[Mlir-commits] [mlir] [mlir] Add sm_90a GEMM test 128x128x128 (F32 += F16 * F16) (PR #69913)

llvmlistbot at llvm.org llvmlistbot at llvm.org
Mon Oct 23 03:36:39 PDT 2023


llvmbot wrote:


<!--LLVM PR SUMMARY COMMENT-->

@llvm/pr-subscribers-mlir-gpu

Author: Guray Ozen (grypp)

<details>
<summary>Changes</summary>

This PR adds a test that performs GEMM 128x128x128 (F32 += F16 * F16). It uses `sm_90a` features in NVGPU dialect.

Simplified algorithm is as follows:

**Prologue** 
```
mgroup = mbarriers.init x 2
tma.load ... shmem_buffer_lhs<0 x 128 x 64>
tma.load ... shmem_buffer_rhs<0 x 64 x 64>
tma.load ... shmem_buffer_rhs<0 x 64 x 64>
mbarrier.expect_tx 32768
tma.load ... shmem_buffer_lhs<1 x 128 x 64>
tma.load ... shmem_buffer_rhs<1 x 64 x 64>
tma.load ... shmem_buffer_rhs<1 x 64 x 64>
mbarrier.expect_tx 32768
```
**Mainloop**
```
matrixD = 
 for(i = 0;...2) {   
   mbarrier.try_wait [i]
   lhs = shmem_buffer_lhs<pipe x 128 x 64>
   rhs = shmem_buffer_rhs<pipe x 64 x 128>
   yield nvgpu.warpgroup.mma (lhs, rhs)

//   Expanded : nvgpu.warpgroup.mma [128][128]+=[128][64]*[64][128]
//                  wgmma.m64n128k16(A[0:64][0:16]  *  B[0:16][0:128])
//                  wgmma.m64n128k16(A[0:64][16:32] *  B[16:32][0:128])
//                  wgmma.m64n128k16(A[0:64][32:48] *  B[32:48][0:128])
//                  wgmma.m64n128k16(A[0:64][48:64] *  B[48:64][0:128])
//                  wgmma.m64n128k16(A[64:128][0:16]  *  B[0:16][0:128])
//                  wgmma.m64n128k16(A[64:128][16:32] *  B[16:32][0:128])
//                  wgmma.m64n128k16(A[64:128][32:48] *  B[32:48][0:128])
//                  wgmma.m64n128k16(A[64:128][48:64] *  B[48:64][0:128])
```

**Epilogue** 
```
//reg->shmem
warpgroup.mma.store matrixD, shmem
//shmem->glbmem
parallel-for(i=0;...128)
 parallel-for(j=0;...128)
   store shmem, globalmem
```

---
Full diff: https://github.com/llvm/llvm-project/pull/69913.diff


1 Files Affected:

- (added) mlir/test/Integration/GPU/CUDA/sm90/gemm_f32_f16_f16_128x128x128.mlir (+277) 


``````````diff
diff --git a/mlir/test/Integration/GPU/CUDA/sm90/gemm_f32_f16_f16_128x128x128.mlir b/mlir/test/Integration/GPU/CUDA/sm90/gemm_f32_f16_f16_128x128x128.mlir
new file mode 100644
index 000000000000000..fbf804ca559c78c
--- /dev/null
+++ b/mlir/test/Integration/GPU/CUDA/sm90/gemm_f32_f16_f16_128x128x128.mlir
@@ -0,0 +1,277 @@
+// RUN: mlir-opt %s \
+// RUN:  -test-lower-to-nvvm="cubin-chip=sm_90a cubin-features=+ptx80 opt-level=3" \
+// RUN:  | mlir-cpu-runner \
+// RUN:   --shared-libs=%mlir_cuda_runtime \
+// RUN:   --shared-libs=%mlir_runner_utils \
+// RUN:   --entry-point-result=void \
+// RUN:  | FileCheck %s
+
+// CHECK: Correct Results : 16384
+// CHECK: Incorrect Results : 0
+
+// This program performs 128x128x128 GEMM (F32 += F16 * F16)
+//
+// ## Sequential
+// for(128)
+//  for(128)
+//   for(128)
+//    D += A * B
+//
+// ## Parallel 1 CTA with 1 Warpgroup with 2 pipelining stage
+//
+//  cuda kernel() {
+//    mbarriers.init[2]
+//    for(i = 0;...2) {
+//       tma.load shmem_buffer<i x...>
+//       mbarrier.expect_tx group[i]
+//    }
+//    result = 
+//      for(i = 0;...2) {
+//        pipe = i % 2
+//        mbarrier.wait [pipe]
+//        lhs = shmem_buffer_lhs<pipe x 128 x 64>
+//        rhs = shmem_buffer_rhs<pipe x 64 x 128>
+//        yield nvgpu.warpgroup.mma (lhs, rhs)
+//        ---------------------------------------------------------------------
+//        Expanded : nvgpu.warpgroup.mma [128][128]+=[128][64]*[64][128]
+//                       wgmma.m64n128k16(A[0:64][0:16]  *  B[0:16][0:128])
+//                       wgmma.m64n128k16(A[0:64][16:32] *  B[16:32][0:128])
+//                       wgmma.m64n128k16(A[0:64][32:48] *  B[32:48][0:128])
+//                       wgmma.m64n128k16(A[0:64][48:64] *  B[48:64][0:128])
+//                       wgmma.m64n128k16(A[64:128][0:16]  *  B[0:16][0:128])
+//                       wgmma.m64n128k16(A[64:128][16:32] *  B[16:32][0:128])
+//                       wgmma.m64n128k16(A[64:128][32:48] *  B[32:48][0:128])
+//                       wgmma.m64n128k16(A[64:128][48:64] *  B[48:64][0:128])
+//        ---------------------------------------------------------------------
+//      }
+//    nvgpu.store result -> shmem_buffer_result
+
+
+!barrierType = !nvgpu.mbarrier.group<memorySpace = #gpu.address_space<workgroup>, num_barriers = 2>
+!lhsTensorMap = !nvgpu.tensormap.descriptor<tensor = memref<128x64xf16, 3>, swizzle = swizzle_128b, l2promo=none, oob=zero, interleave=none>
+!rhsTensorMap = !nvgpu.tensormap.descriptor<tensor = memref<64x128xf16, 3>, swizzle = swizzle_128b, l2promo=none, oob=zero, interleave=none>
+
+func.func private @printMemrefF32(memref<*xf32>)
+llvm.func @printf(!llvm.ptr<i8>, ...) -> i32
+
+memref.global "private" @dynamicShmem : memref<0xf16, 3> {alignment = 16 : i64}
+memref.global "private" @accShmem : memref<0xf32, 3> {alignment = 16 : i64}
+
+func.func @main() {
+  %c214016_i32 = arith.constant 214016 : i32
+  %hc1 = arith.constant 1 : index
+  %hc4096 = arith.constant 4096 : index
+  %hc0 = arith.constant 0 : index
+  %hc64 = arith.constant 64 : index
+  %hc16 = arith.constant 16 : index
+  %hc8 = arith.constant 8 : index
+  %hc128 = arith.constant 128 : index
+  %hc32 = arith.constant 32 : index
+  %hc256 = arith.constant 256 : index
+  %f0 = arith.constant 0.0 : f32
+
+  // Step 1. Allocate and Initilize LHS and RHS Matrices 
+  %matrixAHost = memref.alloc() : memref<128x128xf16>
+  %matrixBHost = memref.alloc() : memref<128x128xf16>
+  %matrixDHost = memref.alloc() : memref<128x128xf32>
+  %matrixRefHost = memref.alloc() : memref<128x128xf32>
+  scf.for %i = %hc0 to %hc128 step %hc1 {
+    scf.for %j = %hc0 to %hc128 step %hc1 {
+      %v0 = arith.muli %i, %hc128 : index         // i * 128
+      %v00 = arith.addi %v0, %j : index           // i * 128 + j
+      %v01 = arith.divui %v00, %hc8 : index        // (i * 128 + j) / 8
+      %v02 = arith.remui %v01, %hc16 : index      // <<<<< mod 128
+      %v2 = arith.index_cast %v02 : index to i32
+      %vR = arith.sitofp %v2 : i32 to f16
+      memref.store %vR, %matrixBHost[%i, %j] : memref<128x128xf16>
+      %b0 = arith.muli %j, %hc64 : index
+      %b00 = arith.addi %b0, %i : index
+      %b01 = arith.divui %b00, %hc8 : index
+      %b02 = arith.remui %b01, %hc16 : index      // <<<<< mod 128
+      %v1 = arith.index_cast %b02 : index to i32
+      %vL = arith.sitofp %v1 : i32 to f16
+      memref.store %vL, %matrixAHost[%j, %i] : memref<128x128xf16>
+      memref.store %f0, %matrixDHost[%i, %j] : memref<128x128xf32>
+      memref.store %f0, %matrixRefHost[%i, %j] : memref<128x128xf32>
+    }
+  }
+
+  // Step 2. Allocate Device Memory for LHS and RHS Matrices and Copy H2D
+  %token = gpu.wait async
+  %matrixA:2 = gpu.alloc async [%token] () : memref<128x128xf16>
+  %matrixB:2 = gpu.alloc async [%token]  () : memref<128x128xf16>
+  %matrixD:2 = gpu.alloc async [%token] () : memref<128x128xf32>
+  %1 = gpu.memcpy async [%token] %matrixA, %matrixAHost : memref<128x128xf16>, memref<128x128xf16>
+  %2 = gpu.memcpy async [%token] %matrixB, %matrixBHost : memref<128x128xf16>, memref<128x128xf16>
+  %castA = memref.cast %matrixA : memref<128x128xf16> to memref<*xf16>
+  %castB = memref.cast %matrixB : memref<128x128xf16> to memref<*xf16>
+
+  // Step 3. Create TMA Descriptor
+  %descA = nvgpu.tma.create.descriptor %castA box[%hc128, %hc64] : memref<*xf16> -> !lhsTensorMap
+  %descB = nvgpu.tma.create.descriptor %castB box[%hc64, %hc64] : memref<*xf16> -> !rhsTensorMap
+
+  // Step 4. Launch GPU Kernel
+  gpu.launch blocks(%arg0, %arg1, %arg2) in (%arg6 = %hc1, %arg7 = %hc1, %arg8 = %hc1) 
+            threads(%arg3, %arg4, %arg5) in (%arg9 = %hc128, %arg10 = %hc1, %arg11 = %hc1) 
+            dynamic_shared_memory_size %c214016_i32 
+  {  
+    memref.assume_alignment %matrixD, 16 : memref<128x128xf32>
+
+    %c256 = arith.constant 256 : index
+    %c10000000 = arith.constant 10000000 : index
+    %c32768 = arith.constant 32768 : index
+    %c320 = arith.constant 320 : index
+    %c192 = arith.constant 192 : index
+    %c6 = arith.constant 6 : index
+    %c5 = arith.constant 5 : index
+    %c4 = arith.constant 4 : index
+    %c3 = arith.constant 3 : index
+    %c7 = arith.constant 7 : index    
+    %c64 = arith.constant 64 : index
+    %c1 = arith.constant 1 : index
+    %c2 = arith.constant 2 : index
+    %c0 = arith.constant 0 : index
+    %c128 = arith.constant 128 : index
+    %c32 = arith.constant 32 : index
+    %c16 = arith.constant 16 : index
+    %c4096 = arith.constant 4096 : index
+    %c8 = arith.constant 8 : index
+    %txcount = arith.constant 32768 : index     
+
+    %tidx = gpu.thread_id  x
+    %dynamicMem = memref.get_global @dynamicShmem : memref<0xf16, 3>
+    %lhsShmem = memref.reinterpret_cast %dynamicMem to offset: [0], sizes: [7, 128, 64], strides: [8192, 64, 1] : memref<0xf16, 3> to memref<7x128x64xf16, 3>
+    %rhsShmem2 = memref.reinterpret_cast %dynamicMem to offset: [0], sizes: [14, 64, 128],  strides: [8192,128,1] : memref<0xf16, 3> to memref<14x64x128xf16,3>
+    %rhsShmem = memref.subview %rhsShmem2[7, 0, 0][7, 64, 128][1, 1, 1] : memref<14x64x128xf16,3> to memref<7x64x128xf16, strided<[8192, 128, 1], offset: 57344>, 3>
+    
+    // Step 1. [GPU] Create Async Transactional Barriers (mbarriers)
+    %barrier = nvgpu.mbarrier.create -> !barrierType
+    %cnd = arith.cmpi eq, %tidx, %c0 : index
+
+    // Step 2. [GPU] Initialize mbarriers 
+    nvgpu.mbarrier.init %barrier[%c0], %c1 : !barrierType
+    nvgpu.mbarrier.init %barrier[%c1], %c1 : !barrierType
+    
+    // Step 3. [GPU] Prefetch TMA Descriptors to L1 Cache
+    nvgpu.tma.prefetch.descriptor %descA : !lhsTensorMap
+    nvgpu.tma.prefetch.descriptor %descB : !rhsTensorMap
+
+    // Step 4. [GPU] TMA Load Pipeline 1   
+    scf.if %cnd {
+      %pipe = arith.constant 0 : index
+      %lhsSlice = memref.subview %lhsShmem [0, 0, 0][1, 64, 128][1, 1, 1] : memref<7x128x64xf16,3> to memref<1x64x128xf16, strided<[8192, 64, 1]>, 3>
+      %rhsSlice = memref.subview %rhsShmem [0, 0, 0][1, 128, 64][1, 1, 1] : memref<7x64x128xf16, strided<[8192, 128, 1], offset: 57344>, 3> to memref<1x128x64xf16, strided<[8192, 128, 1], offset: 57344>, 3>
+      %rhsSlice2 = memref.subview %rhsSlice[0, 32, 0][1, 128, 64][1,1,1] : memref<1x128x64xf16, strided<[8192, 128, 1], offset: 57344>, 3> to memref<1x128x64xf16, strided<[8192, 128, 1], offset: 61440>, 3>
+      nvgpu.mbarrier.arrive.expect_tx %barrier[%pipe], %txcount : !barrierType        
+      %dim = arith.muli %pipe, %c64 : index
+      nvgpu.tma.async.load %descA[%dim, %c0], %barrier[%pipe] to %lhsSlice : !lhsTensorMap, !barrierType -> memref<1x64x128xf16, strided<[8192, 64, 1]>, 3>
+      nvgpu.tma.async.load %descB[%c0, %dim], %barrier[%pipe] to %rhsSlice : !rhsTensorMap, !barrierType -> memref<1x128x64xf16, strided<[8192, 128, 1], offset: 57344>, 3>
+      nvgpu.tma.async.load %descB[%c64, %dim], %barrier[%pipe] to %rhsSlice2 : !rhsTensorMap, !barrierType -> memref<1x128x64xf16, strided<[8192, 128, 1], offset: 61440>, 3>
+    }
+    // Step 4. [GPU] TMA Load Pipeline 2
+    scf.if %cnd {
+      %pipe = arith.constant 1 : index
+      %lhsSlice = memref.subview %lhsShmem [1, 0, 0][1, 64, 128][1, 1, 1] : memref<7x128x64xf16,3> to memref<1x64x128xf16, strided<[8192, 64, 1], offset: 8192>, 3>
+      %rhsSlice = memref.subview %rhsShmem [1, 0, 0][1, 128, 64][1, 1, 1] : memref<7x64x128xf16, strided<[8192, 128, 1], offset: 57344>, 3> to memref<1x128x64xf16, strided<[8192, 128, 1], offset: 65536>, 3>
+      %rhsSlice2 = memref.subview %rhsSlice[0, 32, 0][1, 128, 64][1,1,1] : memref<1x128x64xf16, strided<[8192, 128, 1], offset: 65536>, 3> to memref<1x128x64xf16, strided<[8192, 128, 1], offset: 69632>, 3>
+      nvgpu.mbarrier.arrive.expect_tx %barrier[%pipe], %txcount : !barrierType
+      %dim = arith.muli %pipe, %c64 : index  
+      nvgpu.tma.async.load %descA[%dim, %c0], %barrier[%pipe] to %lhsSlice : !lhsTensorMap, !barrierType -> memref<1x64x128xf16, strided<[8192, 64, 1], offset: 8192>, 3>
+      nvgpu.tma.async.load %descB[%c0, %dim], %barrier[%pipe] to %rhsSlice : !rhsTensorMap, !barrierType -> memref<1x128x64xf16, strided<[8192, 128, 1], offset: 65536>, 3>
+      nvgpu.tma.async.load %descB[%c64, %dim], %barrier[%pipe] to %rhsSlice2 : !rhsTensorMap, !barrierType -> memref<1x128x64xf16, strided<[8192, 128, 1], offset: 69632>, 3>      
+    }
+    
+    // Step 5. [GPU] Initiliaze accumulator matrix
+    %14 = nvgpu.warpgroup.mma.init.accumulator -> <fragmented = vector<128x128xf32>>
+
+    // Step 6. [GPU] Main Loop Starts
+    %15 = scf.for %i = %c0 to %c2 step %c1 iter_args(%mc = %14) 
+                    -> (!nvgpu.warpgroup.accumulator<fragmented = vector<128x128xf32>>)
+    {
+      %ticks = arith.constant 10000000 : index
+      // TMA wait
+      nvgpu.mbarrier.try_wait.parity %barrier[%i], %c0, %ticks : !barrierType
+      %lhsSlice = memref.subview %lhsShmem [%i, 0, 0][1, 64, 128][1, 1, 1] : memref<7x128x64xf16,3> to memref<1x64x128xf16, strided<[8192, 64, 1], offset: ?>, 3>
+      %rhsSlice = memref.subview %rhsShmem [%i, 0, 0][1, 128, 64][1, 1, 1] : memref<7x64x128xf16, strided<[8192, 128, 1], offset: 57344>, 3> to memref<1x128x64xf16, strided<[8192, 128, 1], offset: ?>, 3>
+      // Descriptor WGMMA
+      %dA = nvgpu.warpgroup.generate.descriptor %lhsSlice, %descA : memref<1x64x128xf16, strided<[8192, 64, 1], offset: ?>, 3>, !lhsTensorMap -> !nvgpu.warpgroup.descriptor<tensor=memref<128x64xf16, 3>>
+      %dB = nvgpu.warpgroup.generate.descriptor %rhsSlice, %descB : memref<1x128x64xf16, strided<[8192, 128, 1], offset: ?>, 3>, !rhsTensorMap -> !nvgpu.warpgroup.descriptor<tensor=memref<64x128xf16, 3>>
+      // Perform WGMMA 128x128x64
+      %md  = nvgpu.warpgroup.mma %dA, %dB, %mc {transposeB} : <tensor = memref<128x64xf16,3>>, <tensor = memref<64x128xf16,3>>, <fragmented = vector<128x128xf32>> -> <fragmented = vector<128x128xf32>>
+      scf.yield %md : !nvgpu.warpgroup.accumulator<fragmented = vector<128x128xf32>>
+    }
+    
+    // Step 10. Wait all to finish mma
+    nvvm.wgmma.wait.group.sync.aligned 0
+
+    // Step 11. [GPU] Epilogue, store fragmented register to shared memory
+    %accShmem = memref.get_global @accShmem : memref<0xf32, 3>
+    %accShmemPtr = memref.reinterpret_cast %accShmem to offset: [0], sizes: [128, 128], strides: [128, 1] : memref<0xf32, 3> to memref<128x128xf32, 3>
+    nvgpu.warpgroup.mma.store %15, %accShmemPtr : <fragmented = vector<128x128xf32>> to memref<128x128xf32, 3>
+    
+    %17 = arith.divui %tidx, %c32 : index
+    %18 = arith.remui %tidx, %c32 : index
+    scf.for %arg12 = %17 to %c128 step %c4 {
+      %19 = arith.muli %18, %c4 : index
+      %20 = vector.load %accShmemPtr[%arg12, %19] : memref<128x128xf32, 3>, vector<4xf32>
+      vector.store %20, %matrixD[%arg12, %19] : memref<128x128xf32>, vector<4xf32>
+    }
+    gpu.terminator
+  }
+
+  // Step 13. Copy D2H
+  %5 = gpu.memcpy async [%token] %matrixDHost, %matrixD  : memref<128x128xf32>, memref<128x128xf32>
+  gpu.wait [%token]
+
+  // Step 14. Compute on host
+  linalg.matmul ins(%matrixAHost, %matrixBHost : memref<128x128xf16>, memref<128x128xf16>) outs(%matrixRefHost : memref<128x128xf32>)
+  
+  // Step 15. Verify
+  %ic1 = arith.constant 1 : i32
+  %ic0 = arith.constant 0 : i32
+  %tolerance = arith.constant 0.00000001 : f32
+  %errorCount, %correctCount = 
+  scf.for %i = %hc0 to %hc128 step %hc1 iter_args(%ec1 = %ic0, %cc1 = %ic0) -> (i32,i32) {
+    %ec2, %cc2 = 
+    scf.for %j = %hc0 to %hc128 step %hc1  iter_args(%ec2 = %ec1, %cc2 = %cc1) -> (i32,i32){
+      %v1 = memref.load %matrixRefHost[%i,%j] : memref<128x128xf32>
+      %v2 = memref.load %matrixDHost[%i,%j] : memref<128x128xf32>
+      %g1 = arith.subf %v1,%v2 : f32
+      %g2 = math.absf %g1: f32
+      %g3 = arith.cmpf ult, %tolerance, %g2 : f32        
+      %ec3, %cc3 = scf.if %g3 -> (i32, i32) {
+        %coor = arith.constant dense<-1> : vector<2xi32>
+        %i32 = arith.index_cast %i : index to i32
+        %j32 = arith.index_cast %j : index to i32
+        %coord1 = vector.insert %i32, %coor[0] : i32 into vector<2xi32>
+        %coord2 = vector.insert %j32, %coord1[1] : i32 into vector<2xi32>
+        // vector.print %coord2 : vector<2xi32>
+        %ec3 = arith.addi %ec2, %ic1 : i32
+        scf.yield %ec3, %cc2 : i32, i32
+      } else {
+        %cc3 = arith.addi %cc2, %ic1 : i32
+        scf.yield %ec2, %cc3 : i32, i32
+      }
+      scf.yield %ec3, %cc3 : i32,i32
+    }
+    scf.yield %ec2,%cc2 : i32,i32
+  }
+
+  %s0 = llvm.mlir.addressof @str_correct : !llvm.ptr<array<18 x i8>>
+  %s1 = llvm.mlir.constant(0 : index) : i64
+  %s2 = llvm.getelementptr %s0[%s1, %s1]
+    : (!llvm.ptr<array<18 x i8>>, i64, i64) -> !llvm.ptr<i8>
+  func.call @printCString(%s2) : (!llvm.ptr<i8>) -> ()
+  vector.print %correctCount : i32
+  %s3 = llvm.mlir.addressof @str_incorrect : !llvm.ptr<array<20 x i8>>
+  %s4 = llvm.getelementptr %s3[%s1, %s1]
+    : (!llvm.ptr<array<20 x i8>>, i64, i64) -> !llvm.ptr<i8>
+  func.call @printCString(%s4) : (!llvm.ptr<i8>) -> ()
+  vector.print %errorCount : i32
+
+  return
+}
+llvm.mlir.global internal constant @str_correct("Correct Results : ") {addr_space = 0 : i32}
+llvm.mlir.global internal constant @str_incorrect("Incorrect Results : ") {addr_space = 0 : i32}
+func.func private @printCString(!llvm.ptr<i8>)
+

``````````

</details>


https://github.com/llvm/llvm-project/pull/69913


More information about the Mlir-commits mailing list