mem_b, mem_c)
 
     # Sanity check on computed result.

diff  --git a/mlir/test/Integration/Dialect/SparseTensor/python/test_output.py b/mlir/test/Integration/Dialect/SparseTensor/python/test_output.py
index 7d7749008020515..1afac10be3adb45 100644
--- a/mlir/test/Integration/Dialect/SparseTensor/python/test_output.py
+++ b/mlir/test/Integration/Dialect/SparseTensor/python/test_output.py
@@ -8,7 +8,6 @@
 
 from mlir import ir
 from mlir import runtime as rt
-
 from mlir.dialects import builtin
 from mlir.dialects import sparse_tensor as st
 
@@ -16,7 +15,7 @@
 sys.path.append(_SCRIPT_PATH)
 from tools import sparse_compiler
 
-# TODO: move more into actual IR building.
+
 def boilerplate(attr: st.EncodingAttr):
     """Returns boilerplate main method."""
     return f"""
@@ -48,7 +47,7 @@ def expected():
 """
 
 
-def build_compile_and_run_output(attr: st.EncodingAttr, compiler):
+def build_compile_and_run_output(attr: st.EncodingAttr, compiler, expected):
     # Build and Compile.
     module = ir.Module.parse(boilerplate(attr))
     engine = compiler.compile_and_jit(module)
@@ -59,9 +58,8 @@ def build_compile_and_run_output(attr: st.EncodingAttr, compiler):
         buf = out.encode("utf-8")
         mem_a = ctypes.pointer(ctypes.pointer(ctypes.create_string_buffer(buf)))
         engine.invoke("main", mem_a)
-
         actual = open(out).read()
-        if actual != expected():
+        if actual != expected:
             quit("FAILURE")
 
 
@@ -75,9 +73,13 @@ def main():
     print("\nTEST: test_output")
     count = 0
     with ir.Context() as ctx, ir.Location.unknown():
-        # Loop over various sparse types: CSR, DCSR, CSC, DCSC.
+        # Loop over various sparse types (COO, CSR, DCSR, CSC, DCSC) with
+        # regular and loose compression and various metadata bitwidths.
+        # For these simple orderings, dim2lvl and lvl2dim are the same.
         levels = [
+            [st.DimLevelType.compressed_nu, st.DimLevelType.singleton],
             [st.DimLevelType.dense, st.DimLevelType.compressed],
+            [st.DimLevelType.dense, st.DimLevelType.loose_compressed],
             [st.DimLevelType.compressed, st.DimLevelType.compressed],
         ]
         orderings = [
@@ -91,11 +93,43 @@ def main():
         for level in levels:
             for ordering in orderings:
                 for bwidth in bitwidths:
-                    attr = st.EncodingAttr.get(level, ordering, None, bwidth, bwidth)
-                    build_compile_and_run_output(attr, compiler)
+                    attr = st.EncodingAttr.get(
+                        level, ordering, ordering, bwidth, bwidth
+                    )
+                    build_compile_and_run_output(attr, compiler, expected())
                     count = count + 1
 
-    # CHECK: Passed 16 tests
+        # Now do the same for BSR.
+        level = [
+            st.DimLevelType.dense,
+            st.DimLevelType.compressed,
+            st.DimLevelType.dense,
+            st.DimLevelType.dense,
+        ]
+        d0 = ir.AffineDimExpr.get(0)
+        d1 = ir.AffineDimExpr.get(1)
+        c2 = ir.AffineConstantExpr.get(2)
+        dim2lvl = ir.AffineMap.get(
+            2,
+            0,
+            [
+                ir.AffineExpr.get_floor_div(d0, c2),
+                ir.AffineExpr.get_floor_div(d1, c2),
+                ir.AffineExpr.get_mod(d0, c2),
+                ir.AffineExpr.get_mod(d1, c2),
+            ],
+        )
+        l0 = ir.AffineDimExpr.get(0)
+        l1 = ir.AffineDimExpr.get(1)
+        l2 = ir.AffineDimExpr.get(2)
+        l3 = ir.AffineDimExpr.get(3)
+        lvl2dim = ir.AffineMap.get(4, 0, [2 * l0 + l2, 2 * l1 + l3])
+        attr = st.EncodingAttr.get(level, dim2lvl, lvl2dim, 0, 0)
+        # TODO: enable this one CONVERSION on BSR is working
+        # build_compile_and_run_output(attr, compiler, block_expected())
+        count = count + 1
+
+    # CHECK: Passed 33 tests
     print("Passed", count, "tests")
 
 

diff  --git a/mlir/test/Integration/Dialect/SparseTensor/python/test_stress.py b/mlir/test/Integration/Dialect/SparseTensor/python/test_stress.py
index 841b02bc10c8bec..c5c247d8b9e611b 100644
--- a/mlir/test/Integration/Dialect/SparseTensor/python/test_stress.py
+++ b/mlir/test/Integration/Dialect/SparseTensor/python/test_stress.py
@@ -25,8 +25,6 @@
 
 # ===----------------------------------------------------------------------=== #
 
-# TODO: move this boilerplate to its own module, so it can be used by
-# other tests and programs.
 class TypeConverter:
     """Converter between NumPy types and MLIR types."""
 
@@ -78,7 +76,6 @@ def get_RankedTensorType_of_nparray(
     ) -> ir.RankedTensorType:
         """Returns the ir.RankedTensorType of a NumPy array.  Note that NumPy
         arrays can only be converted to/from dense tensors, not sparse tensors."""
-        # TODO: handle strides as well?
         return ir.RankedTensorType.get(
             nparray.shape, self.dtype_to_irtype(nparray.dtype)
         )
@@ -112,7 +109,6 @@ def build(self, types: List[ir.Type]):
         with ir.InsertionPoint(self._module.body):
             tp0 = types.pop(0)
             self._roundtripTp = tp0
-            # TODO: assert dense? assert element type is recognised by the TypeConverter?
             types.append(tp0)
             funcTp = ir.FunctionType.get(inputs=[tp0], results=[tp0])
             funcOp = func.FuncOp(name="main", type=funcTp)
@@ -206,8 +202,6 @@ def main():
         shape = range(2, 3)
         rank = len(shape)
         # All combinations.
-        # TODO: add singleton here too; which requires updating how `np_arg0`
-        # is initialized below.
         levels = list(
             itertools.product(
                 *itertools.repeat(


        


More information about the Mlir-commits mailing list