[Mlir-commits] [mlir] [DRAFT] Generalize expand_shape to take shape as explicit input (PR #69267)

Gaurav Shukla llvmlistbot at llvm.org
Thu Oct 19 09:12:39 PDT 2023


https://github.com/Shukla-Gaurav updated https://github.com/llvm/llvm-project/pull/69267

>From e8ac533dd84b1c79b06ae6f112f28518dfb6d57e Mon Sep 17 00:00:00 2001
From: Ramiro Leal-Cavazos <ramiroleal050 at gmail.com>
Date: Mon, 16 Oct 2023 17:02:23 -0700
Subject: [PATCH] [DRAFT] Generalize expand_shape to take shape as explicit
 input

*DO NOT SUBMIT*

(This patch is for early design feedback only.  Notably, tests have not been
updated and the implementation is incomplete in some cases.)

This patch generalizes tensor.expand_shape and memref.expand_shape to consume
the output shape as a list of SSA values.  This enables us to implement generic
reshape operations with dynamic shapes using collapse_shape/expand_shape pairs.

The output_shape input to expand_shape follows the static/dynamic representation
that's also used in `tensor.extract_slice`.

Differential Revision: https://reviews.llvm.org/D140821
---
 .../mlir/Dialect/MemRef/IR/MemRefOps.td       | 65 +++++++++----
 .../mlir/Dialect/Tensor/IR/TensorOps.td       | 70 +++++++++-----
 .../mlir/Dialect/Utils/ReshapeOpsUtils.h      | 76 +++++++++++++--
 .../mlir/Dialect/Utils/StaticValueUtils.h     |  5 +-
 .../Conversion/TosaToLinalg/TosaToLinalg.cpp  | 42 ++++++++-
 .../Conversion/TosaToTensor/TosaToTensor.cpp  | 17 +++-
 mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp      | 14 ++-
 .../Transforms/ConvertConv2DToImg2Col.cpp     | 55 +++++++++--
 .../Linalg/Transforms/DropUnitDims.cpp        | 40 ++++++--
 .../Linalg/Transforms/ElementwiseOpFusion.cpp | 65 ++++++++++++-
 .../Linalg/Transforms/NamedOpConversions.cpp  | 14 ++-
 .../Linalg/Transforms/SplitReduction.cpp      | 13 ++-
 .../Dialect/Linalg/Transforms/Transforms.cpp  | 18 +++-
 mlir/lib/Dialect/MemRef/IR/MemRefOps.cpp      | 44 +++++++--
 .../Transforms/SparseTensorRewriting.cpp      | 11 ++-
 mlir/lib/Dialect/Tensor/IR/TensorOps.cpp      | 85 ++++++++++++-----
 mlir/lib/Dialect/Utils/ReshapeOpsUtils.cpp    | 92 ++++++++++++++++---
 mlir/lib/Dialect/Utils/StaticValueUtils.cpp   |  7 +-
 mlir/test/Dialect/Tensor/ops.mlir             | 18 +++-
 19 files changed, 619 insertions(+), 132 deletions(-)

diff --git a/mlir/include/mlir/Dialect/MemRef/IR/MemRefOps.td b/mlir/include/mlir/Dialect/MemRef/IR/MemRefOps.td
index 8fa41f4e4b659f5..c0aad202ecafdae 100644
--- a/mlir/include/mlir/Dialect/MemRef/IR/MemRefOps.td
+++ b/mlir/include/mlir/Dialect/MemRef/IR/MemRefOps.td
@@ -1554,7 +1554,6 @@ def MemRef_ReshapeOp: MemRef_Op<"reshape", [
 class MemRef_ReassociativeReshapeOp<string mnemonic, list<Trait> traits = []> :
     MemRef_Op<mnemonic, !listconcat(traits,
       [Pure, ViewLikeOpInterface])>,
-    Arguments<(ins AnyStridedMemRef:$src, IndexListArrayAttr:$reassociation)>,
     Results<(outs AnyStridedMemRef:$result)>{
 
   code commonExtraClassDeclaration = [{
@@ -1579,10 +1578,6 @@ class MemRef_ReassociativeReshapeOp<string mnemonic, list<Trait> traits = []> :
     Value getViewSource() { return getSrc(); }
   }];
 
-  let assemblyFormat = [{
-    $src $reassociation attr-dict `:` type($src) `into` type($result)
-  }];
-
   let hasFolder = 1;
   let hasCanonicalizer = 1;
   let hasVerifier = 1;
@@ -1604,14 +1599,10 @@ def MemRef_ExpandShapeOp : MemRef_ReassociativeReshapeOp<"expand_shape", [
     Example:
 
     ```mlir
-    %r = memref.expand_shape %0 [[0, 1], [2]]
-        : memref<?x?xf32> into memref<?x5x?xf32>
+    %r = memref.expand_shape %0 [[0, 1], [2]] [%sz0, %sz1, 32]
+        : memref<?x32xf32> into memref<?x?x32xf32>
     ```
 
-    At most one dimension of a reassociation group (e.g., [0, 1] above) may be
-    dynamic in the result type. Otherwise, the op would be ambiguous, as it
-    would not be clear how the source dimension is extended.
-
     If an op can be statically proven to be invalid (e.g, an expansion from
     `memref<10xf32>` to `memref<2x6xf32>`), it is rejected by the verifier. If
     it cannot statically be proven invalid (e.g., the full example above; it is
@@ -1628,29 +1619,49 @@ def MemRef_ExpandShapeOp : MemRef_ReassociativeReshapeOp<"expand_shape", [
     there must be a dynamic result dimension in the corresponding reassociation
     group. Same for strides.
 
+    The representation for the output shape supports a partially-static
+    specification via attributes specified through the `static_output_shape`
+    argument.  A special sentinel value `ShapedType::kDynamic` encodes that the
+    corresponding entry has a dynamic value.  There must be exactly as many SSA
+    inputs in `output_shape` as there are `ShapedType::kDynamic` entries in
+    `static_output_shape`.
+
     Note: This op currently assumes that the inner strides are of the
     source/result layout map are the faster-varying ones.
   }];
 
+  let arguments = (ins AnyStridedMemRef:$src, IndexListArrayAttr:$reassociation,
+                       Variadic<Index>:$output_shape,
+                       DenseI64ArrayAttr:$static_output_shape);
+
+  let assemblyFormat = [{
+    $src $reassociation `output_shape`
+    custom<DynamicIndexList>($output_shape, $static_output_shape) attr-dict `:`
+    type($src) `into` type($result)
+  }];
+
   let builders = [
     // Builders using ReassociationIndices.
     OpBuilder<(ins "Type":$resultType, "Value":$src,
       "ArrayRef<ReassociationIndices>":$reassociation,
-      CArg<"ArrayRef<NamedAttribute>", "{}">:$attrs),
+      "ArrayRef<OpFoldResult>":$outputShape),
     [{
-      build($_builder, $_state, resultType, src, attrs);
-      $_state.addAttribute("reassociation",
-                          getReassociationIndicesAttribute($_builder, reassociation));
+      auto [staticOutputShape, dynamicOutputShape] =
+          decomposeMixedValues(SmallVector<OpFoldResult>(outputShape));
+      build($_builder, $_state, resultType, src,
+            getReassociationIndicesAttribute($_builder, reassociation),
+            dynamicOutputShape, staticOutputShape);
     }]>,
 
     // Builder using ReassociationExprs.
     OpBuilder<(ins "Type":$resultType, "Value":$src,
       "ArrayRef<ReassociationExprs>":$reassociation,
-      CArg<"ArrayRef<NamedAttribute>", "{}">:$attrs),
+      "ArrayRef<OpFoldResult>":$outputShape),
     [{
       auto reassociationMaps =
-          convertReassociationMapsToIndices($_builder, reassociation);
-      build($_builder, $_state, resultType, src, reassociationMaps, attrs);
+          convertReassociationMapsToIndices(reassociation);
+      build($_builder, $_state, resultType, src, reassociationMaps,
+            outputShape);
     }]>,
 
     // Builder that infers the result layout map. The result shape must be
@@ -1663,6 +1674,14 @@ def MemRef_ExpandShapeOp : MemRef_ReassociativeReshapeOp<"expand_shape", [
     static FailureOr<MemRefType> computeExpandedType(
         MemRefType srcType, ArrayRef<int64_t> resultShape,
         ArrayRef<ReassociationIndices> reassociation);
+
+    // Infer the output shape for a memref.expand_shape when it is possible
+    // to do so.
+    static LogicalResult inferOutputShape(
+        OpBuilder &b, Location loc, MemRefType expandedType,
+        ArrayRef<ReassociationIndices> reassociation,
+        ArrayRef<OpFoldResult> inputShape,
+        SmallVectorImpl<OpFoldResult> &outputShape);
   }];
 
   let hasVerifier = 1;
@@ -1713,6 +1732,12 @@ def MemRef_CollapseShapeOp : MemRef_ReassociativeReshapeOp<"collapse_shape", [
     source/result layout map are the faster-varying ones.
   }];
 
+  let arguments = (ins AnyStridedMemRef:$src, IndexListArrayAttr:$reassociation);
+
+  let assemblyFormat = [{
+    $src $reassociation attr-dict `:` type($src) `into` type($result)
+  }];
+
   let builders = [
     // Builders for a contracting reshape whose result type is computed from
     // `src` and `reassociation`.
@@ -1724,7 +1749,7 @@ def MemRef_CollapseShapeOp : MemRef_ReassociativeReshapeOp<"collapse_shape", [
       CArg<"ArrayRef<NamedAttribute>", "{}">:$attrs),
     [{
       auto reassociationMaps =
-          convertReassociationMapsToIndices($_builder, reassociation);
+          convertReassociationMapsToIndices(reassociation);
       build($_builder, $_state, src, reassociationMaps, attrs);
     }]>,
 
@@ -1742,7 +1767,7 @@ def MemRef_CollapseShapeOp : MemRef_ReassociativeReshapeOp<"collapse_shape", [
       CArg<"ArrayRef<NamedAttribute>", "{}">:$attrs),
     [{
       auto reassociationMaps =
-          convertReassociationMapsToIndices($_builder, reassociation);
+          convertReassociationMapsToIndices(reassociation);
       build($_builder, $_state, resultType, src, reassociationMaps, attrs);
     }]>
   ];
diff --git a/mlir/include/mlir/Dialect/Tensor/IR/TensorOps.td b/mlir/include/mlir/Dialect/Tensor/IR/TensorOps.td
index 86a250b77dcc8ee..8c86dd9b08936e1 100644
--- a/mlir/include/mlir/Dialect/Tensor/IR/TensorOps.td
+++ b/mlir/include/mlir/Dialect/Tensor/IR/TensorOps.td
@@ -996,8 +996,7 @@ class Tensor_ReassociativeReshapeOp<string mnemonic, list<Trait> traits = []> :
     Tensor_Op<mnemonic, !listconcat(traits, [
       DeclareOpInterfaceMethods<OpAsmOpInterface, ["getAsmResultNames"]>,
       Pure])>,
-    Arguments<(ins AnyRankedTensor:$src, IndexListArrayAttr:$reassociation)>,
-    Results<(outs AnyRankedTensor:$result)> {
+    Results<(outs AnyTensor:$result)> {
 
   code commonExtraClassDeclaration = [{
     static StringRef getReassociationAttrStrName() { return "reassociation"; }
@@ -1020,10 +1019,6 @@ class Tensor_ReassociativeReshapeOp<string mnemonic, list<Trait> traits = []> :
     }
   }];
 
-  let assemblyFormat = [{
-    $src $reassociation attr-dict `:` type($src) `into` type($result)
-  }];
-
   let hasFolder = 1;
   let hasCanonicalizer = 1;
   let hasVerifier = 1;
@@ -1036,11 +1031,16 @@ def Tensor_ExpandShapeOp : Tensor_ReassociativeReshapeOp<"expand_shape"> {
     rank whose sizes are a reassociation of the original `src`.
 
     A reassociation is defined as a continuous grouping of dimensions and is
-    represented with an array of DenseI64ArrayAttr attribute.
+    represented with an array of DenseI64ArrayAttr attribute.  The reassociation
+    maps applied to the result tensor with the higher rank must result in the
+    operand tensor with the smaller rank.
 
-    The verification rule is that the reassociation maps are applied to the
-    result tensor with the higher rank to obtain the operand tensor with the
-    smaller rank.
+    The representation for the output shape supports a partially-static
+    specification via attributes specified through the `static_output_shape`
+    argument.  A special sentinel value `ShapedType::kDynamic` encodes that the
+    corresponding entry has a dynamic value.  There must be exactly as many SSA
+    inputs in `output_shape` as there are `ShapedType::kDynamic` entries in
+    `static_output_shape`.
 
     The operand tensor type of a reshape can be zero-ranked if the result
     tensor type is statically shaped with all dimensions being unit extent. In
@@ -1050,32 +1050,54 @@ def Tensor_ExpandShapeOp : Tensor_ReassociativeReshapeOp<"expand_shape"> {
 
     ```mlir
     // Dimension expansion i -> (i', j') and (k) -> (k')
-    %b = tensor.expand_shape %a [[0, 1], [2]]
-        : tensor<?x?xf32> into tensor<?x?x?xf32>
+    %b = tensor.expand_shape %a [[0, 1], [2]] [%sz0, %sz1, 32]
+        : tensor<?x32xf32> into tensor<?x?x32xf32>
     ```
   }];
+
+  let arguments = (ins AnyTensor:$src, IndexListArrayAttr:$reassociation,
+                       Variadic<Index>:$output_shape,
+                       DenseI64ArrayAttr:$static_output_shape);
+
+  let assemblyFormat = [{
+    $src $reassociation `output_shape`
+    custom<DynamicIndexList>($output_shape, $static_output_shape) attr-dict `:`
+    type($src) `into` type($result)
+  }];
+
   let builders = [
     // Builders using ReassociationIndices.
     OpBuilder<(ins "Type":$resultType, "Value":$src,
       "ArrayRef<ReassociationIndices>":$reassociation,
-      CArg<"ArrayRef<NamedAttribute>", "{}">:$attrs),
+      "ArrayRef<OpFoldResult>":$outputShape),
     [{
-      build($_builder, $_state, resultType, src, attrs);
-      $_state.addAttribute("reassociation",
-          getReassociationIndicesAttribute($_builder, reassociation));
+      auto [staticOutputShape, dynamicOutputShape] =
+          decomposeMixedValues(SmallVector<OpFoldResult>(outputShape));
+      build($_builder, $_state, resultType, src,
+            getReassociationIndicesAttribute($_builder, reassociation),
+            dynamicOutputShape, staticOutputShape);
     }]>,
     OpBuilder<(ins "Type":$resultType, "Value":$src,
       "ArrayRef<ReassociationExprs>":$reassociation,
-      CArg<"ArrayRef<NamedAttribute>", "{}">:$attrs),
+      "ArrayRef<OpFoldResult>":$outputShape),
     [{
       auto reassociationMaps =
-          convertReassociationMapsToIndices($_builder, reassociation);
-      build($_builder, $_state, resultType, src, reassociationMaps, attrs);
+          convertReassociationMapsToIndices(reassociation);
+      build($_builder, $_state, resultType, src, reassociationMaps,
+            outputShape);
     }]>
   ];
 
   let extraClassDeclaration = commonExtraClassDeclaration # [{
     int64_t getCorrespondingSourceDim(int64_t resultDim);
+
+    // Infer the output shape for a tensor.expand_shape when it is possible
+    // to do so.
+    static LogicalResult inferOutputShape(
+        OpBuilder &b, Location loc, RankedTensorType expandedType,
+        ArrayRef<ReassociationIndices> reassociation,
+        ArrayRef<OpFoldResult> inputShape,
+        SmallVectorImpl<OpFoldResult> &outputShape);
   }];
 
   let hasVerifier = 1;
@@ -1083,6 +1105,7 @@ def Tensor_ExpandShapeOp : Tensor_ReassociativeReshapeOp<"expand_shape"> {
 
 def Tensor_CollapseShapeOp : Tensor_ReassociativeReshapeOp<"collapse_shape"> {
   let summary = "operation to produce a tensor with a smaller rank";
+  let arguments = (ins AnyTensor:$src, IndexListArrayAttr:$reassociation);
   let description = [{
     The `tensor.collapse_shape` op produces a new tensor with a smaller
     rank whose sizes are a reassociation of the original `src`.
@@ -1106,6 +1129,11 @@ def Tensor_CollapseShapeOp : Tensor_ReassociativeReshapeOp<"collapse_shape"> {
         : tensor<?x?x?xf32> into tensor<?x?xf32>
     ```
   }];
+
+  let assemblyFormat = [{
+    $src $reassociation attr-dict `:` type($src) `into` type($result)
+  }];
+
   let builders = [
     // Builders for a contracting reshape whose result type is computed from
     // `src` and `reassociation`.
@@ -1117,7 +1145,7 @@ def Tensor_CollapseShapeOp : Tensor_ReassociativeReshapeOp<"collapse_shape"> {
       CArg<"ArrayRef<NamedAttribute>", "{}">:$attrs),
     [{
       auto reassociationMaps =
-          convertReassociationMapsToIndices($_builder, reassociation);
+          convertReassociationMapsToIndices(reassociation);
       build($_builder, $_state, src, reassociationMaps, attrs);
     }]>,
 
@@ -1135,7 +1163,7 @@ def Tensor_CollapseShapeOp : Tensor_ReassociativeReshapeOp<"collapse_shape"> {
       CArg<"ArrayRef<NamedAttribute>", "{}">:$attrs),
     [{
       auto reassociationMaps =
-          convertReassociationMapsToIndices($_builder, reassociation);
+          convertReassociationMapsToIndices(reassociation);
       build($_builder, $_state, resultType, src, reassociationMaps, attrs);
     }]>
   ];
diff --git a/mlir/include/mlir/Dialect/Utils/ReshapeOpsUtils.h b/mlir/include/mlir/Dialect/Utils/ReshapeOpsUtils.h
index 61c929dee0f272c..3e33650234d2757 100644
--- a/mlir/include/mlir/Dialect/Utils/ReshapeOpsUtils.h
+++ b/mlir/include/mlir/Dialect/Utils/ReshapeOpsUtils.h
@@ -30,6 +30,29 @@ using ReassociationExprs = SmallVector<AffineExpr, 2>;
 /// Attribute name for the ArrayAttr which encodes reassociation indices.
 constexpr StringRef getReassociationAttrName() { return "reassociation"; }
 
+// Infer the output shape for a {memref|tensor}.expand_shape when it is possible
+// to do so.
+//
+// Note: This should *only* be used to implement
+// `ExpandShapeOp::inferOutputShape` in both the memref and tensor namespaces.
+// If you need to infer the output shape you should use the static method of
+// `ExpandShapeOp` instead of calling this.
+//
+// `inputShape` is the shape of the tensor or memref being expanded as a
+// sequence of SSA values or constants. `expandedType` is the output shape of
+// the expand_shape operation. `reassociation` is the reassociation denoting
+// the output dims each input dim is mapped to.
+//
+// Returns the output shape in `outputShape` and `staticOutputShape`, following
+// the conventions for the output_shape and static_output_shape inputs to the
+// expand_shape ops.
+LogicalResult
+inferExpandShapeOutputShape(OpBuilder &b, Location loc,
+                            RankedTensorType expandedType,
+                            ArrayRef<ReassociationIndices> reassociation,
+                            ArrayRef<OpFoldResult> inputShape,
+                            SmallVectorImpl<OpFoldResult> &outputShape);
+
 /// Compose reassociation maps that are used in pair of reshape ops where one
 /// is a producer and other is the consumer. Only valid to use this method when
 /// both the producer and consumer are collapsing dimensions or both are
@@ -62,7 +85,7 @@ getReassociationIndicesAttribute(OpBuilder &b,
 
 /// Convert Array<Array<AffineExpr>> to Array<Array<int64_t>>.
 SmallVector<ReassociationIndices, 2> convertReassociationMapsToIndices(
-    OpBuilder &b, ArrayRef<ReassociationExprs> reassociationExprs);
+    ArrayRef<ReassociationExprs> reassociationExprs);
 
 /// Return the reassociations maps to use to reshape given the source type and
 /// the target type when possible. Return std::nullopt when this computation
@@ -166,9 +189,11 @@ static LogicalResult verifyReshapeLikeShapes(OpTy op, ShapedType collapsedType,
 /// Returns true iff the type is a MemRefType and has a non-identity layout.
 bool hasNonIdentityLayout(Type type);
 
+enum class ReshapeOpKind { kExpand, kCollapse };
+
 /// Pattern to collapse producer/consumer reshape ops that are both collapsing
 /// dimensions or are both expanding dimensions.
-template <typename ReshapeOpTy>
+template <typename ReshapeOpTy, ReshapeOpKind opKind>
 struct ComposeReassociativeReshapeOps : public OpRewritePattern<ReshapeOpTy> {
   using OpRewritePattern<ReshapeOpTy>::OpRewritePattern;
   LogicalResult matchAndRewrite(ReshapeOpTy reshapeOp,
@@ -191,8 +216,18 @@ struct ComposeReassociativeReshapeOps : public OpRewritePattern<ReshapeOpTy> {
                                     rewriter.getContext());
     if (!reassociationIndices)
       return failure();
-    rewriter.replaceOpWithNewOp<ReshapeOpTy>(
-        reshapeOp, resultType, srcReshapeOp.getSrc(), *reassociationIndices);
+
+    if constexpr (opKind == ReshapeOpKind::kExpand) {
+      SmallVector<OpFoldResult> outputShape(
+          getMixedValues(reshapeOp.getStaticOutputShape(),
+                         reshapeOp.getOutputShape(), rewriter));
+      rewriter.replaceOpWithNewOp<ReshapeOpTy>(
+          reshapeOp, resultType, srcReshapeOp.getSrc(), *reassociationIndices,
+          outputShape);
+    } else {
+      rewriter.replaceOpWithNewOp<ReshapeOpTy>(
+          reshapeOp, resultType, srcReshapeOp.getSrc(), *reassociationIndices);
+    }
     return success();
   }
 };
@@ -225,7 +260,8 @@ struct ComposeReassociativeReshapeOps : public OpRewritePattern<ReshapeOpTy> {
 //
 /// When `rank(srcType) < rank(resultType)`, then we just swap `reassociation_1`
 /// `reassociation_2` and produce `expand_shape`.
-template <typename CollapseOpTy, typename ExpandOpTy, typename CastOpTy>
+template <typename CollapseOpTy, typename ExpandOpTy, typename CastOpTy,
+          typename DimOpTy, typename TensorTy>
 struct ComposeCollapseOfExpandOp : public OpRewritePattern<CollapseOpTy> {
   using OpRewritePattern<CollapseOpTy>::OpRewritePattern;
   LogicalResult matchAndRewrite(CollapseOpTy collapseOp,
@@ -277,8 +313,31 @@ struct ComposeCollapseOfExpandOp : public OpRewritePattern<CollapseOpTy> {
       rewriter.replaceOpWithNewOp<CollapseOpTy>(
           collapseOp, resultType, expandOp.getSrc(), composedReassociation);
     } else if (srcRank < resultRank) {
+      auto tensorType = expandOp.getSrc().getType().template cast<TensorTy>();
+      SmallVector<OpFoldResult> inputShape;
+      for (int64_t i = 0; i < tensorType.getRank(); ++i) {
+        if (tensorType.isDynamicDim(i)) {
+          Value size =
+              rewriter.create<DimOpTy>(expandOp.getLoc(), expandOp.getSrc(), i);
+          inputShape.push_back(size);
+        } else {
+          inputShape.push_back(rewriter.getIndexAttr(tensorType.getDimSize(i)));
+        }
+      }
+
+      SmallVector<OpFoldResult> outputShape;
+      if (failed(ExpandOpTy::inferOutputShape(
+              rewriter, collapseOp.getLoc(),
+              collapseOp.getType().template cast<TensorTy>(),
+              composedReassociation, inputShape, outputShape))) {
+        return rewriter.notifyMatchFailure(
+            collapseOp,
+            "unable to infer output shape argument for tensor.expand_shape");
+      }
+
       rewriter.replaceOpWithNewOp<ExpandOpTy>(
-          collapseOp, resultType, expandOp.getSrc(), composedReassociation);
+          collapseOp, resultType, expandOp.getSrc(), composedReassociation,
+          outputShape);
     } else {
       // Collapses/expansions that do not change the rank are not allowed. Use
       // a cast instead.
@@ -332,8 +391,11 @@ struct ComposeExpandOfCollapseOp : public OpRewritePattern<ExpandOpTy> {
     if (!composedReassociation)
       return failure();
 
+    SmallVector<OpFoldResult> outputShape(getMixedValues(
+        expandOp.getStaticOutputShape(), expandOp.getOutputShape(), rewriter));
     rewriter.replaceOpWithNewOp<ExpandOpTy>(
-        expandOp, resultType, collapseOp.getSrc(), *composedReassociation);
+        expandOp, resultType, collapseOp.getSrc(), *composedReassociation,
+        outputShape);
     return success();
   }
 
diff --git a/mlir/include/mlir/Dialect/Utils/StaticValueUtils.h b/mlir/include/mlir/Dialect/Utils/StaticValueUtils.h
index 23a366036b9dd6f..1842817042ea037 100644
--- a/mlir/include/mlir/Dialect/Utils/StaticValueUtils.h
+++ b/mlir/include/mlir/Dialect/Utils/StaticValueUtils.h
@@ -124,9 +124,8 @@ SmallVector<OpFoldResult> getMixedValues(ArrayRef<int64_t> staticValues,
 /// Decompose a vector of mixed static or dynamic values into the
 /// corresponding pair of arrays. This is the inverse function of
 /// `getMixedValues`.
-std::pair<ArrayAttr, SmallVector<Value>>
-decomposeMixedValues(Builder &b,
-                     const SmallVectorImpl<OpFoldResult> &mixedValues);
+std::pair<SmallVector<int64_t>, SmallVector<Value>>
+decomposeMixedValues(const SmallVectorImpl<OpFoldResult> &mixedValues);
 
 /// Helper to sort `values` according to matching `keys`.
 SmallVector<Value>
diff --git a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp
index 3bf7bf12b5e96ff..7be9315b982ee7a 100644
--- a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp
+++ b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp
@@ -17,7 +17,6 @@
 #include "mlir/Dialect/Math/IR/Math.h"
 #include "mlir/Dialect/SCF/IR/SCF.h"
 #include "mlir/Dialect/Tensor/IR/Tensor.h"
-#include "mlir/Dialect/Tensor/Utils/Utils.h"
 #include "mlir/Dialect/Tosa/IR/TosaOps.h"
 #include "mlir/Dialect/Tosa/Utils/ConversionUtils.h"
 #include "mlir/Dialect/Utils/ReshapeOpsUtils.h"
@@ -550,9 +549,22 @@ static Value expandRank(PatternRewriter &rewriter, Location loc, Value tensor,
   auto resultType =
       RankedTensorType::get(resultShape, shapedType.getElementType());
 
+
+  SmallVector<OpFoldResult> inputShape =
+        tensor::getMixedSizes(rewriter, loc, tensor);
+    SmallVector<OpFoldResult> outputShape;
+    if (failed(tensor::ExpandShapeOp::inferOutputShape(
+            rewriter, loc, resultType,
+            reassociationIndices, inputShape,
+            outputShape))) {
+      (void)rewriter.notifyMatchFailure(
+          loc, "unable to infer output shape argument for tensor.expand_shape");
+      return {};
+    }
+
   // Emit 'tensor.expand_shape' op
   return rewriter.create<tensor::ExpandShapeOp>(loc, resultType, tensor,
-                                                reassociationIndices);
+                                                reassociationIndices, outputShape);
 }
 
 static SmallVector<Value> expandInputRanks(PatternRewriter &rewriter,
@@ -1034,8 +1046,19 @@ static LogicalResult reduceMatchAndRewriteHelper(Operation *op, uint64_t axis,
   // since here we know which dimension to expand, and `tosa::ReshapeOp` would
   // not have access to such information. This matters when handling dynamically
   // sized tensors.
+  Value result = linalgOp.getResults()[0];
+  SmallVector<OpFoldResult> inputShape =
+      tensor::getMixedSizes(rewriter, loc, result);
+  SmallVector<OpFoldResult> outputShape;
+  if (failed(tensor::ExpandShapeOp::inferOutputShape(
+          rewriter, loc, resultTy.cast<RankedTensorType>(),
+          convertReassociationMapsToIndices(reassociationMap), inputShape,
+          outputShape))) {
+    return rewriter.notifyMatchFailure(
+        op, "unable to infer output shape argument for tensor.expand_shape");
+  }
   rewriter.replaceOpWithNewOp<tensor::ExpandShapeOp>(
-      op, resultTy, linalgOp.getResults()[0], reassociationMap);
+      op, resultTy, result, reassociationMap, outputShape);
   return success();
 }
 
@@ -1385,8 +1408,19 @@ class ResizeUnaryConverter : public OpRewritePattern<tosa::ResizeOp> {
           b.create<linalg::YieldOp>(loc, value);
         });
 
+    Value result = generic.getResults()[0];
+    SmallVector<OpFoldResult> inputShape =
+        tensor::getMixedSizes(rewriter, loc, result);
+    SmallVector<OpFoldResult> outputShape;
+    if (failed(tensor::ExpandShapeOp::inferOutputShape(
+            rewriter, loc, resultTy.cast<RankedTensorType>(),
+            convertReassociationMapsToIndices(reassociationMap), inputShape,
+            outputShape))) {
+      return rewriter.notifyMatchFailure(
+          op, "unable to infer output shape argument for tensor.expand_shape");
+    }
     rewriter.replaceOpWithNewOp<tensor::ExpandShapeOp>(
-        op, resultTy, generic.getResults()[0], reassociationMap);
+        op, resultTy, result, reassociationMap, outputShape);
     return success();
   }
 };
diff --git a/mlir/lib/Conversion/TosaToTensor/TosaToTensor.cpp b/mlir/lib/Conversion/TosaToTensor/TosaToTensor.cpp
index 06ec53d19b1e956..2b43ffc0c011ade 100644
--- a/mlir/lib/Conversion/TosaToTensor/TosaToTensor.cpp
+++ b/mlir/lib/Conversion/TosaToTensor/TosaToTensor.cpp
@@ -194,8 +194,21 @@ Value createExpand(ConversionPatternRewriter &rewriter, Location loc,
         loc, "tosa.reshape Cannot expand into given shape");
     return {};
   }
-  return rewriter.create<tensor::ExpandShapeOp>(loc, resultTy, operand,
-                                                reassociationMap);
+
+  SmallVector<OpFoldResult> inputShape =
+      tensor::getMixedSizes(rewriter, loc, operand);
+  SmallVector<OpFoldResult> outputShape;
+  if (failed(tensor::ExpandShapeOp::inferOutputShape(
+          rewriter, loc, resultTy.cast<RankedTensorType>(),
+          convertReassociationMapsToIndices(reassociationMap), inputShape,
+          outputShape))) {
+    (void)rewriter.notifyMatchFailure(
+        loc,
+        "unable to infer output shape argument for tensor.expand_shape");
+    return {};
+  }
+  return rewriter.create<tensor::ExpandShapeOp>(
+      loc, resultTy, operand, reassociationMap, outputShape);
 }
 
 class ReshapeConverterCollapseExpand
diff --git a/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp b/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
index 5457d51db1cc180..0a11b73be38916e 100644
--- a/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
+++ b/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
@@ -587,9 +587,17 @@ struct FoldFillWithTensorReshape : OpRewritePattern<TensorReshapeOp> {
       return failure();
 
     Location loc = oldFill.getLoc();
-    auto newInit = rewriter.create<TensorReshapeOp>(
-        loc, reshapeOp.getResultType(), oldFill.output(),
-        reshapeOp.getReassociation());
+    TensorReshapeOp newInit;
+    if constexpr (std::is_same<TensorReshapeOp, tensor::ExpandShapeOp>::value)
+
+      newInit = rewriter.create<TensorReshapeOp>(
+          loc, reshapeOp.getResultType(), oldFill.output(),
+          reshapeOp.getReassociation(), reshapeOp.getOutputShape(),
+          reshapeOp.getStaticOutputShape());
+    else
+      newInit = rewriter.create<TensorReshapeOp>(loc, reshapeOp.getResultType(),
+                                                 oldFill.output(),
+                                                 reshapeOp.getReassociation());
     rewriter.replaceOpWithNewOp<FillOp>(reshapeOp, ValueRange{oldFill.value()},
                                         ValueRange{newInit});
 
diff --git a/mlir/lib/Dialect/Linalg/Transforms/ConvertConv2DToImg2Col.cpp b/mlir/lib/Dialect/Linalg/Transforms/ConvertConv2DToImg2Col.cpp
index e7629d79494bd47..b92a683093c056d 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/ConvertConv2DToImg2Col.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/ConvertConv2DToImg2Col.cpp
@@ -201,8 +201,18 @@ rewriteInIm2Col(RewriterBase &rewriter, linalg::Conv2DNhwcHwcfOp convOp) {
       });
   Value result = genericOp.getResults().front();
 
+  SmallVector<OpFoldResult> inputShape =
+      tensor::getMixedSizes(rewriter, loc, result);
+  SmallVector<OpFoldResult> expandShapeOutputShape;
+  if (failed(tensor::ExpandShapeOp::inferOutputShape(
+          rewriter, loc, outputType.cast<RankedTensorType>(),
+          outputReassocIndices, inputShape, expandShapeOutputShape))) {
+    return rewriter.notifyMatchFailure(
+        convOp,
+        "unable to infer output shape argument for tensor.expand_shape");
+  }
   auto reshapedResult = rewriter.create<tensor::ExpandShapeOp>(
-      loc, outputType, result, outputReassocIndices);
+      loc, outputType, result, outputReassocIndices, expandShapeOutputShape);
 
   rewriter.replaceOp(convOp, ArrayRef<Value>{reshapedResult});
 
@@ -349,9 +359,22 @@ rewriteInIm2Col(RewriterBase &rewriter,
   SmallVector<ReassociationIndices> batchMatVecReassociationIndice = {{0, 1},
                                                                       {2, 3}};
 
-  Value batchMatVecResultReshaped = rewriter.create<tensor::ExpandShapeOp>(
-      loc, transposedOutputTensor.getType(), batchMatVecResult.getResult(0),
-      batchMatVecReassociationIndice);
+  Value result = batchMatVecResult.getResult(0);
+  SmallVector<OpFoldResult> inputShape =
+      tensor::getMixedSizes(rewriter, loc, result);
+  SmallVector<OpFoldResult> expandShapeOutputShape;
+  if (failed(tensor::ExpandShapeOp::inferOutputShape(
+          rewriter, loc,
+          transposedOutputTensor.getType().cast<RankedTensorType>(),
+          batchMatVecReassociationIndice, inputShape,
+          expandShapeOutputShape))) {
+    return rewriter.notifyMatchFailure(
+        convOp,
+        "unable to infer output shape argument for tensor.expand_shape");
+  }
+  auto batchMatVecResultReshaped = rewriter.create<tensor::ExpandShapeOp>(
+      loc, transposedOutputTensor.getType(), result,
+      batchMatVecReassociationIndice, expandShapeOutputShape);
 
   Value transposedResult =
       transposeOperand(batchMatVecResultReshaped, {0, 2, 3, 1});
@@ -484,9 +507,19 @@ rewriteInIm2Col(RewriterBase &rewriter, linalg::Conv2DNchwFchwOp convOp) {
         nestedBuilder.create<linalg::YieldOp>(nestedLoc, add);
       });
   Value result = genericOp.getResults().front();
+  SmallVector<OpFoldResult> inputShape =
+        tensor::getMixedSizes(rewriter, loc, result);
+  SmallVector<OpFoldResult> expandOutputShape;
+  if (failed(tensor::ExpandShapeOp::inferOutputShape(
+          rewriter, loc, outputType.cast<RankedTensorType>(),
+          outputReassocIndices, inputShape,
+          expandOutputShape))) {
+    return rewriter.notifyMatchFailure(
+        convOp, "unable to infer output shape argument for tensor.expand_shape");
+  }
 
   auto reshapedResult = rewriter.create<tensor::ExpandShapeOp>(
-      loc, outputType, result, outputReassocIndices);
+      loc, outputType, result, outputReassocIndices, expandOutputShape);
 
   rewriter.replaceOp(convOp, ArrayRef<Value>{reshapedResult});
 
@@ -620,8 +653,18 @@ rewriteInIm2Col(RewriterBase &rewriter, linalg::Conv2DNhwcFhwcOp convOp) {
       });
   Value result = genericOp.getResults().front();
 
+  SmallVector<OpFoldResult> inputShape =
+      tensor::getMixedSizes(rewriter, loc, result);
+  SmallVector<OpFoldResult> expandShapeOutputShape;
+  if (failed(tensor::ExpandShapeOp::inferOutputShape(
+          rewriter, loc, outputType.cast<RankedTensorType>(),
+          outputReassocIndices, inputShape, expandShapeOutputShape))) {
+    return rewriter.notifyMatchFailure(
+        convOp,
+        "unable to infer output shape argument for tensor.expand_shape");
+  }
   auto reshapedResult = rewriter.create<tensor::ExpandShapeOp>(
-      loc, outputType, result, outputReassocIndices);
+      loc, outputType, result, outputReassocIndices, expandShapeOutputShape);
 
   rewriter.replaceOp(convOp, ArrayRef<Value>{reshapedResult});
 
diff --git a/mlir/lib/Dialect/Linalg/Transforms/DropUnitDims.cpp b/mlir/lib/Dialect/Linalg/Transforms/DropUnitDims.cpp
index 2e3610b7c08d9da..820dd267f989f2a 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/DropUnitDims.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/DropUnitDims.cpp
@@ -23,6 +23,7 @@
 #include "mlir/Dialect/Tensor/IR/Tensor.h"
 #include "mlir/Dialect/Tensor/Transforms/Transforms.h"
 #include "mlir/Dialect/Tensor/Utils/Utils.h"
+#include "mlir/Dialect/Utils/ReshapeOpsUtils.h"
 #include "mlir/IR/AffineExpr.h"
 #include "mlir/IR/AffineMap.h"
 #include "mlir/IR/BuiltinTypes.h"
@@ -254,7 +255,7 @@ replaceUnitDimIndexOps(GenericOp genericOp,
 /// Expand the given `value` so that the type matches the type of `origDest`.
 /// The `reassociation` is used when `rankReductionStrategy` is set to
 /// `RankReductionStrategy::ReassociativeReshape`.
-static Value
+static FailureOr<Value>
 expandValue(RewriterBase &rewriter, Location loc, Value result, Value origDest,
             ArrayRef<ReassociationIndices> reassociation,
             ControlDropUnitDims::RankReductionStrategy rankReductionStrategy) {
@@ -274,8 +275,18 @@ expandValue(RewriterBase &rewriter, Location loc, Value result, Value origDest,
   assert(rankReductionStrategy ==
              ControlDropUnitDims::RankReductionStrategy::ReassociativeReshape &&
          "unknown rank reduction strategy");
-  return rewriter.create<tensor::ExpandShapeOp>(loc, origResultType, result,
-                                                reassociation);
+  SmallVector<OpFoldResult> inputShape =
+        tensor::getMixedSizes(rewriter, loc, result);
+  SmallVector<OpFoldResult> outputShape;
+  if (failed(tensor::ExpandShapeOp::inferOutputShape(
+          rewriter, loc, origResultType, reassociation, inputShape,
+          outputShape))) {
+    return failure();
+  }
+  return rewriter
+      .create<tensor::ExpandShapeOp>(loc, origResultType, result,
+                                     reassociation, outputShape)
+      .getResult();
 }
 
 /// Collapse the given `value` so that the type matches the type of
@@ -538,9 +549,14 @@ LogicalResult linalg::dropUnitDims(RewriterBase &rewriter, GenericOp genericOp,
       resultReplacements.push_back(result);
       continue;
     }
-    resultReplacements.push_back(expandValue(rewriter, loc, result, origDest,
+    FailureOr<Value> expandedValue = expandValue(rewriter, loc, result, origDest,
                                              reassociations[opOperandIndex],
-                                             options.rankReductionStrategy));
+                                             options.rankReductionStrategy);
+    if (failed(expandedValue)) {
+      return rewriter.notifyMatchFailure(genericOp,
+                                         "unable to expand result");
+    }
+    resultReplacements.push_back(*expandedValue);
   }
 
   rewriter.replaceOp(genericOp, resultReplacements);
@@ -587,8 +603,20 @@ struct RankReducedExtractSliceOp
     Location loc = sliceOp.getLoc();
     Value newSlice = rewriter.create<tensor::ExtractSliceOp>(
         loc, rankReducedType, sliceOp.getSource(), offsets, sizes, strides);
+
+    SmallVector<OpFoldResult> newSliceShape =
+        tensor::getMixedSizes(rewriter, loc, newSlice);
+    SmallVector<OpFoldResult> outputShape;
+    if (failed(tensor::ExpandShapeOp::inferOutputShape(
+            rewriter, loc, resultType, *reassociation, newSliceShape,
+            outputShape))) {
+      return rewriter.notifyMatchFailure(
+          sliceOp,
+          "unable to infer output shape argument for tensor.expand_shape");
+    }
+
     rewriter.replaceOpWithNewOp<tensor::ExpandShapeOp>(
-        sliceOp, resultType, newSlice, *reassociation);
+        sliceOp, resultType, newSlice, *reassociation, outputShape);
     return success();
   }
 };
diff --git a/mlir/lib/Dialect/Linalg/Transforms/ElementwiseOpFusion.cpp b/mlir/lib/Dialect/Linalg/Transforms/ElementwiseOpFusion.cpp
index 6f4b0ff60ca97c6..eff94d871be411b 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/ElementwiseOpFusion.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/ElementwiseOpFusion.cpp
@@ -801,9 +801,23 @@ fuseWithReshapeByExpansion(GenericOp genericOp, Operation *reshapeOp,
                 reassociation,
                 /*isExpandingReshape=*/true)))
           return std::nullopt;
+        Location loc = genericOp.getLoc();
+
+        SmallVector<OpFoldResult> inputShape =
+            tensor::getMixedSizes(rewriter, loc, opOperand->get());
+        SmallVector<OpFoldResult> outputShape;
+
+        if (failed(tensor::ExpandShapeOp::inferOutputShape(
+                rewriter, loc, expandedOperandType, reassociation, inputShape,
+                outputShape))) {
+          (void)rewriter.notifyMatchFailure(
+              genericOp,
+              "unable to infer output shape argument for tensor.expand_shape");
+          return std::nullopt;
+        }
         expandedOpOperands.push_back(rewriter.create<tensor::ExpandShapeOp>(
             genericOp.getLoc(), expandedOperandType, opOperand->get(),
-            reassociation));
+            reassociation, outputShape));
         continue;
       }
     }
@@ -828,9 +842,24 @@ fuseWithReshapeByExpansion(GenericOp genericOp, Operation *reshapeOp,
               reassociation,
               /*isExpandingReshape=*/true)))
         return std::nullopt;
+
+      Location loc = genericOp.getLoc();
+
+      Value operand = opOperand.get();
+      SmallVector<OpFoldResult> operandShape =
+          tensor::getMixedSizes(rewriter, loc, operand);
+      SmallVector<OpFoldResult> outputShape;
+      if (failed(tensor::ExpandShapeOp::inferOutputShape(
+              rewriter, loc, expandedOutputType, reassociation, operandShape,
+              outputShape))) {
+        (void)rewriter.notifyMatchFailure(
+            genericOp,
+            "unable to infer output shape argument for tensor.expand_shape");
+        return std::nullopt;
+      }
+
       outputs.push_back(rewriter.create<tensor::ExpandShapeOp>(
-          genericOp.getLoc(), expandedOutputType, opOperand.get(),
-          reassociation));
+          loc, expandedOutputType, operand, reassociation, outputShape));
     } else {
       outputs.push_back(opOperand.get());
     }
@@ -1561,12 +1590,38 @@ FailureOr<SmallVector<Value>> mlir::linalg::collapseGenericOpIterationDims(
       SmallVector<ReassociationIndices> reassociation =
           getOperandReassociation(indexingMap, collapsingInfo);
       if (isa<MemRefType>(collapsedOpResult.getType())) {
+        SmallVector<OpFoldResult> collapsedOpShape =
+            memref::getMixedSizes(rewriter, loc, collapsedOpResult);
+        MemRefType expandShapeResultType =
+            MemRefType::get(originalResultType.getShape(), originalResultType.getElementType());
+        SmallVector<OpFoldResult> outputShape;
+
+        if (failed(memref::ExpandShapeOp::inferOutputShape(
+                rewriter, loc, expandShapeResultType, reassociation, collapsedOpShape,
+                outputShape))) {
+          return rewriter.notifyMatchFailure(
+              genericOp, "unable to infer output shape argument for memref.expand_shape");
+        }
+
         Value result = rewriter.create<memref::ExpandShapeOp>(
-            loc, originalResultType, collapsedOpResult, reassociation);
+            loc, expandShapeResultType, collapsedOpResult, reassociation, outputShape);
         results.push_back(result);
       } else {
+        SmallVector<OpFoldResult> collapsedOpShape =
+            tensor::getMixedSizes(rewriter, loc, collapsedOpResult);
+        SmallVector<OpFoldResult> outputShape;
+
+        if (failed(tensor::ExpandShapeOp::inferOutputShape(
+                rewriter, loc, originalResultType.cast<RankedTensorType>(),
+                reassociation, collapsedOpShape, outputShape))) {
+          return rewriter.notifyMatchFailure(
+              genericOp,
+              "unable to infer output shape argument for tensor.expand_shape");
+        }
+
         Value result = rewriter.create<tensor::ExpandShapeOp>(
-            loc, originalResultType, collapsedOpResult, reassociation);
+            loc, originalResultType, collapsedOpResult, reassociation,
+            outputShape);
         results.push_back(result);
       }
     } else {
diff --git a/mlir/lib/Dialect/Linalg/Transforms/NamedOpConversions.cpp b/mlir/lib/Dialect/Linalg/Transforms/NamedOpConversions.cpp
index 93fa5ff24ac6a6e..a713cc0081f45f0 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/NamedOpConversions.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/NamedOpConversions.cpp
@@ -95,8 +95,20 @@ matchAndReplaceDepthwiseConv(Operation *operation, Value input, Value kernel,
     newConv->setAttr(attr.getName(), attr.getValue());
 
   // Expand dimensions back out to
+
+  Value newConvVal = newConv->getResult(0);
+  SmallVector<OpFoldResult> newConvShape =
+      tensor::getMixedSizes(rewriter, loc, newConvVal);
+  SmallVector<OpFoldResult> outputShape;
+  if (failed(tensor::ExpandShapeOp::inferOutputShape(
+          rewriter, loc, resultTy, collapsedInitDims, newConvShape,
+          outputShape))) {
+    return rewriter.notifyMatchFailure(
+        operation,
+        "unable to infer output shape argument for tensor.expand_shape");
+  }
   rewriter.replaceOpWithNewOp<tensor::ExpandShapeOp>(
-      operation, resultTy, newConv->getResult(0), collapsedInitDims);
+      operation, resultTy, result, collapsedInitDims, outputShape);
   return success();
 }
 
diff --git a/mlir/lib/Dialect/Linalg/Transforms/SplitReduction.cpp b/mlir/lib/Dialect/Linalg/Transforms/SplitReduction.cpp
index 6559c86c9e0ff50..ddc5e688dc5eedc 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/SplitReduction.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/SplitReduction.cpp
@@ -114,8 +114,19 @@ FailureOr<SplitReductionResult> mlir::linalg::splitReduction(
     Type newType = RankedTensorType::get(
         newShape,
         cast<RankedTensorType>(operand->get().getType()).getElementType());
+
+    SmallVector<OpFoldResult> inputShape =
+        tensor::getMixedSizes(b, loc, operand->get());
+    SmallVector<OpFoldResult> outputShape;
+    if (failed(tensor::ExpandShapeOp::inferOutputShape(
+            b, loc, newType.cast<RankedTensorType>(), reassociation, inputShape,
+            outputShape))) {
+      return b.notifyMatchFailure(
+          op, "unable to infer output shape argument for tensor.expand_shape");
+    }
+
     Value newInput = b.create<tensor::ExpandShapeOp>(
-        loc, newType, operand->get(), reassociation);
+        loc, newType, operand->get(), reassociation, outputShape);
     newInputs.push_back(newInput);
   }
 
diff --git a/mlir/lib/Dialect/Linalg/Transforms/Transforms.cpp b/mlir/lib/Dialect/Linalg/Transforms/Transforms.cpp
index bca343cf8777149..11a0f58e3e69ade 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/Transforms.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/Transforms.cpp
@@ -352,11 +352,23 @@ FailureOr<LowerPackResult> linalg::lowerPack(RewriterBase &rewriter,
                              /*transposeOp=*/nullptr};
     }
   }
+
   // 5. Expand from the padded result to the stripMinedShape.
+  SmallVector<OpFoldResult> padOpResultShape =
+      tensor::getMixedSizes(rewriter, loc, padOp.getResult());
+  auto expandShapeResultType =
+      RankedTensorType::Builder(packedTensorType).setShape(stripMinedShape);
+  SmallVector<OpFoldResult> outputShape;
+  if (failed(tensor::ExpandShapeOp::inferOutputShape(
+          rewriter, loc, expandShapeResultType, packingMetadata.reassociations,
+          padOpResultShape, outputShape))) {
+    return rewriter.notifyMatchFailure(
+        packOp,
+        "unable to infer output shape argument for tensor.expand_shape");
+  }
   auto reshapeOp = rewriter.create<tensor::ExpandShapeOp>(
-      loc,
-      RankedTensorType::Builder(packedTensorType).setShape(stripMinedShape),
-      padOp.getResult(), packingMetadata.reassociations);
+      loc, expandShapeResultType, padOp.getResult(),
+      packingMetadata.reassociations, outputShape);
 
   // 6. Transpose stripMinedShape to packedShape.
   SmallVector<int64_t> transpPerm =
diff --git a/mlir/lib/Dialect/MemRef/IR/MemRefOps.cpp b/mlir/lib/Dialect/MemRef/IR/MemRefOps.cpp
index 215a8f5e7d18be0..fffbe46cab79c29 100644
--- a/mlir/lib/Dialect/MemRef/IR/MemRefOps.cpp
+++ b/mlir/lib/Dialect/MemRef/IR/MemRefOps.cpp
@@ -2240,6 +2240,18 @@ FailureOr<MemRefType> ExpandShapeOp::computeExpandedType(
                          srcType.getMemorySpace());
 }
 
+LogicalResult
+ExpandShapeOp::inferOutputShape(OpBuilder &b, Location loc,
+                                MemRefType expandedType,
+                                ArrayRef<ReassociationIndices> reassociation,
+                                ArrayRef<OpFoldResult> inputShape,
+                                SmallVectorImpl<OpFoldResult> &outputShape) {
+  auto expandedTensorType =
+      getTensorTypeFromMemRefType(expandedType).cast<RankedTensorType>();
+  return inferExpandShapeOutputShape(b, loc, expandedTensorType, reassociation,
+                                     inputShape, outputShape);
+}
+
 void ExpandShapeOp::build(OpBuilder &builder, OperationState &result,
                           ArrayRef<int64_t> resultShape, Value src,
                           ArrayRef<ReassociationIndices> reassociation) {
@@ -2250,7 +2262,9 @@ void ExpandShapeOp::build(OpBuilder &builder, OperationState &result,
   // Failure of this assertion usually indicates a problem with the source
   // type, e.g., could not get strides/offset.
   assert(succeeded(resultType) && "could not compute layout");
-  build(builder, result, *resultType, src, reassociation);
+  SmallVector<OpFoldResult> outputShape(
+      getMixedValues(resultShape, ValueRange{}, builder));
+  build(builder, result, *resultType, src, reassociation, outputShape);
 }
 
 LogicalResult ExpandShapeOp::verify() {
@@ -2279,14 +2293,28 @@ LogicalResult ExpandShapeOp::verify() {
     return emitOpError("expected expanded type to be ")
            << *expectedResultType << " but found " << resultType;
 
+  if ((int64_t)getStaticOutputShape().size() != resultType.getRank())
+    return emitOpError("expected number of static shape bounds to be equal to "
+                       "the output rank (")
+           << resultType.getRank() << ") but found "
+           << getStaticOutputShape().size() << " inputs instead";
+
+  if ((int64_t)getOutputShape().size() !=
+      llvm::count(getStaticOutputShape(), ShapedType::kDynamic))
+    return emitOpError("mismatch in dynamic dims in output_shape and "
+                       "static_output_shape: static_output_shape has ")
+           << llvm::count(getStaticOutputShape(), ShapedType::kDynamic)
+           << " dynamic dims while output_shape has " << getOutputShape().size()
+           << " values";
+
   return success();
 }
 
 void ExpandShapeOp::getCanonicalizationPatterns(RewritePatternSet &results,
                                                 MLIRContext *context) {
-  results.add<ComposeReassociativeReshapeOps<ExpandShapeOp>,
-              ComposeExpandOfCollapseOp<ExpandShapeOp, CollapseShapeOp>>(
-      context);
+  results.add<
+      ComposeReassociativeReshapeOps<ExpandShapeOp, ReshapeOpKind::kExpand>,
+      ComposeExpandOfCollapseOp<ExpandShapeOp, CollapseShapeOp>>(context);
 }
 
 /// Compute the layout map after collapsing a given source MemRef type with the
@@ -2484,9 +2512,11 @@ struct CollapseShapeOpMemRefCastFolder
 
 void CollapseShapeOp::getCanonicalizationPatterns(RewritePatternSet &results,
                                                   MLIRContext *context) {
-  results.add<ComposeReassociativeReshapeOps<CollapseShapeOp>,
-              ComposeCollapseOfExpandOp<CollapseShapeOp, ExpandShapeOp, CastOp>,
-              CollapseShapeOpMemRefCastFolder>(context);
+  results.add<
+      ComposeReassociativeReshapeOps<CollapseShapeOp, ReshapeOpKind::kCollapse>,
+      ComposeCollapseOfExpandOp<CollapseShapeOp, ExpandShapeOp, CastOp,
+                                memref::DimOp, MemRefType>,
+      CollapseShapeOpMemRefCastFolder>(context);
 }
 
 OpFoldResult ExpandShapeOp::fold(FoldAdaptor adaptor) {
diff --git a/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorRewriting.cpp b/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorRewriting.cpp
index e50b14975e83d63..dbf7c5e2cdb12bb 100644
--- a/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorRewriting.cpp
+++ b/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorRewriting.cpp
@@ -819,8 +819,15 @@ struct ReshapeRewriter : public OpRewritePattern<ReshapeOp> {
       auto rtp = getRankedTensorType(op.getResult());
       auto denseTp =
           RankedTensorType::get(rtp.getShape(), rtp.getElementType());
-      auto reshape = rewriter.create<ReshapeOp>(loc, denseTp, op.getSrc(),
-                                                op.getReassociation());
+      ReshapeOp reshape;
+      if constexpr (std::is_same<ReshapeOp, tensor::ExpandShapeOp>::value) {
+        reshape = rewriter.create<ReshapeOp>(
+            loc, denseTp, op.getSrc(), op.getReassociation(),
+            op.getOutputShape(), op.getStaticOutputShape());
+      } else {
+        reshape = rewriter.create<ReshapeOp>(loc, denseTp, op.getSrc(),
+                                             op.getReassociation());
+      }
       Value convert = rewriter.create<ConvertOp>(loc, rtp, reshape);
       rewriter.replaceOp(op, convert);
       return success();
diff --git a/mlir/lib/Dialect/Tensor/IR/TensorOps.cpp b/mlir/lib/Dialect/Tensor/IR/TensorOps.cpp
index f719cfed6b6dd30..f73f932d0bf1a73 100644
--- a/mlir/lib/Dialect/Tensor/IR/TensorOps.cpp
+++ b/mlir/lib/Dialect/Tensor/IR/TensorOps.cpp
@@ -1390,6 +1390,16 @@ int64_t ExpandShapeOp::getCorrespondingSourceDim(int64_t resultDim) {
   llvm_unreachable("could not find reassociation group");
 }
 
+LogicalResult
+ExpandShapeOp::inferOutputShape(OpBuilder &b, Location loc,
+                                RankedTensorType expandedType,
+                                ArrayRef<ReassociationIndices> reassociation,
+                                ArrayRef<OpFoldResult> inputShape,
+                                SmallVectorImpl<OpFoldResult> &outputShape) {
+  return inferExpandShapeOutputShape(b, loc, expandedType, reassociation,
+                                     inputShape, outputShape);
+}
+
 SmallVector<AffineMap, 4> CollapseShapeOp::getReassociationMaps() {
   return getSymbolLessAffineMaps(getReassociationExprs());
 }
@@ -1479,6 +1489,20 @@ LogicalResult ExpandShapeOp::verify() {
     return emitOpError("expected rank expansion, but found source rank ")
            << srcType.getRank() << " >= result rank " << resultType.getRank();
 
+  if ((int64_t)getStaticOutputShape().size() != resultType.getRank())
+    return emitOpError("expected number of static shape dims to be equal to "
+                       "the output rank (")
+           << resultType.getRank() << ") but found "
+           << getStaticOutputShape().size() << " inputs instead";
+
+  if ((int64_t)getOutputShape().size() !=
+      llvm::count(getStaticOutputShape(), ShapedType::kDynamic))
+    return emitOpError("mismatch in dynamic dims in output_shape and "
+                       "static_output_shape: static_output_shape has ")
+           << llvm::count(getStaticOutputShape(), ShapedType::kDynamic)
+           << " dynamic dims while output_shape has " << getOutputShape().size()
+           << " values";
+
   return verifyTensorReshapeOp(*this, getResultType(), getSrcType());
 }
 
@@ -1669,23 +1693,25 @@ struct FoldDimOfCollapseShape : public OpRewritePattern<DimOp> {
 
 void ExpandShapeOp::getCanonicalizationPatterns(RewritePatternSet &results,
                                                 MLIRContext *context) {
-  results.add<ComposeReassociativeReshapeOps<ExpandShapeOp>,
-              ComposeExpandOfCollapseOp<ExpandShapeOp, CollapseShapeOp>,
-              FoldReshapeWithConstant<ExpandShapeOp>,
-              FoldReshapeWithSplat<ExpandShapeOp>,
-              FoldReshapeWithFromElements<ExpandShapeOp>, FoldDimOfExpandShape,
-              FoldDimOfCollapseShape>(context);
+  results.add<
+      ComposeReassociativeReshapeOps<ExpandShapeOp, ReshapeOpKind::kExpand>,
+      ComposeExpandOfCollapseOp<ExpandShapeOp, CollapseShapeOp>,
+      FoldReshapeWithConstant<ExpandShapeOp>,
+      FoldReshapeWithSplat<ExpandShapeOp>,
+      FoldReshapeWithFromElements<ExpandShapeOp>, FoldDimOfExpandShape,
+      FoldDimOfCollapseShape>(context);
 }
 
 void CollapseShapeOp::getCanonicalizationPatterns(RewritePatternSet &results,
                                                   MLIRContext *context) {
-  results
-      .add<ComposeReassociativeReshapeOps<CollapseShapeOp>,
-           ComposeCollapseOfExpandOp<CollapseShapeOp, ExpandShapeOp, CastOp>,
-           FoldReshapeWithConstant<CollapseShapeOp>,
-           FoldReshapeWithSplat<CollapseShapeOp>,
-           FoldReshapeWithFromElements<CollapseShapeOp>, FoldCollapseOfCastOp>(
-          context);
+  results.add<
+      ComposeReassociativeReshapeOps<CollapseShapeOp, ReshapeOpKind::kCollapse>,
+      ComposeCollapseOfExpandOp<CollapseShapeOp, ExpandShapeOp, CastOp,
+                                tensor::DimOp, RankedTensorType>,
+      FoldReshapeWithConstant<CollapseShapeOp>,
+      FoldReshapeWithSplat<CollapseShapeOp>,
+      FoldReshapeWithFromElements<CollapseShapeOp>, FoldCollapseOfCastOp>(
+      context);
 }
 
 OpFoldResult ExpandShapeOp::fold(FoldAdaptor adaptor) {
@@ -3238,12 +3264,25 @@ namespace {
 struct SimplifyPackToExandShape : public OpRewritePattern<PackOp> {
   using OpRewritePattern<PackOp>::OpRewritePattern;
 
-  Value insertExpand(RewriterBase &rewriter, Location loc, Value operand,
-                     Type newOperandType, ArrayAttr reassociation) const {
+  FailureOr<Value>
+  insertExpand(RewriterBase &rewriter, Location loc, Value operand,
+               Type newOperandType,
+               ArrayRef<ReassociationIndices> reassociation) const {
     if (operand.getType() == newOperandType)
       return operand;
-    return rewriter.create<tensor::ExpandShapeOp>(loc, newOperandType, operand,
-                                                  reassociation);
+
+    SmallVector<OpFoldResult> inputShape =
+        tensor::getMixedSizes(rewriter, loc, operand);
+    SmallVector<OpFoldResult> outputShape;
+    if (failed(tensor::ExpandShapeOp::inferOutputShape(
+            rewriter, loc, newOperandType.cast<RankedTensorType>(),
+            reassociation, inputShape, outputShape))) {
+      return failure();
+    }
+    return rewriter
+        .create<tensor::ExpandShapeOp>(loc, newOperandType, operand,
+                                       reassociation, outputShape)
+        .getResult();
   }
 
   LogicalResult matchAndRewrite(PackOp packOp,
@@ -3256,10 +3295,14 @@ struct SimplifyPackToExandShape : public OpRewritePattern<PackOp> {
         getReassociationIndicesForReshape(sourceType, destType);
     if (!reassociation)
       return failure();
-    Value expanded = insertExpand(
-        rewriter, packOp.getLoc(), packOp.getSource(), destType,
-        getReassociationIndicesAttribute(rewriter, *reassociation));
-    rewriter.replaceOp(packOp, expanded);
+    FailureOr<Value> expanded =
+        insertExpand(rewriter, packOp.getLoc(), packOp.getSource(), destType,
+                     *reassociation);
+    if (failed(expanded)) {
+      return rewriter.notifyMatchFailure(
+          packOp, "unable to expand source of tensor.pack");
+    }
+    rewriter.replaceOp(packOp, *expanded);
     return success();
   }
 };
diff --git a/mlir/lib/Dialect/Utils/ReshapeOpsUtils.cpp b/mlir/lib/Dialect/Utils/ReshapeOpsUtils.cpp
index 853889269d0fbca..8d54e06cffddf8c 100644
--- a/mlir/lib/Dialect/Utils/ReshapeOpsUtils.cpp
+++ b/mlir/lib/Dialect/Utils/ReshapeOpsUtils.cpp
@@ -8,6 +8,7 @@
 
 #include "mlir/Dialect/Utils/ReshapeOpsUtils.h"
 
+#include "mlir/Dialect/Arith/IR/Arith.h"
 #include "mlir/IR/AffineMap.h"
 #include "mlir/IR/Builders.h"
 
@@ -16,6 +17,76 @@
 
 using namespace mlir;
 
+LogicalResult
+mlir::inferExpandShapeOutputShape(OpBuilder &b, Location loc,
+                                  RankedTensorType expandedType,
+                                  ArrayRef<ReassociationIndices> reassociation,
+                                  ArrayRef<OpFoldResult> inputShape,
+                                  SmallVectorImpl<OpFoldResult> &outputShape) {
+  outputShape.clear();
+  SmallVector<Value> outputShapeValues;
+  SmallVector<int64_t> outputShapeInts;
+  // For zero-rank inputs, all dims in result shape are unit extent.
+  if (inputShape.empty()) {
+    outputShapeInts.resize(expandedType.getRank(), 1);
+    outputShape.assign(getMixedValues(outputShapeInts, outputShapeValues, b));
+    return success();
+  }
+
+  outputShapeValues.resize(expandedType.getRank());
+  outputShapeInts.resize(expandedType.getRank(), ShapedType::kDynamic);
+
+  for (const auto &it : llvm::enumerate(reassociation)) {
+    ReassociationIndices indexGroup = it.value();
+
+    int64_t indexGroupStaticSizesProductInt = 1;
+    bool foundDynamic = false;
+    for (int64_t index : indexGroup) {
+      int64_t outputDimSize = expandedType.getDimSize(index);
+      // Cannot infer expanded shape with multiple dynamic dims in the
+      // same reassociation group!
+      if (ShapedType::isDynamic(outputDimSize)) {
+        if (foundDynamic)
+          return failure();
+        foundDynamic = true;
+      } else {
+        indexGroupStaticSizesProductInt *= outputDimSize;
+      }
+    }
+    Value indexGroupStaticSizesProduct =
+        b.create<arith::ConstantIndexOp>(loc, indexGroupStaticSizesProductInt);
+
+    int64_t inputIndex = it.index();
+    for (int64_t index : indexGroup) {
+      if (ShapedType::isDynamic(expandedType.getDimSize(index))) {
+        // Call get<Value>() under the assumption that we're not casting
+        // dynamism.
+        Value indexGroupSize = inputShape[inputIndex].get<Value>();
+        Value dynamicDimSize = b.createOrFold<arith::DivUIOp>(
+            loc, indexGroupSize, indexGroupStaticSizesProduct);
+        outputShapeValues[index] = dynamicDimSize;
+      }
+    }
+
+    for (int64_t index : indexGroup) {
+      int64_t outputDimSize = expandedType.getDimSize(index);
+      if (ShapedType::isDynamic(outputDimSize))
+        continue;
+      outputShapeInts[index] = outputDimSize;
+    }
+  }
+
+  assert(static_cast<uint64_t>(
+             llvm::count(outputShapeInts, ShapedType::kDynamic)) ==
+             (outputShapeValues.size() -
+              llvm::count(outputShapeValues, Value{})) &&
+         "Missing output shape entries!");
+  llvm::erase_value(outputShapeValues, Value{});
+
+  outputShape.assign(getMixedValues(outputShapeInts, outputShapeValues, b));
+  return success();
+}
+
 std::optional<SmallVector<ReassociationIndices>>
 mlir::getReassociationIndicesForReshape(ShapedType sourceType,
                                         ShapedType targetType) {
@@ -168,7 +239,7 @@ ArrayAttr mlir::getReassociationIndicesAttribute(
 }
 
 SmallVector<ReassociationIndices, 2> mlir::convertReassociationMapsToIndices(
-    OpBuilder &b, ArrayRef<ReassociationExprs> reassociationExprs) {
+    ArrayRef<ReassociationExprs> reassociationExprs) {
   SmallVector<ReassociationIndices, 2> reassociationIndices;
   for (const auto &exprs : reassociationExprs) {
     ReassociationIndices indices;
@@ -230,24 +301,17 @@ LogicalResult mlir::reshapeLikeShapesAreCompatible(
     ArrayRef<ReassociationIndices> reassociationMaps, bool isExpandingReshape) {
   unsigned expandedDimStart = 0;
   for (const auto &map : llvm::enumerate(reassociationMaps)) {
-    std::optional<int64_t> dynamicShape;
+    bool foundDynamicShape = false;
     int64_t linearizedStaticShape = 1;
+
     for (const auto &dim : llvm::enumerate(
              expandedShape.slice(expandedDimStart, map.value().size()))) {
-      if (ShapedType::isDynamic(dim.value())) {
-        if (isExpandingReshape && dynamicShape) {
-          return emitError("invalid to have a single dimension (" +
-                           Twine(map.index()) +
-                           ") expanded into multiple dynamic dims (" +
-                           Twine(expandedDimStart + dynamicShape.value()) +
-                           "," + Twine(expandedDimStart + dim.index()) + ")");
-        }
-        dynamicShape = dim.index();
-      } else {
+      if (ShapedType::isDynamic(dim.value()))
+        foundDynamicShape = true;
+      else
         linearizedStaticShape *= dim.value();
-      }
     }
-    if (dynamicShape) {
+    if (foundDynamicShape) {
       if (!ShapedType::isDynamic(collapsedShape[map.index()])) {
         return emitError(
             "expected dimension " + Twine(map.index()) +
diff --git a/mlir/lib/Dialect/Utils/StaticValueUtils.cpp b/mlir/lib/Dialect/Utils/StaticValueUtils.cpp
index 8a4ccc990331a7f..a6ebdb162b6168a 100644
--- a/mlir/lib/Dialect/Utils/StaticValueUtils.cpp
+++ b/mlir/lib/Dialect/Utils/StaticValueUtils.cpp
@@ -184,9 +184,8 @@ SmallVector<OpFoldResult> getMixedValues(ArrayRef<int64_t> staticValues,
 
 /// Decompose a vector of mixed static or dynamic values into the corresponding
 /// pair of arrays. This is the inverse function of `getMixedValues`.
-std::pair<ArrayAttr, SmallVector<Value>>
-decomposeMixedValues(Builder &b,
-                     const SmallVectorImpl<OpFoldResult> &mixedValues) {
+std::pair<SmallVector<int64_t>, SmallVector<Value>>
+decomposeMixedValues(const SmallVectorImpl<OpFoldResult> &mixedValues) {
   SmallVector<int64_t> staticValues;
   SmallVector<Value> dynamicValues;
   for (const auto &it : mixedValues) {
@@ -197,7 +196,7 @@ decomposeMixedValues(Builder &b,
       dynamicValues.push_back(it.get<Value>());
     }
   }
-  return {b.getI64ArrayAttr(staticValues), dynamicValues};
+  return {staticValues, dynamicValues};
 }
 
 /// Helper to sort `values` according to matching `keys`.
diff --git a/mlir/test/Dialect/Tensor/ops.mlir b/mlir/test/Dialect/Tensor/ops.mlir
index 71a0489b23f5f2d..ee036a69944b296 100644
--- a/mlir/test/Dialect/Tensor/ops.mlir
+++ b/mlir/test/Dialect/Tensor/ops.mlir
@@ -177,12 +177,26 @@ func.func @insert_slice(
 func.func @tensor_reshape_zero_dim(%arg0 : tensor<1x1xf32>, %arg1 : tensor<f32>)
     -> (tensor<f32>, tensor<1x1xf32>) {
   %0 = tensor.collapse_shape %arg0 [] : tensor<1x1xf32> into tensor<f32>
-  %1 = tensor.expand_shape %0 [] : tensor<f32> into tensor<1x1xf32>
+  %1 = tensor.expand_shape %0 [] output_shape [1, 1] : tensor<f32> into tensor<1x1xf32>
   return %0, %1 : tensor<f32>, tensor<1x1xf32>
 }
 // CHECK-LABEL: func @tensor_reshape_zero_dim
 //       CHECK:   tensor.collapse_shape %{{.*}} [] : tensor<1x1xf32> into tensor<f32>
-//       CHECK:   tensor.expand_shape %{{.*}} [] : tensor<f32> into tensor<1x1xf32>
+//       CHECK:   tensor.expand_shape %{{.*}} [] output_shape [1, 1] : tensor<f32> into tensor<1x1xf32>
+
+// -----
+
+func.func @tensor_expand_shape_dynamic_dim(%arg0 : tensor<?x?xf32>, %sz0 : index, %sz1 : index, %sz2 : index)
+    -> (tensor<5x?x?x?xf32>) {
+  %1 = tensor.expand_shape %arg0 [[0, 1], [2, 3]] output_shape [5, %sz0, %sz1, %sz2] : tensor<?x?xf32> into tensor<5x?x?x?xf32>
+  return %1 : tensor<5x?x?x?xf32>
+}
+
+// CHECK-LABEL:  func.func @tensor_expand_shape_dynamic_dim(%arg0: tensor<?x?xf32>, %arg1: index, %arg2: index, %arg3: index) -> tensor<5x?x?x?xf32> {
+//       CHECK:    %expanded = tensor.expand_shape %arg0 {{\[\[}}0, 1], [2, 3{{\]\]}} output_shape [5, %arg1, %arg2, %arg3] : tensor<?x?xf32> into tensor<5x?x?x?xf32>
+//       CHECK:    return %expanded : tensor<5x?x?x?xf32>
+//       CHECK:  }
+
 
 // -----
 



More information about the Mlir-commits mailing list