[Mlir-commits] [mlir] [mlir][linalg] Add TransposeConv2D Pass (PR #68567)
Jack Frankland
llvmlistbot at llvm.org
Thu Oct 19 04:04:16 PDT 2023
================
@@ -0,0 +1,127 @@
+//===- TransposeConv2D.cpp - Convoultion transposition -------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "mlir/Dialect/Func/IR/FuncOps.h"
+#include "mlir/Dialect/Linalg/IR/Linalg.h"
+#include "mlir/Dialect/Linalg/Passes.h"
+#include "mlir/IR/BuiltinTypes.h"
+#include "mlir/IR/PatternMatch.h"
+#include "mlir/IR/ValueRange.h"
+#include "mlir/Pass/Pass.h"
+#include "mlir/Support/LogicalResult.h"
+#include "mlir/Transforms/DialectConversion.h"
+#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
+#include "llvm/ADT/SmallVector.h"
+#include <memory>
+#include <numeric>
+
+namespace mlir {
+#define GEN_PASS_DEF_LINALGTRANSPOSECONV2D
+#include "mlir/Dialect/Linalg/Passes.h.inc"
+} // namespace mlir
+
+using namespace mlir;
+
+namespace {
+// Convolution converter that applies the following rewrite:
+//
+// clang-format off
+// Before:
+//
+// %0 = linalg.conv_2d_nhwc_fhwc {dilations = dense<1> : tensor<2xi64>,
+// strides = dense<2> : tensor<2xi64>}
+// ins (%input, %filter: tensor<1x4x4x6xf32>, tensor<8x2x2x6xf32>)
+// outs (%init: tensor<1x2x2x8xf32>) -> tensor<1x2x2x8xf32>
+//
+// After:
+//
+// %cst = arith.constant 0.000000e+00 : f32
+// %0 = tensor.empty() : tensor<2x2x6x8xf32>
+// %1 = linalg.fill ins(%cst : f32) outs(%0 : tensor<2x2x6x8xf32>) -> tensor<2x2x6x8xf32>
+// %transposed = linalg.transpose ins(%arg1 : tensor<8x2x2x6xf32>) outs(%1 : tensor<2x2x6x8xf32>)
+// permutation = [1, 2, 3, 0]
+// %2 = linalg.conv_2d_nhwc_hwcf {dilations = dense<1> : tensor<2xi64>, strides = dense<2> : tensor<2xi64>}
+// ins(%arg0, %transposed : tensor<1x4x4x6xf32>, tensor<2x2x6x8xf32>) outs(%arg2 : tensor<1x2x2x8xf32>)
+// -> tensor<1x2x2x8xf32>
+//
+// clang-format on
+// with an analogous example for the quantized case.
+template <typename FHWCConvOp, typename HWCFConvOp>
+class ConvConverter : public OpRewritePattern<FHWCConvOp> {
+public:
+ using OpRewritePattern<FHWCConvOp>::OpRewritePattern;
+ LogicalResult matchAndRewrite(FHWCConvOp op,
+ PatternRewriter &rewriter) const final {
+ // Construct a permutation of the filter tensor dimensions. For a 2D
+ // convolution this will be known statically as [1, 2, 3, 0].
+ auto resultTy = cast<ShapedType>(op->getResult(0).getType());
+ auto filterPerm = SmallVector<int64_t>({1, 2, 3, 0});
+
+ // Create the type for the transposed filter tensor since this will be
+ // different from the original filter type.
+ auto filter = op->getOperand(1);
+ auto filterTy = cast<ShapedType>(filter.getType());
+ auto newfilterShape = SmallVector<int64_t>(filterPerm.size());
+ std::generate(std::begin(newfilterShape), std::end(newfilterShape),
+ [dim = 0, &filterTy, &filterPerm]() mutable {
+ return filterTy.getShape()[filterPerm[dim++]];
+ });
+ auto newFilterTy =
+ RankedTensorType::get(newfilterShape, filterTy.getElementType());
+
+ // Because linalg.tranpose expects an "out" parameter we need to pass it a
+ // tensor of zeros of the result type so here we construct that tensor.
+ auto resultETy = resultTy.getElementType();
+ auto resultZeroAttr = rewriter.getZeroAttr(resultETy);
+ auto loc = op->getLoc();
+ auto emptyTensor = rewriter.create<tensor::EmptyOp>(
+ loc, newFilterTy.getShape(), resultETy);
+ auto zero = rewriter.create<arith::ConstantOp>(loc, resultZeroAttr);
+ auto zeroTensor = rewriter
+ .create<linalg::FillOp>(loc, ValueRange{zero},
+ ValueRange{emptyTensor})
+ .result();
+
+ // We can then construct the transposition on our filter.
+ filter =
+ rewriter
+ .create<linalg::TransposeOp>(loc, filter, zeroTensor, filterPerm)
+ .getResult()[0];
+
+ // Create the convolution.
+ auto newInputs = SmallVector<Value>{op.getInputs()};
+ // The filter are always the second input argument.
+ newInputs[1] = filter;
+ rewriter.template replaceOpWithNewOp<HWCFConvOp>(
+ op, resultTy, newInputs, op.getOutputs(), op.getStrides(),
+ op.getDilations());
+ return success();
----------------
FranklandJack wrote:
Oopsie, removed.
https://github.com/llvm/llvm-project/pull/68567
More information about the Mlir-commits
mailing list