[Mlir-commits] [mlir] [mlir][python] remove mixins (PR #68847)

Maksim Levental llvmlistbot at llvm.org
Wed Oct 11 22:10:47 PDT 2023


https://github.com/makslevental updated https://github.com/llvm/llvm-project/pull/68847

>From 9e058aeca6e0dff6d092babaab705bf443f451b3 Mon Sep 17 00:00:00 2001
From: max <maksim.levental at gmail.com>
Date: Wed, 11 Oct 2023 23:32:14 -0500
Subject: [PATCH] [mlir][python] remove mixins

---
 mlir/lib/Bindings/Python/Globals.h            |   2 +-
 mlir/lib/Bindings/Python/IRModule.cpp         |   4 +-
 mlir/lib/Bindings/Python/MainModule.cpp       |  11 +-
 mlir/python/CMakeLists.txt                    |  18 -
 mlir/python/mlir/dialects/_arith_ops_ext.py   |  69 --
 .../mlir/dialects/_bufferization_ops_ext.py   |  41 -
 .../_bufferization_transform_ops_ext.py       | 128 ---
 mlir/python/mlir/dialects/_builtin_ops_ext.py |  20 -
 mlir/python/mlir/dialects/_func_ops_ext.py    | 319 --------
 .../mlir/dialects/_gpu_transform_ops_ext.py   | 124 ---
 mlir/python/mlir/dialects/_linalg_ops_ext.py  |  47 --
 .../mlir/dialects/_loop_transform_ops_ext.py  | 134 ---
 mlir/python/mlir/dialects/_memref_ops_ext.py  |  36 -
 .../dialects/_memref_transform_ops_ext.py     | 114 ---
 .../mlir/dialects/_ml_program_ops_ext.py      | 113 ---
 mlir/python/mlir/dialects/_ods_common.py      |  59 --
 mlir/python/mlir/dialects/_pdl_ops_ext.py     | 271 ------
 mlir/python/mlir/dialects/_scf_ops_ext.py     | 107 ---
 .../dialects/_structured_transform_ops_ext.py | 759 -----------------
 mlir/python/mlir/dialects/_tensor_ops_ext.py  |  44 -
 .../dialects/_tensor_transform_ops_ext.py     |  64 --
 .../mlir/dialects/_transform_ops_ext.py       | 176 ----
 .../_transform_pdl_extension_ops_ext.py       |  55 --
 mlir/python/mlir/dialects/arith.py            |  67 ++
 mlir/python/mlir/dialects/bufferization.py    |  43 +
 mlir/python/mlir/dialects/builtin.py          |  24 +
 mlir/python/mlir/dialects/func.py             | 323 ++++++++
 .../dialects/linalg/opdsl/lang/emitter.py     |   2 +-
 mlir/python/mlir/dialects/memref.py           |  38 +
 mlir/python/mlir/dialects/ml_program.py       | 114 +++
 mlir/python/mlir/dialects/pdl.py              | 285 +++++++
 mlir/python/mlir/dialects/scf.py              | 115 ++-
 mlir/python/mlir/dialects/tensor.py           |  47 ++
 .../mlir/dialects/transform/__init__.py       | 185 +++++
 .../mlir/dialects/transform/bufferization.py  | 129 +++
 mlir/python/mlir/dialects/transform/gpu.py    | 125 +++
 mlir/python/mlir/dialects/transform/loop.py   | 140 ++++
 mlir/python/mlir/dialects/transform/memref.py | 115 +++
 mlir/python/mlir/dialects/transform/pdl.py    |  50 ++
 .../mlir/dialects/transform/structured.py     | 773 ++++++++++++++++++
 mlir/python/mlir/dialects/transform/tensor.py |  64 ++
 mlir/tools/mlir-tblgen/OpPythonBindingGen.cpp |   9 +-
 42 files changed, 2646 insertions(+), 2717 deletions(-)
 delete mode 100644 mlir/python/mlir/dialects/_arith_ops_ext.py
 delete mode 100644 mlir/python/mlir/dialects/_bufferization_ops_ext.py
 delete mode 100644 mlir/python/mlir/dialects/_bufferization_transform_ops_ext.py
 delete mode 100644 mlir/python/mlir/dialects/_builtin_ops_ext.py
 delete mode 100644 mlir/python/mlir/dialects/_func_ops_ext.py
 delete mode 100644 mlir/python/mlir/dialects/_gpu_transform_ops_ext.py
 delete mode 100644 mlir/python/mlir/dialects/_linalg_ops_ext.py
 delete mode 100644 mlir/python/mlir/dialects/_loop_transform_ops_ext.py
 delete mode 100644 mlir/python/mlir/dialects/_memref_ops_ext.py
 delete mode 100644 mlir/python/mlir/dialects/_memref_transform_ops_ext.py
 delete mode 100644 mlir/python/mlir/dialects/_ml_program_ops_ext.py
 delete mode 100644 mlir/python/mlir/dialects/_pdl_ops_ext.py
 delete mode 100644 mlir/python/mlir/dialects/_scf_ops_ext.py
 delete mode 100644 mlir/python/mlir/dialects/_structured_transform_ops_ext.py
 delete mode 100644 mlir/python/mlir/dialects/_tensor_ops_ext.py
 delete mode 100644 mlir/python/mlir/dialects/_tensor_transform_ops_ext.py
 delete mode 100644 mlir/python/mlir/dialects/_transform_ops_ext.py
 delete mode 100644 mlir/python/mlir/dialects/_transform_pdl_extension_ops_ext.py

diff --git a/mlir/lib/Bindings/Python/Globals.h b/mlir/lib/Bindings/Python/Globals.h
index 97cd70089a2e965..dea44bbd469dd3d 100644
--- a/mlir/lib/Bindings/Python/Globals.h
+++ b/mlir/lib/Bindings/Python/Globals.h
@@ -80,7 +80,7 @@ class PyGlobals {
   /// Raises an exception if the mapping already exists.
   /// This is intended to be called by implementation code.
   void registerOperationImpl(const std::string &operationName,
-                             pybind11::object pyClass);
+                             pybind11::object pyClass, bool replace = false);
 
   /// Returns the custom Attribute builder for Attribute kind.
   std::optional<pybind11::function>
diff --git a/mlir/lib/Bindings/Python/IRModule.cpp b/mlir/lib/Bindings/Python/IRModule.cpp
index 2cc66277abee0f0..a1c8ab7a09ce155 100644
--- a/mlir/lib/Bindings/Python/IRModule.cpp
+++ b/mlir/lib/Bindings/Python/IRModule.cpp
@@ -96,9 +96,9 @@ void PyGlobals::registerDialectImpl(const std::string &dialectNamespace,
 }
 
 void PyGlobals::registerOperationImpl(const std::string &operationName,
-                                      py::object pyClass) {
+                                      py::object pyClass, bool replace) {
   py::object &found = operationClassMap[operationName];
-  if (found) {
+  if (found && !replace) {
     throw std::runtime_error((llvm::Twine("Operation '") + operationName +
                               "' is already registered.")
                                  .str());
diff --git a/mlir/lib/Bindings/Python/MainModule.cpp b/mlir/lib/Bindings/Python/MainModule.cpp
index cdddfbe50606d05..a936becf67bea75 100644
--- a/mlir/lib/Bindings/Python/MainModule.cpp
+++ b/mlir/lib/Bindings/Python/MainModule.cpp
@@ -41,7 +41,7 @@ PYBIND11_MODULE(_mlir, m) {
            "dialect_namespace"_a, "dialect_class"_a,
            "Testing hook for directly registering a dialect")
       .def("_register_operation_impl", &PyGlobals::registerOperationImpl,
-           "operation_name"_a, "operation_class"_a,
+           "operation_name"_a, "operation_class"_a, "replace"_a = false,
            "Testing hook for directly registering an operation");
 
   // Aside from making the globals accessible to python, having python manage
@@ -63,12 +63,13 @@ PYBIND11_MODULE(_mlir, m) {
       "Class decorator for registering a custom Dialect wrapper");
   m.def(
       "register_operation",
-      [](const py::object &dialectClass) -> py::cpp_function {
+      [](const py::object &dialectClass, bool replace) -> py::cpp_function {
         return py::cpp_function(
-            [dialectClass](py::object opClass) -> py::object {
+            [dialectClass, replace](py::object opClass) -> py::object {
               std::string operationName =
                   opClass.attr("OPERATION_NAME").cast<std::string>();
-              PyGlobals::get().registerOperationImpl(operationName, opClass);
+              PyGlobals::get().registerOperationImpl(operationName, opClass,
+                                                     replace);
 
               // Dict-stuff the new opClass by name onto the dialect class.
               py::object opClassName = opClass.attr("__name__");
@@ -76,7 +77,7 @@ PYBIND11_MODULE(_mlir, m) {
               return opClass;
             });
       },
-      "dialect_class"_a,
+      "dialect_class"_a, "replace"_a = false,
       "Produce a class decorator for registering an Operation class as part of "
       "a dialect");
   m.def(
diff --git a/mlir/python/CMakeLists.txt b/mlir/python/CMakeLists.txt
index 088d9a765b97730..2eff1cc7c588d8a 100644
--- a/mlir/python/CMakeLists.txt
+++ b/mlir/python/CMakeLists.txt
@@ -68,7 +68,6 @@ declare_mlir_dialect_python_bindings(
   TD_FILE dialects/BufferizationOps.td
   SOURCES
     dialects/bufferization.py
-    dialects/_bufferization_ops_ext.py
   DIALECT_NAME bufferization
   GEN_ENUM_BINDINGS_TD_FILE
     "../../include/mlir/Dialect/Bufferization/IR/BufferizationEnums.td"
@@ -80,7 +79,6 @@ declare_mlir_dialect_python_bindings(
   TD_FILE dialects/BuiltinOps.td
   SOURCES
     dialects/builtin.py
-    dialects/_builtin_ops_ext.py
   DIALECT_NAME builtin)
 
 declare_mlir_dialect_python_bindings(
@@ -105,7 +103,6 @@ declare_mlir_dialect_python_bindings(
   TD_FILE dialects/FuncOps.td
   SOURCES
     dialects/func.py
-    dialects/_func_ops_ext.py
   DIALECT_NAME func)
 
 declare_mlir_dialect_python_bindings(
@@ -121,7 +118,6 @@ declare_mlir_dialect_python_bindings(
   ROOT_DIR "${CMAKE_CURRENT_SOURCE_DIR}/mlir"
   TD_FILE dialects/LinalgOps.td
   SOURCES
-    dialects/_linalg_ops_ext.py
   SOURCES_GLOB
     dialects/linalg/*.py
   DIALECT_NAME linalg
@@ -142,7 +138,6 @@ ADD_TO_PARENT MLIRPythonSources.Dialects
 ROOT_DIR "${CMAKE_CURRENT_SOURCE_DIR}/mlir"
   TD_FILE dialects/TransformPDLExtensionOps.td
   SOURCES
-    dialects/_transform_pdl_extension_ops_ext.py
     dialects/transform/pdl.py
   DIALECT_NAME transform
   EXTENSION_NAME transform_pdl_extension)
@@ -152,7 +147,6 @@ declare_mlir_dialect_python_bindings(
   ROOT_DIR "${CMAKE_CURRENT_SOURCE_DIR}/mlir"
   TD_FILE dialects/TransformOps.td
   SOURCES
-    dialects/_transform_ops_ext.py
     dialects/transform/__init__.py
     _mlir_libs/_mlir/dialects/transform/__init__.pyi
   DIALECT_NAME transform
@@ -165,7 +159,6 @@ declare_mlir_dialect_extension_python_bindings(
   ROOT_DIR "${CMAKE_CURRENT_SOURCE_DIR}/mlir"
   TD_FILE dialects/BufferizationTransformOps.td
   SOURCES
-    dialects/_bufferization_transform_ops_ext.py
     dialects/transform/bufferization.py
   DIALECT_NAME transform
   EXTENSION_NAME bufferization_transform)
@@ -175,7 +168,6 @@ declare_mlir_dialect_extension_python_bindings(
   ROOT_DIR "${CMAKE_CURRENT_SOURCE_DIR}/mlir"
   TD_FILE dialects/GPUTransformOps.td
   SOURCES
-    dialects/_gpu_transform_ops_ext.py
     dialects/transform/gpu.py
   DIALECT_NAME transform
   EXTENSION_NAME gpu_transform)
@@ -185,7 +177,6 @@ declare_mlir_dialect_extension_python_bindings(
   ROOT_DIR "${CMAKE_CURRENT_SOURCE_DIR}/mlir"
   TD_FILE dialects/SCFLoopTransformOps.td
   SOURCES
-    dialects/_loop_transform_ops_ext.py
     dialects/transform/loop.py
   DIALECT_NAME transform
   EXTENSION_NAME loop_transform)
@@ -195,7 +186,6 @@ declare_mlir_dialect_extension_python_bindings(
   ROOT_DIR "${CMAKE_CURRENT_SOURCE_DIR}/mlir"
   TD_FILE dialects/MemRefTransformOps.td
   SOURCES
-    dialects/_memref_transform_ops_ext.py
     dialects/transform/memref.py
   DIALECT_NAME transform
   EXTENSION_NAME memref_transform)
@@ -214,7 +204,6 @@ declare_mlir_dialect_extension_python_bindings(
   ROOT_DIR "${CMAKE_CURRENT_SOURCE_DIR}/mlir"
   TD_FILE dialects/LinalgStructuredTransformOps.td
   SOURCES
-    dialects/_structured_transform_ops_ext.py
     dialects/transform/structured.py
   DIALECT_NAME transform
   EXTENSION_NAME structured_transform
@@ -236,7 +225,6 @@ declare_mlir_dialect_extension_python_bindings(
   ROOT_DIR "${CMAKE_CURRENT_SOURCE_DIR}/mlir"
   TD_FILE dialects/TensorTransformOps.td
   SOURCES
-    dialects/_tensor_transform_ops_ext.py
     dialects/transform/tensor.py
   DIALECT_NAME transform
   EXTENSION_NAME tensor_transform)
@@ -266,7 +254,6 @@ declare_mlir_dialect_python_bindings(
   TD_FILE dialects/ArithOps.td
   SOURCES
     dialects/arith.py
-    dialects/_arith_ops_ext.py
   DIALECT_NAME arith
   GEN_ENUM_BINDINGS)
 
@@ -276,7 +263,6 @@ declare_mlir_dialect_python_bindings(
   TD_FILE dialects/MemRefOps.td
   SOURCES
     dialects/memref.py
-    dialects/_memref_ops_ext.py
   DIALECT_NAME memref)
 
 declare_mlir_dialect_python_bindings(
@@ -285,7 +271,6 @@ declare_mlir_dialect_python_bindings(
   TD_FILE dialects/MLProgramOps.td
   SOURCES
     dialects/ml_program.py
-    dialects/_ml_program_ops_ext.py
   DIALECT_NAME ml_program)
 
 declare_mlir_dialect_python_bindings(
@@ -329,7 +314,6 @@ declare_mlir_dialect_python_bindings(
   TD_FILE dialects/PDLOps.td
   SOURCES
     dialects/pdl.py
-    dialects/_pdl_ops_ext.py
     _mlir_libs/_mlir/dialects/pdl.pyi
   DIALECT_NAME pdl)
 
@@ -347,7 +331,6 @@ declare_mlir_dialect_python_bindings(
   TD_FILE dialects/SCFOps.td
   SOURCES
     dialects/scf.py
-    dialects/_scf_ops_ext.py
   DIALECT_NAME scf)
 
 declare_mlir_dialect_python_bindings(
@@ -373,7 +356,6 @@ declare_mlir_dialect_python_bindings(
   TD_FILE dialects/TensorOps.td
   SOURCES
     dialects/tensor.py
-    dialects/_tensor_ops_ext.py
   DIALECT_NAME tensor)
 
 declare_mlir_dialect_python_bindings(
diff --git a/mlir/python/mlir/dialects/_arith_ops_ext.py b/mlir/python/mlir/dialects/_arith_ops_ext.py
deleted file mode 100644
index df38f871710fe8f..000000000000000
--- a/mlir/python/mlir/dialects/_arith_ops_ext.py
+++ /dev/null
@@ -1,69 +0,0 @@
-#  Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-#  See https://llvm.org/LICENSE.txt for license information.
-#  SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-
-try:
-    from ..ir import *
-    from ._ods_common import get_default_loc_context as _get_default_loc_context
-
-    from typing import Any, List, Union
-except ImportError as e:
-    raise RuntimeError("Error loading imports from extension module") from e
-
-
-def _isa(obj: Any, cls: type):
-    try:
-        cls(obj)
-    except ValueError:
-        return False
-    return True
-
-
-def _is_any_of(obj: Any, classes: List[type]):
-    return any(_isa(obj, cls) for cls in classes)
-
-
-def _is_integer_like_type(type: Type):
-    return _is_any_of(type, [IntegerType, IndexType])
-
-
-def _is_float_type(type: Type):
-    return _is_any_of(type, [BF16Type, F16Type, F32Type, F64Type])
-
-
-class ConstantOp:
-    """Specialization for the constant op class."""
-
-    def __init__(
-        self, result: Type, value: Union[int, float, Attribute], *, loc=None, ip=None
-    ):
-        if isinstance(value, int):
-            super().__init__(IntegerAttr.get(result, value), loc=loc, ip=ip)
-        elif isinstance(value, float):
-            super().__init__(FloatAttr.get(result, value), loc=loc, ip=ip)
-        else:
-            super().__init__(value, loc=loc, ip=ip)
-
-    @classmethod
-    def create_index(cls, value: int, *, loc=None, ip=None):
-        """Create an index-typed constant."""
-        return cls(
-            IndexType.get(context=_get_default_loc_context(loc)), value, loc=loc, ip=ip
-        )
-
-    @property
-    def type(self):
-        return self.results[0].type
-
-    @property
-    def value(self):
-        return Attribute(self.operation.attributes["value"])
-
-    @property
-    def literal_value(self) -> Union[int, float]:
-        if _is_integer_like_type(self.type):
-            return IntegerAttr(self.value).value
-        elif _is_float_type(self.type):
-            return FloatAttr(self.value).value
-        else:
-            raise ValueError("only integer and float constants have literal values")
diff --git a/mlir/python/mlir/dialects/_bufferization_ops_ext.py b/mlir/python/mlir/dialects/_bufferization_ops_ext.py
deleted file mode 100644
index 1066cb4c775cab9..000000000000000
--- a/mlir/python/mlir/dialects/_bufferization_ops_ext.py
+++ /dev/null
@@ -1,41 +0,0 @@
-#  Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-#  See https://llvm.org/LICENSE.txt for license information.
-#  SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-
-try:
-    from typing import Sequence, Union
-    from ..ir import *
-    from ._ods_common import get_default_loc_context
-
-    from typing import Any, List, Union
-except ImportError as e:
-    raise RuntimeError("Error loading imports from extension module") from e
-
-
-class AllocTensorOp:
-    """Extends the bufferization.alloc_tensor op."""
-
-    def __init__(
-        self,
-        tensor_type: Type,
-        dynamic_sizes: Sequence[Value],
-        copy: Value,
-        size_hint: Value,
-        escape: BoolAttr,
-        *,
-        loc=None,
-        ip=None
-    ):
-        """Constructs an `alloc_tensor` with static and/or dynamic sizes."""
-        context = get_default_loc_context(loc)
-        attributes = {}
-        if escape:
-            attributes["escape"] = escape
-        op = self.build_generic(
-            results=[tensor_type],
-            operands=[dynamic_sizes, copy, size_hint],
-            attributes=attributes,
-            loc=loc,
-            ip=ip,
-        )
-        OpView.__init__(self, op)
diff --git a/mlir/python/mlir/dialects/_bufferization_transform_ops_ext.py b/mlir/python/mlir/dialects/_bufferization_transform_ops_ext.py
deleted file mode 100644
index 7e6c1b81cb350b7..000000000000000
--- a/mlir/python/mlir/dialects/_bufferization_transform_ops_ext.py
+++ /dev/null
@@ -1,128 +0,0 @@
-#  Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-#  See https://llvm.org/LICENSE.txt for license information.
-#  SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-
-try:
-    from ..ir import *
-    from ..dialects import transform
-except ImportError as e:
-    raise RuntimeError("Error loading imports from extension module") from e
-
-from enum import Enum
-from typing import Optional, overload, Union
-
-
-class EmptyTensorToAllocTensorOp:
-    """Specialization for EmptyTensorToAllocTensorOp class."""
-
-    @overload
-    def __init__(
-        self,
-        transformed_type: Type,
-        target: Union[Operation, OpView, Value],
-        *,
-        loc=None,
-        ip=None
-    ):
-        ...
-
-    @overload
-    def __init__(self, target: Union[Operation, OpView, Value], *, loc=None, ip=None):
-        ...
-
-    def __init__(
-        self,
-        transformed_type_or_target: Type,
-        target_or_none: Optional[Union[Operation, OpView, Value]] = None,
-        *,
-        loc=None,
-        ip=None
-    ):
-        if isinstance(transformed_type_or_target, Type):
-            transformed_type = transformed_type_or_target
-            target = target_or_none
-        else:
-            transformed_type = transform.OperationType.get("bufferization.alloc_tensor")
-            target = transformed_type_or_target
-
-        super().__init__(
-            transformed_type,
-            target,
-            loc=loc,
-            ip=ip,
-        )
-
-
-class OneShotBufferizeOp:
-    """Specialization for OneShotBufferizeOp class."""
-
-    @overload
-    def __init__(
-        self,
-        transformed_type: Type,
-        target: Union[Operation, OpView, Value],
-        *,
-        allow_return_allocs_from_loops: Optional[bool] = None,
-        allow_unknown_ops: Optional[bool] = None,
-        bufferize_function_boundaries: Optional[bool] = None,
-        function_boundary_type_conversion: Optional[Enum] = None,
-        memcpy_op: Optional[str] = None,
-        print_conflicts: Optional[bool] = None,
-        test_analysis_only: Optional[bool] = None,
-        loc=None,
-        ip=None
-    ):
-        ...
-
-    @overload
-    def __init__(
-        self,
-        target: Union[Operation, OpView, Value],
-        *,
-        allow_return_allocs_from_loops: Optional[bool] = None,
-        allow_unknown_ops: Optional[bool] = None,
-        bufferize_function_boundaries: Optional[bool] = None,
-        function_boundary_type_conversion: Optional[Enum] = None,
-        memcpy_op: Optional[str] = None,
-        print_conflicts: Optional[bool] = None,
-        test_analysis_only: Optional[bool] = None,
-        loc=None,
-        ip=None
-    ):
-        ...
-
-    def __init__(
-        self,
-        transformed_type_or_target: Type,
-        target_or_none: Optional[Union[Operation, OpView, Value]] = None,
-        *,
-        allow_return_allocs_from_loops: Optional[bool] = None,
-        allow_unknown_ops: Optional[bool] = None,
-        bufferize_function_boundaries: Optional[bool] = None,
-        function_boundary_type_conversion: Optional[Enum] = None,
-        memcpy_op: Optional[str] = None,
-        print_conflicts: Optional[bool] = None,
-        test_analysis_only: Optional[bool] = None,
-        loc=None,
-        ip=None
-    ):
-        if isinstance(transformed_type_or_target, Type):
-            transformed_type = transformed_type_or_target
-            target = target_or_none
-        else:
-            transformed_type = transform.AnyOpType.get()
-            target = transformed_type_or_target
-
-        super().__init__(
-            transformed_type,
-            target,
-            allow_return_allocs_from_loops=allow_return_allocs_from_loops,
-            allow_unknown_ops=allow_unknown_ops,
-            bufferize_function_boundaries=bufferize_function_boundaries,
-            function_boundary_type_conversion=function_boundary_type_conversion,
-            memcpy_op=memcpy_op,
-            print_conflicts=print_conflicts,
-            test_analysis_only=test_analysis_only,
-            loc=loc,
-            ip=ip,
-        )
diff --git a/mlir/python/mlir/dialects/_builtin_ops_ext.py b/mlir/python/mlir/dialects/_builtin_ops_ext.py
deleted file mode 100644
index 27a60123050acb4..000000000000000
--- a/mlir/python/mlir/dialects/_builtin_ops_ext.py
+++ /dev/null
@@ -1,20 +0,0 @@
-#  Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-#  See https://llvm.org/LICENSE.txt for license information.
-#  SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-
-try:
-    from ..ir import *
-except ImportError as e:
-    raise RuntimeError("Error loading imports from extension module") from e
-
-
-class ModuleOp:
-    """Specialization for the module op class."""
-
-    def __init__(self, *, loc=None, ip=None):
-        super().__init__(self.build_generic(results=[], operands=[], loc=loc, ip=ip))
-        body = self.regions[0].blocks.append()
-
-    @property
-    def body(self):
-        return self.regions[0].blocks[0]
diff --git a/mlir/python/mlir/dialects/_func_ops_ext.py b/mlir/python/mlir/dialects/_func_ops_ext.py
deleted file mode 100644
index 6d264c33f1f9dae..000000000000000
--- a/mlir/python/mlir/dialects/_func_ops_ext.py
+++ /dev/null
@@ -1,319 +0,0 @@
-#  Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-#  See https://llvm.org/LICENSE.txt for license information.
-#  SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-
-try:
-    from ..ir import *
-    from ._ods_common import get_default_loc_context as _get_default_loc_context
-
-    import inspect
-
-    from typing import Any, List, Optional, Sequence, Union
-except ImportError as e:
-    raise RuntimeError("Error loading imports from extension module") from e
-
-ARGUMENT_ATTRIBUTE_NAME = "arg_attrs"
-RESULT_ATTRIBUTE_NAME = "res_attrs"
-
-
-class ConstantOp:
-    """Specialization for the constant op class."""
-
-    def __init__(self, result: Type, value: Attribute, *, loc=None, ip=None):
-        super().__init__(result, value, loc=loc, ip=ip)
-
-    @property
-    def type(self):
-        return self.results[0].type
-
-
-class FuncOp:
-    """Specialization for the func op class."""
-
-    def __init__(
-        self, name, type, *, visibility=None, body_builder=None, loc=None, ip=None
-    ):
-        """
-        Create a FuncOp with the provided `name`, `type`, and `visibility`.
-        - `name` is a string representing the function name.
-        - `type` is either a FunctionType or a pair of list describing inputs and
-          results.
-        - `visibility` is a string matching `public`, `private`, or `nested`. None
-          implies private visibility.
-        - `body_builder` is an optional callback, when provided a new entry block
-          is created and the callback is invoked with the new op as argument within
-          an InsertionPoint context already set for the block. The callback is
-          expected to insert a terminator in the block.
-        """
-        sym_name = StringAttr.get(str(name))
-
-        # If the type is passed as a tuple, build a FunctionType on the fly.
-        if isinstance(type, tuple):
-            type = FunctionType.get(inputs=type[0], results=type[1])
-
-        type = TypeAttr.get(type)
-        sym_visibility = (
-            StringAttr.get(str(visibility)) if visibility is not None else None
-        )
-        super().__init__(sym_name, type, sym_visibility=sym_visibility, loc=loc, ip=ip)
-        if body_builder:
-            entry_block = self.add_entry_block()
-            with InsertionPoint(entry_block):
-                body_builder(self)
-
-    @property
-    def is_external(self):
-        return len(self.regions[0].blocks) == 0
-
-    @property
-    def body(self):
-        return self.regions[0]
-
-    @property
-    def type(self):
-        return FunctionType(TypeAttr(self.attributes["function_type"]).value)
-
-    @property
-    def visibility(self):
-        return self.attributes["sym_visibility"]
-
-    @property
-    def name(self) -> StringAttr:
-        return StringAttr(self.attributes["sym_name"])
-
-    @property
-    def entry_block(self):
-        if self.is_external:
-            raise IndexError("External function does not have a body")
-        return self.regions[0].blocks[0]
-
-    def add_entry_block(self, arg_locs: Optional[Sequence[Location]] = None):
-        """
-        Add an entry block to the function body using the function signature to
-        infer block arguments.
-        Returns the newly created block
-        """
-        if not self.is_external:
-            raise IndexError("The function already has an entry block!")
-        self.body.blocks.append(*self.type.inputs, arg_locs=arg_locs)
-        return self.body.blocks[0]
-
-    @property
-    def arg_attrs(self):
-        return ArrayAttr(self.attributes[ARGUMENT_ATTRIBUTE_NAME])
-
-    @arg_attrs.setter
-    def arg_attrs(self, attribute: Union[ArrayAttr, list]):
-        if isinstance(attribute, ArrayAttr):
-            self.attributes[ARGUMENT_ATTRIBUTE_NAME] = attribute
-        else:
-            self.attributes[ARGUMENT_ATTRIBUTE_NAME] = ArrayAttr.get(
-                attribute, context=self.context
-            )
-
-    @property
-    def arguments(self):
-        return self.entry_block.arguments
-
-    @property
-    def result_attrs(self):
-        return self.attributes[RESULT_ATTRIBUTE_NAME]
-
-    @result_attrs.setter
-    def result_attrs(self, attribute: ArrayAttr):
-        self.attributes[RESULT_ATTRIBUTE_NAME] = attribute
-
-    @classmethod
-    def from_py_func(
-        FuncOp,
-        *inputs: Type,
-        results: Optional[Sequence[Type]] = None,
-        name: Optional[str] = None,
-    ):
-        """Decorator to define an MLIR FuncOp specified as a python function.
-
-        Requires that an `mlir.ir.InsertionPoint` and `mlir.ir.Location` are
-        active for the current thread (i.e. established in a `with` block).
-
-        When applied as a decorator to a Python function, an entry block will
-        be constructed for the FuncOp with types as specified in `*inputs`. The
-        block arguments will be passed positionally to the Python function. In
-        addition, if the Python function accepts keyword arguments generally or
-        has a corresponding keyword argument, the following will be passed:
-          * `func_op`: The `func` op being defined.
-
-        By default, the function name will be the Python function `__name__`. This
-        can be overriden by passing the `name` argument to the decorator.
-
-        If `results` is not specified, then the decorator will implicitly
-        insert a `ReturnOp` with the `Value`'s returned from the decorated
-        function. It will also set the `FuncOp` type with the actual return
-        value types. If `results` is specified, then the decorated function
-        must return `None` and no implicit `ReturnOp` is added (nor are the result
-        types updated). The implicit behavior is intended for simple, single-block
-        cases, and users should specify result types explicitly for any complicated
-        cases.
-
-        The decorated function can further be called from Python and will insert
-        a `CallOp` at the then-current insertion point, returning either None (
-        if no return values), a unary Value (for one result), or a list of Values).
-        This mechanism cannot be used to emit recursive calls (by construction).
-        """
-
-        def decorator(f):
-            from . import func
-
-            # Introspect the callable for optional features.
-            sig = inspect.signature(f)
-            has_arg_func_op = False
-            for param in sig.parameters.values():
-                if param.kind == param.VAR_KEYWORD:
-                    has_arg_func_op = True
-                if param.name == "func_op" and (
-                    param.kind == param.POSITIONAL_OR_KEYWORD
-                    or param.kind == param.KEYWORD_ONLY
-                ):
-                    has_arg_func_op = True
-
-            # Emit the FuncOp.
-            implicit_return = results is None
-            symbol_name = name or f.__name__
-            function_type = FunctionType.get(
-                inputs=inputs, results=[] if implicit_return else results
-            )
-            func_op = FuncOp(name=symbol_name, type=function_type)
-            with InsertionPoint(func_op.add_entry_block()):
-                func_args = func_op.entry_block.arguments
-                func_kwargs = {}
-                if has_arg_func_op:
-                    func_kwargs["func_op"] = func_op
-                return_values = f(*func_args, **func_kwargs)
-                if not implicit_return:
-                    return_types = list(results)
-                    assert return_values is None, (
-                        "Capturing a python function with explicit `results=` "
-                        "requires that the wrapped function returns None."
-                    )
-                else:
-                    # Coerce return values, add ReturnOp and rewrite func type.
-                    if return_values is None:
-                        return_values = []
-                    elif isinstance(return_values, tuple):
-                        return_values = list(return_values)
-                    elif isinstance(return_values, Value):
-                        # Returning a single value is fine, coerce it into a list.
-                        return_values = [return_values]
-                    elif isinstance(return_values, OpView):
-                        # Returning a single operation is fine, coerce its results a list.
-                        return_values = return_values.operation.results
-                    elif isinstance(return_values, Operation):
-                        # Returning a single operation is fine, coerce its results a list.
-                        return_values = return_values.results
-                    else:
-                        return_values = list(return_values)
-                    func.ReturnOp(return_values)
-                    # Recompute the function type.
-                    return_types = [v.type for v in return_values]
-                    function_type = FunctionType.get(
-                        inputs=inputs, results=return_types
-                    )
-                    func_op.attributes["function_type"] = TypeAttr.get(function_type)
-
-            def emit_call_op(*call_args):
-                call_op = func.CallOp(
-                    return_types, FlatSymbolRefAttr.get(symbol_name), call_args
-                )
-                if return_types is None:
-                    return None
-                elif len(return_types) == 1:
-                    return call_op.result
-                else:
-                    return call_op.results
-
-            wrapped = emit_call_op
-            wrapped.__name__ = f.__name__
-            wrapped.func_op = func_op
-            return wrapped
-
-        return decorator
-
-
-class CallOp:
-    """Specialization for the call op class."""
-
-    def __init__(
-        self,
-        calleeOrResults: Union[FuncOp, List[Type]],
-        argumentsOrCallee: Union[List, FlatSymbolRefAttr, str],
-        arguments: Optional[List] = None,
-        *,
-        loc=None,
-        ip=None,
-    ):
-        """Creates an call operation.
-
-        The constructor accepts three different forms:
-
-          1. A function op to be called followed by a list of arguments.
-          2. A list of result types, followed by the name of the function to be
-             called as string, following by a list of arguments.
-          3. A list of result types, followed by the name of the function to be
-             called as symbol reference attribute, followed by a list of arguments.
-
-        For example
-
-            f = func.FuncOp("foo", ...)
-            func.CallOp(f, [args])
-            func.CallOp([result_types], "foo", [args])
-
-        In all cases, the location and insertion point may be specified as keyword
-        arguments if not provided by the surrounding context managers.
-        """
-
-        # TODO: consider supporting constructor "overloads", e.g., through a custom
-        # or pybind-provided metaclass.
-        if isinstance(calleeOrResults, FuncOp):
-            if not isinstance(argumentsOrCallee, list):
-                raise ValueError(
-                    "when constructing a call to a function, expected "
-                    + "the second argument to be a list of call arguments, "
-                    + f"got {type(argumentsOrCallee)}"
-                )
-            if arguments is not None:
-                raise ValueError(
-                    "unexpected third argument when constructing a call"
-                    + "to a function"
-                )
-
-            super().__init__(
-                calleeOrResults.type.results,
-                FlatSymbolRefAttr.get(
-                    calleeOrResults.name.value, context=_get_default_loc_context(loc)
-                ),
-                argumentsOrCallee,
-                loc=loc,
-                ip=ip,
-            )
-            return
-
-        if isinstance(argumentsOrCallee, list):
-            raise ValueError(
-                "when constructing a call to a function by name, "
-                + "expected the second argument to be a string or a "
-                + f"FlatSymbolRefAttr, got {type(argumentsOrCallee)}"
-            )
-
-        if isinstance(argumentsOrCallee, FlatSymbolRefAttr):
-            super().__init__(
-                calleeOrResults, argumentsOrCallee, arguments, loc=loc, ip=ip
-            )
-        elif isinstance(argumentsOrCallee, str):
-            super().__init__(
-                calleeOrResults,
-                FlatSymbolRefAttr.get(
-                    argumentsOrCallee, context=_get_default_loc_context(loc)
-                ),
-                arguments,
-                loc=loc,
-                ip=ip,
-            )
diff --git a/mlir/python/mlir/dialects/_gpu_transform_ops_ext.py b/mlir/python/mlir/dialects/_gpu_transform_ops_ext.py
deleted file mode 100644
index ba72bac3a15264d..000000000000000
--- a/mlir/python/mlir/dialects/_gpu_transform_ops_ext.py
+++ /dev/null
@@ -1,124 +0,0 @@
-#  Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-#  See https://llvm.org/LICENSE.txt for license information.
-#  SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-
-try:
-    from ..ir import *
-    from ..dialects import transform
-except ImportError as e:
-    raise RuntimeError("Error loading imports from extension module") from e
-
-from typing import Optional, Sequence, Union, overload
-
-
-class MapForallToBlocks:
-    """Specialization for MapForallToBlocks class."""
-
-    @overload
-    def __init__(
-        self,
-        result_type: Type,
-        target: Union[Operation, OpView, Value],
-        *,
-        grid_dims: Optional[Union[Sequence[int], Attribute]] = None,
-        generate_gpu_launch: Optional[Union[bool, Attribute]] = None,
-        loc=None,
-        ip=None
-    ):
-        ...
-
-    @overload
-    def __init__(
-        self,
-        target: Union[Operation, OpView, Value],
-        *,
-        grid_dims: Optional[Union[Sequence[int], Attribute]] = None,
-        generate_gpu_launch: Optional[Union[bool, Attribute]] = None,
-        loc=None,
-        ip=None
-    ):
-        ...
-
-    def __init__(
-        self,
-        result_type_or_target: Union[Operation, OpView, Type, Value],
-        target_or_none: Optional[Union[Operation, OpView, Value]] = None,
-        *,
-        grid_dims: Optional[Union[Sequence[int], Attribute]] = None,
-        generate_gpu_launch: Optional[Union[bool, Attribute]] = None,
-        loc=None,
-        ip=None
-    ):
-        if isinstance(result_type_or_target, Type):
-            result_type = result_type_or_target
-            target = target_or_none
-        else:
-            result_type = transform.AnyOpType.get()
-            target = result_type_or_target
-
-        super().__init__(
-            result_type,
-            target,
-            grid_dims=grid_dims,
-            generate_gpu_launch=generate_gpu_launch,
-            loc=loc,
-            ip=ip,
-        )
-
-
-class MapNestedForallToThreads:
-    """Specialization for MapNestedForallToThreads class."""
-
-    @overload
-    def __init__(
-        self,
-        result_type: Type,
-        target: Union[Operation, OpView, Value],
-        *,
-        block_dims: Optional[Sequence[int]] = None,
-        warp_size: Optional[Sequence[int]] = None,
-        sync_after_distribute: Optional[bool] = None,
-        loc=None,
-        ip=None
-    ):
-        ...
-
-    @overload
-    def __init__(
-        self,
-        target: Union[Operation, OpView, Value],
-        *,
-        block_dims: Optional[Sequence[int]] = None,
-        warp_size: Optional[Sequence[int]] = None,
-        sync_after_distribute: Optional[bool] = None,
-        loc=None,
-        ip=None
-    ):
-        ...
-
-    def __init__(
-        self,
-        result_type_or_target: Union[Operation, OpView, Value, Type],
-        target_or_none: Optional[Union[Operation, OpView, Value]] = None,
-        *,
-        block_dims: Optional[Union[Sequence[int], Attribute]] = None,
-        warp_size: Optional[Union[Sequence[int], Attribute]] = None,
-        sync_after_distribute: Optional[bool] = None,
-        loc=None,
-        ip=None
-    ):
-        if isinstance(result_type_or_target, Type):
-            result_type = result_type_or_target
-            target = target_or_none
-        else:
-            result_type = result_type_or_target.type
-            target = result_type_or_target
-        super().__init__(
-            result_type,
-            target,
-            block_dims=block_dims,
-            warp_size=warp_size,
-            sync_after_distribute=sync_after_distribute,
-            loc=loc,
-            ip=ip,
-        )
diff --git a/mlir/python/mlir/dialects/_linalg_ops_ext.py b/mlir/python/mlir/dialects/_linalg_ops_ext.py
deleted file mode 100644
index 3f6d854ca3e2b14..000000000000000
--- a/mlir/python/mlir/dialects/_linalg_ops_ext.py
+++ /dev/null
@@ -1,47 +0,0 @@
-#  Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-#  See https://llvm.org/LICENSE.txt for license information.
-#  SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-
-try:
-    from typing import Optional, Sequence, Union
-    from ..ir import *
-    from ._ods_common import get_default_loc_context
-    from .._mlir_libs._mlirDialectsLinalg import fill_builtin_region
-except ImportError as e:
-    raise RuntimeError("Error loading imports from extension module") from e
-
-from ._ods_common import get_op_result_or_value as _get_op_result_or_value
-
-
-def isa(cls: Type, ty: Type):
-    try:
-        cls(ty)
-        return True
-    except ValueError:
-        return False
-
-
-class StructuredOpMixin:
-    """All structured ops use the same mixin class."""
-
-    def __init__(self, inputs, outputs=(), results=(), loc=None, ip=None):
-        super().__init__(
-            self.build_generic(
-                results=list(results),
-                operands=[list(inputs), list(outputs)],
-                loc=loc,
-                ip=ip,
-            )
-        )
-
-
-def select_opview_mixin(parent_opview_cls):
-    # TODO: This shouldn't be a heuristic: we should have a way to annotate
-    # the OpView to note that it is a structured op.
-    if (
-        "__init__" not in parent_opview_cls.__dict__
-        and hasattr(parent_opview_cls, "inputs")
-        and hasattr(parent_opview_cls, "outputs")
-        and hasattr(parent_opview_cls, "result_tensors")
-    ):
-        return StructuredOpMixin
diff --git a/mlir/python/mlir/dialects/_loop_transform_ops_ext.py b/mlir/python/mlir/dialects/_loop_transform_ops_ext.py
deleted file mode 100644
index 1cdb2b9e77b5afe..000000000000000
--- a/mlir/python/mlir/dialects/_loop_transform_ops_ext.py
+++ /dev/null
@@ -1,134 +0,0 @@
-#  Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-#  See https://llvm.org/LICENSE.txt for license information.
-#  SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-
-try:
-    from ..ir import *
-    from ._ods_common import get_op_result_or_value as _get_op_result_or_value
-except ImportError as e:
-    raise RuntimeError("Error loading imports from extension module") from e
-
-from typing import Optional, Union
-
-
-class GetParentForOp:
-    """Extension for GetParentForOp."""
-
-    def __init__(
-        self,
-        result_type: Type,
-        target: Union[Operation, Value],
-        *,
-        num_loops: Optional[int] = None,
-        ip=None,
-        loc=None,
-    ):
-        if num_loops is None:
-            num_loops = 1
-        super().__init__(
-            result_type,
-            _get_op_result_or_value(target),
-            num_loops=num_loops,
-            ip=ip,
-            loc=loc,
-        )
-
-
-class LoopOutlineOp:
-    """Extension for LoopOutlineOp."""
-
-    def __init__(
-        self,
-        function_type: Type,
-        call_type: Type,
-        target: Union[Operation, Value],
-        *,
-        func_name: Union[str, StringAttr],
-        ip=None,
-        loc=None,
-    ):
-        super().__init__(
-            function_type,
-            call_type,
-            _get_op_result_or_value(target),
-            func_name=(
-                func_name
-                if isinstance(func_name, StringAttr)
-                else StringAttr.get(func_name)
-            ),
-            ip=ip,
-            loc=loc,
-        )
-
-
-class LoopPeelOp:
-    """Extension for LoopPeelOp."""
-
-    def __init__(
-        self,
-        main_loop_type: Type,
-        remainder_loop_type: Type,
-        target: Union[Operation, Value],
-        *,
-        fail_if_already_divisible: Union[bool, BoolAttr] = False,
-        ip=None,
-        loc=None,
-    ):
-        super().__init__(
-            main_loop_type,
-            remainder_loop_type,
-            _get_op_result_or_value(target),
-            fail_if_already_divisible=(
-                fail_if_already_divisible
-                if isinstance(fail_if_already_divisible, BoolAttr)
-                else BoolAttr.get(fail_if_already_divisible)
-            ),
-            ip=ip,
-            loc=loc,
-        )
-
-
-class LoopPipelineOp:
-    """Extension for LoopPipelineOp."""
-
-    def __init__(
-        self,
-        result_type: Type,
-        target: Union[Operation, Value],
-        *,
-        iteration_interval: Optional[Union[int, IntegerAttr]] = None,
-        read_latency: Optional[Union[int, IntegerAttr]] = None,
-        ip=None,
-        loc=None,
-    ):
-        if iteration_interval is None:
-            iteration_interval = 1
-        if read_latency is None:
-            read_latency = 10
-        super().__init__(
-            result_type,
-            _get_op_result_or_value(target),
-            iteration_interval=iteration_interval,
-            read_latency=read_latency,
-            ip=ip,
-            loc=loc,
-        )
-
-
-class LoopUnrollOp:
-    """Extension for LoopUnrollOp."""
-
-    def __init__(
-        self,
-        target: Union[Operation, Value],
-        *,
-        factor: Union[int, IntegerAttr],
-        ip=None,
-        loc=None,
-    ):
-        super().__init__(
-            _get_op_result_or_value(target),
-            factor=factor,
-            ip=ip,
-            loc=loc,
-        )
diff --git a/mlir/python/mlir/dialects/_memref_ops_ext.py b/mlir/python/mlir/dialects/_memref_ops_ext.py
deleted file mode 100644
index 825f1a0a7a6faf4..000000000000000
--- a/mlir/python/mlir/dialects/_memref_ops_ext.py
+++ /dev/null
@@ -1,36 +0,0 @@
-#  Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-#  See https://llvm.org/LICENSE.txt for license information.
-#  SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-
-try:
-    from ..ir import *
-    from ._ods_common import get_op_result_or_value as _get_op_result_or_value
-    from ._ods_common import get_op_results_or_values as _get_op_results_or_values
-except ImportError as e:
-    raise RuntimeError("Error loading imports from extension module") from e
-
-from typing import Optional, Sequence, Union
-
-
-class LoadOp:
-    """Specialization for the MemRef load operation."""
-
-    def __init__(
-        self,
-        memref: Union[Operation, OpView, Value],
-        indices: Optional[Union[Operation, OpView, Sequence[Value]]] = None,
-        *,
-        loc=None,
-        ip=None
-    ):
-        """Creates a memref load operation.
-
-        Args:
-          memref: the buffer to load from.
-          indices: the list of subscripts, may be empty for zero-dimensional
-            buffers.
-          loc: user-visible location of the operation.
-          ip: insertion point.
-        """
-        indices_resolved = [] if indices is None else _get_op_results_or_values(indices)
-        super().__init__(memref, indices_resolved, loc=loc, ip=ip)
diff --git a/mlir/python/mlir/dialects/_memref_transform_ops_ext.py b/mlir/python/mlir/dialects/_memref_transform_ops_ext.py
deleted file mode 100644
index 1cc00bdcbf381c9..000000000000000
--- a/mlir/python/mlir/dialects/_memref_transform_ops_ext.py
+++ /dev/null
@@ -1,114 +0,0 @@
-#  Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-#  See https://llvm.org/LICENSE.txt for license information.
-#  SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-
-try:
-    from ..ir import *
-    from ..dialects import transform
-except ImportError as e:
-    raise RuntimeError("Error loading imports from extension module") from e
-
-from typing import Optional, overload, Union
-
-
-class MemRefAllocaToGlobalOp:
-    """Specialization for MemRefAllocaToGlobalOp class."""
-
-    @overload
-    def __init__(
-        self,
-        get_global_type: Type,
-        global_type: Type,
-        alloca: Union[Operation, OpView, Value],
-        *,
-        loc=None,
-        ip=None
-    ):
-        ...
-
-    @overload
-    def __init__(self, alloca: Union[Operation, OpView, Value], *, loc=None, ip=None):
-        ...
-
-    def __init__(
-        self,
-        get_global_type_or_alloca: Union[Operation, OpView, Type, Value],
-        global_type_or_none: Optional[Type] = None,
-        alloca_or_none: Optional[Union[Operation, OpView, Value]] = None,
-        *,
-        loc=None,
-        ip=None
-    ):
-        if isinstance(get_global_type_or_alloca, Type):
-            get_global_type = get_global_type_or_alloca
-            global_type = global_type_or_none
-            alloca = alloca_or_none
-        else:
-            get_global_type = transform.AnyOpType.get()
-            global_type = transform.AnyOpType.get()
-            alloca = get_global_type_or_alloca
-
-        super().__init__(
-            get_global_type,
-            global_type,
-            alloca,
-            loc=loc,
-            ip=ip,
-        )
-
-
-class MemRefMultiBufferOp:
-    """Specialization for MemRefMultiBufferOp class."""
-
-    @overload
-    def __init__(
-        self,
-        transformed_type: Type,
-        target: Union[Operation, OpView, Value],
-        factor: Union[int, IntegerAttr],
-        *,
-        skip_analysis: Optional[bool] = None,
-        loc=None,
-        ip=None
-    ):
-        ...
-
-    @overload
-    def __init__(
-        self,
-        target: Union[Operation, OpView, Value],
-        factor: Union[int, IntegerAttr],
-        *,
-        skip_analysis: Optional[bool] = None,
-        loc=None,
-        ip=None
-    ):
-        ...
-
-    def __init__(
-        self,
-        transformed_type_or_target: Type,
-        target_or_factor: Union[int, IntegerAttr, Operation, OpView, Value] = None,
-        factor_or_none: Optional[Union[int, IntegerAttr]] = None,
-        *,
-        skip_analysis: Optional[bool] = None,
-        loc=None,
-        ip=None
-    ):
-        if isinstance(transformed_type_or_target, Type):
-            transformed_type = transformed_type_or_target
-            target = target_or_factor
-            factor = factor_or_none
-        else:
-            transformed_type = transform.AnyOpType.get()
-            target = transformed_type_or_target
-            factor = target_or_factor
-
-        super().__init__(
-            transformed_type,
-            target,
-            factor,
-            skip_analysis=skip_analysis,
-            loc=loc,
-            ip=ip,
-        )
diff --git a/mlir/python/mlir/dialects/_ml_program_ops_ext.py b/mlir/python/mlir/dialects/_ml_program_ops_ext.py
deleted file mode 100644
index c84d23c16ef93ab..000000000000000
--- a/mlir/python/mlir/dialects/_ml_program_ops_ext.py
+++ /dev/null
@@ -1,113 +0,0 @@
-#  Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-#  See https://llvm.org/LICENSE.txt for license information.
-#  SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-
-try:
-    from typing import Union
-    from ..ir import *
-    from ._ods_common import get_default_loc_context as _get_default_loc_context
-except ImportError as e:
-    raise RuntimeError("Error loading imports from extension module") from e
-
-from ._ml_program_ops_gen import *
-
-
-ARGUMENT_ATTRIBUTE_NAME = "arg_attrs"
-RESULT_ATTRIBUTE_NAME = "res_attrs"
-
-
-class FuncOp:
-    """Specialization for the func op class."""
-
-    def __init__(
-        self, name, type, *, visibility=None, body_builder=None, loc=None, ip=None
-    ):
-        """
-        Create a FuncOp with the provided `name`, `type`, and `visibility`.
-        - `name` is a string representing the function name.
-        - `type` is either a FunctionType or a pair of list describing inputs and
-          results.
-        - `visibility` is a string matching `public`, `private`, or `nested`. None
-          implies private visibility.
-        - `body_builder` is an optional callback, when provided a new entry block
-          is created and the callback is invoked with the new op as argument within
-          an InsertionPoint context already set for the block. The callback is
-          expected to insert a terminator in the block.
-        """
-        sym_name = StringAttr.get(str(name))
-
-        # If the type is passed as a tuple, build a FunctionType on the fly.
-        if isinstance(type, tuple):
-            type = FunctionType.get(inputs=type[0], results=type[1])
-
-        type = TypeAttr.get(type)
-        sym_visibility = (
-            StringAttr.get(str(visibility)) if visibility is not None else None
-        )
-        super().__init__(sym_name, type, sym_visibility=sym_visibility, loc=loc, ip=ip)
-        if body_builder:
-            entry_block = self.add_entry_block()
-            with InsertionPoint(entry_block):
-                body_builder(self)
-
-    @property
-    def is_external(self):
-        return len(self.regions[0].blocks) == 0
-
-    @property
-    def body(self):
-        return self.regions[0]
-
-    @property
-    def type(self):
-        return FunctionType(TypeAttr(self.attributes["function_type"]).value)
-
-    @property
-    def visibility(self):
-        return self.attributes["sym_visibility"]
-
-    @property
-    def name(self) -> StringAttr:
-        return StringAttr(self.attributes["sym_name"])
-
-    @property
-    def entry_block(self):
-        if self.is_external:
-            raise IndexError("External function does not have a body")
-        return self.regions[0].blocks[0]
-
-    def add_entry_block(self):
-        """
-        Add an entry block to the function body using the function signature to
-        infer block arguments.
-        Returns the newly created block
-        """
-        if not self.is_external:
-            raise IndexError("The function already has an entry block!")
-        self.body.blocks.append(*self.type.inputs)
-        return self.body.blocks[0]
-
-    @property
-    def arg_attrs(self):
-        return ArrayAttr(self.attributes[ARGUMENT_ATTRIBUTE_NAME])
-
-    @arg_attrs.setter
-    def arg_attrs(self, attribute: Union[ArrayAttr, list]):
-        if isinstance(attribute, ArrayAttr):
-            self.attributes[ARGUMENT_ATTRIBUTE_NAME] = attribute
-        else:
-            self.attributes[ARGUMENT_ATTRIBUTE_NAME] = ArrayAttr.get(
-                attribute, context=self.context
-            )
-
-    @property
-    def arguments(self):
-        return self.entry_block.arguments
-
-    @property
-    def result_attrs(self):
-        return self.attributes[RESULT_ATTRIBUTE_NAME]
-
-    @result_attrs.setter
-    def result_attrs(self, attribute: ArrayAttr):
-        self.attributes[RESULT_ATTRIBUTE_NAME] = attribute
diff --git a/mlir/python/mlir/dialects/_ods_common.py b/mlir/python/mlir/dialects/_ods_common.py
index 895c3228139b392..9cca7d659ec8cb3 100644
--- a/mlir/python/mlir/dialects/_ods_common.py
+++ b/mlir/python/mlir/dialects/_ods_common.py
@@ -9,7 +9,6 @@
 
 __all__ = [
     "equally_sized_accessor",
-    "extend_opview_class",
     "get_default_loc_context",
     "get_op_result_or_value",
     "get_op_results_or_values",
@@ -18,64 +17,6 @@
 ]
 
 
-def extend_opview_class(ext_module):
-    """Decorator to extend an OpView class from an extension module.
-
-    Extension modules can expose various entry-points:
-      Stand-alone class with the same name as a parent OpView class (i.e.
-      "ReturnOp"). A name-based match is attempted first before falling back
-      to a below mechanism.
-
-      def select_opview_mixin(parent_opview_cls):
-        If defined, allows an appropriate mixin class to be selected dynamically
-        based on the parent OpView class. Should return NotImplemented if a
-        decision is not made.
-
-    Args:
-      ext_module: A module from which to locate extensions. Can be None if not
-        available.
-
-    Returns:
-      A decorator that takes an OpView subclass and further extends it as
-      needed.
-    """
-
-    def class_decorator(parent_opview_cls: type):
-        if ext_module is None:
-            return parent_opview_cls
-        mixin_cls = NotImplemented
-        # First try to resolve by name.
-        try:
-            mixin_cls = getattr(ext_module, parent_opview_cls.__name__)
-        except AttributeError:
-            # Fall back to a select_opview_mixin hook.
-            try:
-                select_mixin = getattr(ext_module, "select_opview_mixin")
-            except AttributeError:
-                pass
-            else:
-                mixin_cls = select_mixin(parent_opview_cls)
-
-        if mixin_cls is NotImplemented or mixin_cls is None:
-            return parent_opview_cls
-
-        # Have a mixin_cls. Create an appropriate subclass.
-        try:
-
-            class LocalOpView(mixin_cls, parent_opview_cls):
-                pass
-
-        except TypeError as e:
-            raise TypeError(
-                f"Could not mixin {mixin_cls} into {parent_opview_cls}"
-            ) from e
-        LocalOpView.__name__ = parent_opview_cls.__name__
-        LocalOpView.__qualname__ = parent_opview_cls.__qualname__
-        return LocalOpView
-
-    return class_decorator
-
-
 def segmented_accessor(elements, raw_segments, idx):
     """
     Returns a slice of elements corresponding to the idx-th segment.
diff --git a/mlir/python/mlir/dialects/_pdl_ops_ext.py b/mlir/python/mlir/dialects/_pdl_ops_ext.py
deleted file mode 100644
index fc9de0b7f7db69c..000000000000000
--- a/mlir/python/mlir/dialects/_pdl_ops_ext.py
+++ /dev/null
@@ -1,271 +0,0 @@
-#  Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-#  See https://llvm.org/LICENSE.txt for license information.
-#  SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-
-try:
-    from ..ir import *
-    from ..dialects import pdl
-except ImportError as e:
-    raise RuntimeError("Error loading imports from extension module") from e
-
-from typing import Union, Optional, Sequence, Mapping
-from ._ods_common import (
-    get_op_result_or_value as _get_value,
-    get_op_results_or_values as _get_values,
-)
-
-
-class ApplyNativeConstraintOp:
-    """Specialization for PDL apply native constraint op class."""
-
-    def __init__(
-        self,
-        name: Union[str, StringAttr],
-        args: Optional[Sequence[Union[OpView, Operation, Value]]] = None,
-        *,
-        loc=None,
-        ip=None,
-    ):
-        if args is None:
-            args = []
-        args = _get_values(args)
-        super().__init__(name, args, loc=loc, ip=ip)
-
-
-class ApplyNativeRewriteOp:
-    """Specialization for PDL apply native rewrite op class."""
-
-    def __init__(
-        self,
-        results: Sequence[Type],
-        name: Union[str, StringAttr],
-        args: Optional[Sequence[Union[OpView, Operation, Value]]] = None,
-        *,
-        loc=None,
-        ip=None,
-    ):
-        if args is None:
-            args = []
-        args = _get_values(args)
-        super().__init__(results, name, args, loc=loc, ip=ip)
-
-
-class AttributeOp:
-    """Specialization for PDL attribute op class."""
-
-    def __init__(
-        self,
-        valueType: Optional[Union[OpView, Operation, Value]] = None,
-        value: Optional[Attribute] = None,
-        *,
-        loc=None,
-        ip=None,
-    ):
-        valueType = valueType if valueType is None else _get_value(valueType)
-        result = pdl.AttributeType.get()
-        super().__init__(result, valueType=valueType, value=value, loc=loc, ip=ip)
-
-
-class EraseOp:
-    """Specialization for PDL erase op class."""
-
-    def __init__(
-        self,
-        operation: Optional[Union[OpView, Operation, Value]] = None,
-        *,
-        loc=None,
-        ip=None,
-    ):
-        operation = _get_value(operation)
-        super().__init__(operation, loc=loc, ip=ip)
-
-
-class OperandOp:
-    """Specialization for PDL operand op class."""
-
-    def __init__(
-        self,
-        type: Optional[Union[OpView, Operation, Value]] = None,
-        *,
-        loc=None,
-        ip=None,
-    ):
-        type = type if type is None else _get_value(type)
-        result = pdl.ValueType.get()
-        super().__init__(result, valueType=type, loc=loc, ip=ip)
-
-
-class OperandsOp:
-    """Specialization for PDL operands op class."""
-
-    def __init__(
-        self,
-        types: Optional[Union[OpView, Operation, Value]] = None,
-        *,
-        loc=None,
-        ip=None,
-    ):
-        types = types if types is None else _get_value(types)
-        result = pdl.RangeType.get(pdl.ValueType.get())
-        super().__init__(result, valueType=types, loc=loc, ip=ip)
-
-
-class OperationOp:
-    """Specialization for PDL operand op class."""
-
-    def __init__(
-        self,
-        name: Optional[Union[str, StringAttr]] = None,
-        args: Optional[Sequence[Union[OpView, Operation, Value]]] = None,
-        attributes: Optional[Mapping[str, Union[OpView, Operation, Value]]] = None,
-        types: Optional[Sequence[Union[OpView, Operation, Value]]] = None,
-        *,
-        loc=None,
-        ip=None,
-    ):
-        if types is None:
-            types = []
-        if attributes is None:
-            attributes = {}
-        if args is None:
-            args = []
-        args = _get_values(args)
-        attrNames = []
-        attrValues = []
-        for attrName, attrValue in attributes.items():
-            attrNames.append(StringAttr.get(attrName))
-            attrValues.append(_get_value(attrValue))
-        attrNames = ArrayAttr.get(attrNames)
-        types = _get_values(types)
-        result = pdl.OperationType.get()
-        super().__init__(
-            result, args, attrValues, attrNames, types, opName=name, loc=loc, ip=ip
-        )
-
-
-class PatternOp:
-    """Specialization for PDL pattern op class."""
-
-    def __init__(
-        self,
-        benefit: Union[IntegerAttr, int],
-        name: Optional[Union[StringAttr, str]] = None,
-        *,
-        loc=None,
-        ip=None,
-    ):
-        """Creates an PDL `pattern` operation."""
-        super().__init__(benefit, sym_name=name, loc=loc, ip=ip)
-        self.regions[0].blocks.append()
-
-    @property
-    def body(self):
-        """Return the body (block) of the pattern."""
-        return self.regions[0].blocks[0]
-
-
-class ReplaceOp:
-    """Specialization for PDL replace op class."""
-
-    def __init__(
-        self,
-        op: Union[OpView, Operation, Value],
-        *,
-        with_op: Optional[Union[OpView, Operation, Value]] = None,
-        with_values: Optional[Sequence[Union[OpView, Operation, Value]]] = None,
-        loc=None,
-        ip=None,
-    ):
-        if with_values is None:
-            with_values = []
-        op = _get_value(op)
-        with_op = with_op if with_op is None else _get_value(with_op)
-        with_values = _get_values(with_values)
-        super().__init__(op, with_values, replOperation=with_op, loc=loc, ip=ip)
-
-
-class ResultOp:
-    """Specialization for PDL result op class."""
-
-    def __init__(
-        self,
-        parent: Union[OpView, Operation, Value],
-        index: Union[IntegerAttr, int],
-        *,
-        loc=None,
-        ip=None,
-    ):
-        parent = _get_value(parent)
-        result = pdl.ValueType.get()
-        super().__init__(result, parent, index, loc=loc, ip=ip)
-
-
-class ResultsOp:
-    """Specialization for PDL results op class."""
-
-    def __init__(
-        self,
-        result: Type,
-        parent: Union[OpView, Operation, Value],
-        index: Optional[Union[IntegerAttr, int]] = None,
-        *,
-        loc=None,
-        ip=None,
-    ):
-        parent = _get_value(parent)
-        super().__init__(result, parent, index=index, loc=loc, ip=ip)
-
-
-class RewriteOp:
-    """Specialization for PDL rewrite op class."""
-
-    def __init__(
-        self,
-        root: Optional[Union[OpView, Operation, Value]] = None,
-        name: Optional[Union[StringAttr, str]] = None,
-        args: Optional[Sequence[Union[OpView, Operation, Value]]] = None,
-        *,
-        loc=None,
-        ip=None,
-    ):
-        if args is None:
-            args = []
-        root = root if root is None else _get_value(root)
-        args = _get_values(args)
-        super().__init__(args, root=root, name=name, loc=loc, ip=ip)
-
-    def add_body(self):
-        """Add body (block) to the rewrite."""
-        self.regions[0].blocks.append()
-        return self.body
-
-    @property
-    def body(self):
-        """Return the body (block) of the rewrite."""
-        return self.regions[0].blocks[0]
-
-
-class TypeOp:
-    """Specialization for PDL type op class."""
-
-    def __init__(
-        self, constantType: Optional[Union[TypeAttr, Type]] = None, *, loc=None, ip=None
-    ):
-        result = pdl.TypeType.get()
-        super().__init__(result, constantType=constantType, loc=loc, ip=ip)
-
-
-class TypesOp:
-    """Specialization for PDL types op class."""
-
-    def __init__(
-        self,
-        constantTypes: Optional[Sequence[Union[TypeAttr, Type]]] = None,
-        *,
-        loc=None,
-        ip=None,
-    ):
-        if constantTypes is None:
-            constantTypes = []
-        result = pdl.RangeType.get(pdl.TypeType.get())
-        super().__init__(result, constantTypes=constantTypes, loc=loc, ip=ip)
diff --git a/mlir/python/mlir/dialects/_scf_ops_ext.py b/mlir/python/mlir/dialects/_scf_ops_ext.py
deleted file mode 100644
index 89cc8a19895c7b4..000000000000000
--- a/mlir/python/mlir/dialects/_scf_ops_ext.py
+++ /dev/null
@@ -1,107 +0,0 @@
-#  Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-#  See https://llvm.org/LICENSE.txt for license information.
-#  SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-
-try:
-    from ..ir import *
-except ImportError as e:
-    raise RuntimeError("Error loading imports from extension module") from e
-
-from typing import Optional, Sequence, Union
-
-from ._ods_common import (
-    get_op_result_or_value as _get_op_result_or_value,
-    get_op_results_or_values as _get_op_results_or_values,
-)
-
-
-class ForOp:
-    """Specialization for the SCF for op class."""
-
-    def __init__(
-        self,
-        lower_bound,
-        upper_bound,
-        step,
-        iter_args: Optional[Union[Operation, OpView, Sequence[Value]]] = None,
-        *,
-        loc=None,
-        ip=None,
-    ):
-        """Creates an SCF `for` operation.
-
-        - `lower_bound` is the value to use as lower bound of the loop.
-        - `upper_bound` is the value to use as upper bound of the loop.
-        - `step` is the value to use as loop step.
-        - `iter_args` is a list of additional loop-carried arguments or an operation
-          producing them as results.
-        """
-        if iter_args is None:
-            iter_args = []
-        iter_args = _get_op_results_or_values(iter_args)
-
-        results = [arg.type for arg in iter_args]
-        super().__init__(
-            self.build_generic(
-                regions=1,
-                results=results,
-                operands=[
-                    _get_op_result_or_value(o) for o in [lower_bound, upper_bound, step]
-                ]
-                + list(iter_args),
-                loc=loc,
-                ip=ip,
-            )
-        )
-        self.regions[0].blocks.append(self.operands[0].type, *results)
-
-    @property
-    def body(self):
-        """Returns the body (block) of the loop."""
-        return self.regions[0].blocks[0]
-
-    @property
-    def induction_variable(self):
-        """Returns the induction variable of the loop."""
-        return self.body.arguments[0]
-
-    @property
-    def inner_iter_args(self):
-        """Returns the loop-carried arguments usable within the loop.
-
-        To obtain the loop-carried operands, use `iter_args`.
-        """
-        return self.body.arguments[1:]
-
-
-class IfOp:
-    """Specialization for the SCF if op class."""
-
-    def __init__(self, cond, results_=[], *, hasElse=False, loc=None, ip=None):
-        """Creates an SCF `if` operation.
-
-        - `cond` is a MLIR value of 'i1' type to determine which regions of code will be executed.
-        - `hasElse` determines whether the if operation has the else branch.
-        """
-        operands = []
-        operands.append(cond)
-        results = []
-        results.extend(results_)
-        super().__init__(
-            self.build_generic(
-                regions=2, results=results, operands=operands, loc=loc, ip=ip
-            )
-        )
-        self.regions[0].blocks.append(*[])
-        if hasElse:
-            self.regions[1].blocks.append(*[])
-
-    @property
-    def then_block(self):
-        """Returns the then block of the if operation."""
-        return self.regions[0].blocks[0]
-
-    @property
-    def else_block(self):
-        """Returns the else block of the if operation."""
-        return self.regions[1].blocks[0]
diff --git a/mlir/python/mlir/dialects/_structured_transform_ops_ext.py b/mlir/python/mlir/dialects/_structured_transform_ops_ext.py
deleted file mode 100644
index 3757a3d3b4cce85..000000000000000
--- a/mlir/python/mlir/dialects/_structured_transform_ops_ext.py
+++ /dev/null
@@ -1,759 +0,0 @@
-#  Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-#  See https://llvm.org/LICENSE.txt for license information.
-#  SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-
-try:
-    from ..ir import *
-    from ..dialects import transform
-except ImportError as e:
-    raise RuntimeError("Error loading imports from extension module") from e
-
-from typing import List, Optional, Sequence, Tuple, Union, overload
-
-StaticIntLike = Union[int, IntegerAttr]
-ValueLike = Union[Operation, OpView, Value]
-MixedInt = Union[StaticIntLike, ValueLike]
-
-IntOrAttrList = Sequence[Union[IntegerAttr, int]]
-OptionalIntList = Optional[Union[ArrayAttr, IntOrAttrList]]
-
-BoolOrAttrList = Sequence[Union[BoolAttr, bool]]
-OptionalBoolList = Optional[Union[ArrayAttr, BoolOrAttrList]]
-
-MixedValues = Union[Sequence[Union[StaticIntLike, ValueLike]], ArrayAttr, ValueLike]
-
-DynamicIndexList = Sequence[Union[MixedInt, Sequence[MixedInt]]]
-
-
-def _dispatch_dynamic_index_list(
-    indices: Union[DynamicIndexList, ArrayAttr],
-) -> Tuple[List[ValueLike], Union[List[int], ArrayAttr], List[bool]]:
-    """Dispatches a list of indices to the appropriate form.
-
-    This is similar to the custom `DynamicIndexList` directive upstream:
-    provided indices may be in the form of dynamic SSA values or static values,
-    and they may be scalable (i.e., as a singleton list) or not. This function
-    dispatches each index into its respective form. It also extracts the SSA
-    values and static indices from various similar structures, respectively.
-    """
-    dynamic_indices = []
-    static_indices = [ShapedType.get_dynamic_size()] * len(indices)
-    scalable_indices = [False] * len(indices)
-
-    # ArrayAttr: Extract index values.
-    if isinstance(indices, ArrayAttr):
-        indices = [idx for idx in indices]
-
-    def process_nonscalable_index(i, index):
-        """Processes any form of non-scalable index.
-
-        Returns False if the given index was scalable and thus remains
-        unprocessed; True otherwise.
-        """
-        if isinstance(index, int):
-            static_indices[i] = index
-        elif isinstance(index, IntegerAttr):
-            static_indices[i] = index.value  # pytype: disable=attribute-error
-        elif isinstance(index, (Operation, Value, OpView)):
-            dynamic_indices.append(index)
-        else:
-            return False
-        return True
-
-    # Process each index at a time.
-    for i, index in enumerate(indices):
-        if not process_nonscalable_index(i, index):
-            # If it wasn't processed, it must be a scalable index, which is
-            # provided as a Sequence of one value, so extract and process that.
-            scalable_indices[i] = True
-            assert len(index) == 1
-            ret = process_nonscalable_index(i, index[0])
-            assert ret
-
-    return dynamic_indices, static_indices, scalable_indices
-
-
-# Dispatches `MixedValues` that all represents integers in various forms into
-# the following three categories:
-#   - `dynamic_values`: a list of `Value`s, potentially from op results;
-#   - `packed_values`: a value handle, potentially from an op result, associated
-#                      to one or more payload operations of integer type;
-#   - `static_values`: an `ArrayAttr` of `i64`s with static values, from Python
-#                      `int`s, from `IntegerAttr`s, or from an `ArrayAttr`.
-# The input is in the form for `packed_values`, only that result is set and the
-# other two are empty. Otherwise, the input can be a mix of the other two forms,
-# and for each dynamic value, a special value is added to the `static_values`.
-def _dispatch_mixed_values(
-    values: MixedValues,
-) -> Tuple[List[Value], Union[Operation, Value, OpView], DenseI64ArrayAttr]:
-    dynamic_values = []
-    packed_values = None
-    static_values = None
-    if isinstance(values, ArrayAttr):
-        static_values = values
-    elif isinstance(values, (Operation, Value, OpView)):
-        packed_values = values
-    else:
-        static_values = []
-        for size in values or []:
-            if isinstance(size, int):
-                static_values.append(size)
-            else:
-                static_values.append(ShapedType.get_dynamic_size())
-                dynamic_values.append(size)
-        static_values = DenseI64ArrayAttr.get(static_values)
-
-    return (dynamic_values, packed_values, static_values)
-
-
-def _get_value_or_attribute_value(
-    value_or_attr: Union[any, Attribute, ArrayAttr]
-) -> any:
-    if isinstance(value_or_attr, Attribute) and hasattr(value_or_attr, "value"):
-        return value_or_attr.value
-    if isinstance(value_or_attr, ArrayAttr):
-        return _get_value_list(value_or_attr)
-    return value_or_attr
-
-
-def _get_value_list(
-    sequence_or_array_attr: Union[Sequence[any], ArrayAttr]
-) -> Sequence[any]:
-    return [_get_value_or_attribute_value(v) for v in sequence_or_array_attr]
-
-
-def _get_int_array_attr(values: Optional[Union[ArrayAttr, IntOrAttrList]]) -> ArrayAttr:
-    if values is None:
-        return None
-
-    # Turn into a Python list of Python ints.
-    values = _get_value_list(values)
-
-    # Make an ArrayAttr of IntegerAttrs out of it.
-    return ArrayAttr.get(
-        [IntegerAttr.get(IntegerType.get_signless(64), v) for v in values]
-    )
-
-
-def _get_int_array_array_attr(
-    values: Optional[Union[ArrayAttr, Sequence[Union[ArrayAttr, IntOrAttrList]]]]
-) -> ArrayAttr:
-    """Creates an ArrayAttr of ArrayAttrs of IntegerAttrs.
-
-    The input has to be a collection of collection of integers, where any
-    Python Sequence and ArrayAttr are admissible collections and Python ints and
-    any IntegerAttr are admissible integers. Both levels of collections are
-    turned into ArrayAttr; the inner level is turned into IntegerAttrs of i64s.
-    If the input is None, an empty ArrayAttr is returned.
-    """
-    if values is None:
-        return None
-
-    # Make sure the outer level is a list.
-    values = _get_value_list(values)
-
-    # The inner level is now either invalid or a mixed sequence of ArrayAttrs and
-    # Sequences. Make sure the nested values are all lists.
-    values = [_get_value_list(nested) for nested in values]
-
-    # Turn each nested list into an ArrayAttr.
-    values = [_get_int_array_attr(nested) for nested in values]
-
-    # Turn the outer list into an ArrayAttr.
-    return ArrayAttr.get(values)
-
-
-class BufferizeToAllocationOp:
-    """Specialization for BufferizeToAllocationOp class."""
-
-    def __init__(
-        self,
-        target: Union[Operation, OpView, Value],
-        *,
-        memory_space: Optional[Union[int, str, Attribute]] = None,
-        memcpy_op: Optional[str] = None,
-        alloc_op: Optional[str] = None,
-        bufferize_destination_only: Optional[bool] = None,
-        loc=None,
-        ip=None,
-    ):
-        # No other types are allowed, so hard-code those here.
-        allocated_buffer_type = transform.AnyValueType.get()
-        new_ops_type = transform.AnyOpType.get()
-
-        if isinstance(memory_space, int):
-            memory_space = str(memory_space)
-        if isinstance(memory_space, str):
-            memory_space = Attribute.parse(memory_space)
-
-        super().__init__(
-            allocated_buffer_type,
-            new_ops_type,
-            target,
-            memory_space=memory_space,
-            memcpy_op=memcpy_op,
-            alloc_op=alloc_op,
-            bufferize_destination_only=bufferize_destination_only,
-            loc=loc,
-            ip=ip,
-        )
-
-
-class DecomposeOp:
-    """Specialization for DecomposeOp class."""
-
-    def __init__(self, target: Union[Operation, Value], *, loc=None, ip=None):
-        transformed_type = transform.AnyOpType.get()
-        super().__init__(transformed_type, target, loc=loc, ip=ip)
-
-
-class FuseIntoContainingOp:
-    """Specialization for FuseIntoContainingOp class."""
-
-    @overload
-    def __init__(
-        self,
-        fused_op_type: Type,
-        new_containing_op_type: Type,
-        producer_op: Union[Operation, OpView, Value],
-        containing_op: Union[Operation, OpView, Value],
-        *,
-        loc=None,
-        ip=None,
-    ):
-        ...
-
-    @overload
-    def __init__(
-        self,
-        producer_op: Union[Operation, OpView, Value],
-        containing_op: Union[Operation, OpView, Value],
-        *,
-        loc=None,
-        ip=None,
-    ):
-        ...
-
-    def __init__(
-        self,
-        fused_op_type_or_producer_op: Union[Operation, OpView, Type, Value],
-        new_containing_op_type_or_containing_op: Union[Operation, OpView, Type, Value],
-        producer_op_or_none: Optional[Union[Operation, OpView, Value]] = None,
-        containing_op_or_none: Optional[Union[Operation, OpView, Value]] = None,
-        *,
-        loc=None,
-        ip=None,
-    ):
-        if isinstance(fused_op_type_or_producer_op, Type):
-            if not isinstance(new_containing_op_type_or_containing_op, Type):
-                raise TypeError(
-                    "If 'fused_op_type_or_producer_op' is a type, then "
-                    "'new_containing_op_type_or_containing_op' is expected "
-                    "to be one as well."
-                )
-            fused_op_type = fused_op_type_or_producer_op
-            new_containing_op_type = new_containing_op_type_or_containing_op
-            producer_op = producer_op_or_none
-            containing_op = containing_op_or_none
-        else:
-            fused_op_type = transform.AnyOpType.get()
-            new_containing_op_type = transform.AnyOpType.get()
-            producer_op = fused_op_type_or_producer_op
-            containing_op = new_containing_op_type_or_containing_op
-
-        super().__init__(
-            fused_op_type,
-            new_containing_op_type,
-            producer_op,
-            containing_op,
-            loc=loc,
-            ip=ip,
-        )
-
-
-class GeneralizeOp:
-    """Specialization for GeneralizeOp class."""
-
-    def __init__(self, target: Union[Operation, Value], *, loc=None, ip=None):
-        transformed_type = transform.AnyOpType.get()
-        super().__init__(transformed_type, target, loc=loc, ip=ip)
-
-
-class InterchangeOp:
-    """Specialization for InterchangeOp class."""
-
-    def __init__(
-        self,
-        target: Union[Operation, Value],
-        *,
-        iterator_interchange: OptionalIntList = None,
-        loc=None,
-        ip=None,
-    ):
-        transformed_type = transform.AnyOpType.get()
-        super().__init__(
-            transformed_type,
-            target,
-            iterator_interchange=iterator_interchange,
-            loc=loc,
-            ip=ip,
-        )
-
-
-class MapCopyToThreadsOp:
-    """Specialization for MapCopyToThreadsOp class."""
-
-    @overload
-    def __init__(
-        self,
-        forall_op_type: Type,
-        tiled_op_type: Type,
-        target: Union[Operation, OpView, Value],
-        *,
-        total_num_threads: Union[int, IntegerAttr],
-        desired_bit_alignment: Union[int, IntegerAttr],
-        loc=None,
-        ip=None,
-    ):
-        ...
-
-    @overload
-    def __init__(
-        self,
-        target: Union[Operation, OpView, Value],
-        *,
-        total_num_threads: Union[int, IntegerAttr],
-        desired_bit_alignment: Union[int, IntegerAttr],
-        loc=None,
-        ip=None,
-    ):
-        ...
-
-    def __init__(
-        self,
-        forall_op_type_or_target: Union[Operation, OpView, Type, Value],
-        tiled_op_type_or_none: Optional[Type] = None,
-        target_or_none: Optional[Union[Operation, OpView, Value]] = None,
-        *,
-        total_num_threads: Union[int, IntegerAttr],
-        desired_bit_alignment: Union[int, IntegerAttr],
-        loc=None,
-        ip=None,
-    ):
-        if isinstance(forall_op_type_or_target, Type):
-            forall_op_type = forall_op_type_or_target
-            tiled_op_type = tiled_op_type_or_none
-            target = target_or_none
-        else:
-            forall_op_type = transform.AnyOpType.get()
-            tiled_op_type = transform.AnyOpType.get()
-            target = forall_op_type_or_target
-
-        super().__init__(
-            forall_op_type,
-            tiled_op_type,
-            target,
-            total_num_threads=total_num_threads,
-            desired_bit_alignment=desired_bit_alignment,
-            loc=loc,
-            ip=ip,
-        )
-
-
-class VectorizeOp:
-    """Specialization for VectorizeOp class."""
-
-    def __init__(
-        self,
-        target: Union[Operation, OpView, Value],
-        vector_sizes: Optional[Union[DynamicIndexList, ArrayAttr]] = None,
-        *,
-        vectorize_nd_extract: Optional[bool] = None,
-        scalable_sizes: OptionalBoolList = None,
-        static_vector_sizes: OptionalIntList = None,
-        loc=None,
-        ip=None,
-    ):
-        if (
-            scalable_sizes is None
-            and static_vector_sizes is None
-            and vector_sizes is None
-        ):
-            dynamic_vector_sizes = []
-        elif scalable_sizes is None and static_vector_sizes is None:
-            (
-                dynamic_vector_sizes,
-                static_vector_sizes,
-                scalable_sizes,
-            ) = _dispatch_dynamic_index_list(vector_sizes)
-        elif scalable_sizes is None or static_vector_sizes is None:
-            raise TypeError(
-                "'scalable_sizes' and 'static_vector_sizes' must either both "
-                "be given explicitly or both be given as part of 'vector_sizes'."
-            )
-        else:
-            dynamic_vector_sizes = vector_sizes
-
-        super().__init__(
-            target,
-            vector_sizes=dynamic_vector_sizes,
-            static_vector_sizes=static_vector_sizes,
-            scalable_sizes=scalable_sizes,
-            vectorize_nd_extract=vectorize_nd_extract,
-            loc=loc,
-            ip=ip,
-        )
-
-
-class MatchOp:
-    """Specialization for MatchOp class."""
-
-    @overload
-    @classmethod
-    def match_op_names(
-        cls,
-        target: Union[Operation, Value],
-        names: Union[str, Sequence[str]],
-        *,
-        loc=None,
-        ip=None,
-    ):
-        ...
-
-    @overload
-    @classmethod
-    def match_op_names(
-        cls,
-        result_type: Type,
-        target: Union[Operation, Value],
-        names: Union[str, Sequence[str]],
-        *,
-        loc=None,
-        ip=None,
-    ):
-        ...
-
-    @classmethod
-    def match_op_names(
-        cls,
-        result_type_or_target: Union[Type, Operation, Value],
-        target_or_names: Union[Operation, Value, Sequence[str], str],
-        names_or_none: Optional[Union[Sequence[str], str]] = None,
-        *,
-        loc=None,
-        ip=None,
-    ):
-        if isinstance(result_type_or_target, Type):
-            result_type = result_type_or_target
-            target = target_or_names
-            names = names_or_none
-        else:
-            result_type = transform.AnyOpType.get()
-            target = result_type_or_target
-            names = target_or_names
-
-        if isinstance(names, str):
-            names = [names]
-
-        return cls(
-            result_type,
-            target,
-            ops=ArrayAttr.get(list(map(lambda s: StringAttr.get(s), names))),
-            loc=loc,
-            ip=ip,
-        )
-
-
-class MultiTileSizesOp:
-    """Specialization for MultiTileSizesOp class."""
-
-    def __init__(
-        self,
-        result_type: Type,
-        target: Union[Operation, Value],
-        *,
-        dimension: Union[int, IntegerAttr],
-        target_size: Union[int, IntegerAttr],
-        divisor: Optional[Optional[Union[int, IntegerAttr]]] = None,
-        loc=None,
-        ip=None,
-    ):
-        super().__init__(
-            result_type,
-            result_type,
-            result_type,
-            target,
-            dimension=dimension,
-            target_size=target_size,
-            divisor=divisor,
-            loc=loc,
-            ip=ip,
-        )
-
-
-class PadOp:
-    """Specialization for PadOp class."""
-
-    def __init__(
-        self,
-        target: Union[Operation, OpView, Value],
-        *,
-        padding_values: Optional[Union[ArrayAttr, Sequence[Attribute]]] = None,
-        padding_dimensions: OptionalIntList = None,
-        pad_to_multiple_of: OptionalIntList = None,
-        pack_paddings: OptionalIntList = None,
-        transpose_paddings: Optional[
-            Union[ArrayAttr, Sequence[Union[ArrayAttr, IntOrAttrList]]]
-        ] = None,
-        copy_back_op: Optional[Union[str, StringAttr]] = None,
-        loc=None,
-        ip=None,
-    ):
-        transpose_paddings = _get_int_array_array_attr(transpose_paddings)
-
-        any_op_type = transform.AnyOpType.get()
-        super().__init__(
-            any_op_type,
-            any_op_type,
-            any_op_type,
-            target,
-            padding_values=padding_values,
-            padding_dimensions=padding_dimensions,
-            pad_to_multiple_of=pad_to_multiple_of,
-            pack_paddings=pack_paddings,
-            transpose_paddings=transpose_paddings,
-            copy_back_op=copy_back_op,
-            loc=loc,
-            ip=ip,
-        )
-
-
-class ScalarizeOp:
-    """Specialization for ScalarizeOp class."""
-
-    def __init__(self, target: Union[Operation, Value], *, loc=None, ip=None):
-        result_type = transform.AnyOpType.get()
-        super().__init__(result_type, target, loc=loc, ip=ip)
-
-
-class SplitOp:
-    """Specialization for SplitOp class."""
-
-    def __init__(
-        self,
-        target: Union[Operation, Value],
-        dimension: Union[int, Attribute],
-        split_point: Union[int, Operation, Value, Attribute],
-        *,
-        loc=None,
-        ip=None,
-    ):
-        if isinstance(split_point, int):
-            static_split_point = split_point
-            dynamic_split_point = None
-        else:
-            static_split_point = ShapedType.get_dynamic_size()
-            dynamic_split_point = split_point
-
-        super().__init__(
-            target.type,
-            target.type,
-            target,
-            dimension=dimension,
-            static_split_point=static_split_point,
-            dynamic_split_point=dynamic_split_point,
-            loc=loc,
-            ip=ip,
-        )
-
-
-class TileUsingForOp:
-    """Specialization for TileUsingForOp class."""
-
-    @overload
-    def __init__(
-        self,
-        loop_types: Union[Type, List[Type]],
-        target: Union[Operation, Value],
-        *,
-        sizes: Optional[Union[DynamicIndexList, ArrayAttr]] = None,
-        interchange: OptionalIntList = None,
-        loc=None,
-        ip=None,
-    ):
-        ...
-
-    @overload
-    def __init__(
-        self,
-        target: Union[Operation, Value, OpView],
-        *,
-        sizes: Optional[Union[DynamicIndexList, ArrayAttr]] = None,
-        interchange: OptionalIntList = None,
-        loc=None,
-        ip=None,
-    ):
-        ...
-
-    def __init__(
-        self,
-        loop_types_or_target: Union[Type, List[Type], Operation, Value],
-        target_or_none: Optional[Union[Operation, Value, OpView]] = None,
-        *,
-        sizes: Optional[Union[DynamicIndexList, ArrayAttr]] = None,
-        interchange: OptionalIntList = None,
-        loc=None,
-        ip=None,
-    ):
-        (
-            dynamic_sizes,
-            static_sizes,
-            scalable_sizes,
-        ) = _dispatch_dynamic_index_list(sizes)
-
-        num_loops = sum(v if v == 0 else 1 for v in static_sizes)
-
-        if isinstance(loop_types_or_target, (Operation, Value, OpView)):
-            loop_types = [transform.AnyOpType.get()] * num_loops
-            target = loop_types_or_target
-            assert (
-                target_or_none is None
-            ), "Cannot construct TileUsingForOp with two targets."
-        else:
-            loop_types = (
-                ([loop_types_or_target] * num_loops)
-                if isinstance(loop_types_or_target, Type)
-                else loop_types_or_target
-            )
-            target = target_or_none
-
-        super().__init__(
-            target.type,
-            loop_types,
-            target,
-            dynamic_sizes=dynamic_sizes,
-            static_sizes=static_sizes,
-            interchange=interchange,
-            scalable_sizes=scalable_sizes,
-            loc=loc,
-            ip=ip,
-        )
-
-
-class TileUsingForallOp:
-    """Specialization for TileUsingForallOp class."""
-
-    @overload
-    def __init__(
-        self,
-        loops_type: Type,
-        tiled_op_type: Type,
-        target: Union[Operation, Value, OpView],
-        *,
-        num_threads: Optional[MixedValues] = None,
-        tile_sizes: MixedValues = None,
-        mapping=None,
-        loc=None,
-        ip=None,
-    ):
-        ...
-
-    @overload
-    def __init__(
-        self,
-        target: Union[Operation, Value, OpView],
-        *,
-        num_threads: Optional[MixedValues] = None,
-        tile_sizes: MixedValues = None,
-        mapping=None,
-        loc=None,
-        ip=None,
-    ):
-        ...
-
-    def __init__(
-        self,
-        loops_type_or_target: Union[
-            Type, Union[Operation, Value, OpView]  # loops_type
-        ],  # target
-        tiled_op_type_or_none: Optional[Type] = None,
-        target_or_none: Optional[Union[Operation, Value, OpView]] = None,
-        *,
-        num_threads: MixedValues = None,
-        tile_sizes: MixedValues = None,
-        mapping=None,
-        loc=None,
-        ip=None,
-    ):
-        # `Type` arguments in the front are optional: add default values to front.
-        if isinstance(loops_type_or_target, Type):
-            # First overload: type arguments provided.
-            if not isinstance(tiled_op_type_or_none, Type):
-                raise TypeError(
-                    "If 'loops_type_or_target' is a type, then "
-                    "'tiled_op_type_or_none' is expected to be one as well."
-                )
-            loops_type = loops_type_or_target
-            tiled_op_type = tiled_op_type_or_none
-            target = target_or_none
-        else:
-            # Last overload: type arguments missing.
-            loops_type = transform.AnyOpType.get()
-            tiled_op_type = transform.AnyOpType.get()
-            target = loops_type_or_target
-
-        # Unpack mixed num_threads.
-        (
-            dynamic_num_threads,
-            packed_num_threads,
-            num_threads_attr,
-        ) = _dispatch_mixed_values(num_threads)
-
-        # Unpack mixed tile_sizes.
-        (
-            dynamic_tile_sizes,
-            packed_tile_sizes,
-            tile_sizes_attr,
-        ) = _dispatch_mixed_values(tile_sizes)
-
-        super().__init__(
-            loops_type,
-            tiled_op_type,
-            target=target,
-            tile_sizes=dynamic_tile_sizes,
-            packed_tile_sizes=packed_tile_sizes,
-            static_tile_sizes=tile_sizes_attr,
-            num_threads=dynamic_num_threads,
-            packed_num_threads=packed_num_threads,
-            static_num_threads=num_threads_attr,
-            mapping=mapping,
-            loc=loc,
-            ip=ip,
-        )
-
-
-class VectorizeChildrenAndApplyPatternsOp:
-    """Specialization for VectorizeChildrenAndApplyPatternsOp class."""
-
-    def __init__(
-        self,
-        target: Union[Operation, Value],
-        *,
-        disable_multi_reduction_to_contract_patterns: bool = False,
-        disable_transfer_permutation_map_lowering_patterns: bool = False,
-        vectorize_nd_extract: bool = False,
-        vectorize_padding: bool = False,
-        loc=None,
-        ip=None,
-    ):
-        transformed_type = transform.AnyOpType.get()
-        super().__init__(
-            transformed_type,
-            target,
-            disable_multi_reduction_to_contract_patterns=disable_multi_reduction_to_contract_patterns,
-            disable_transfer_permutation_map_lowering_patterns=disable_transfer_permutation_map_lowering_patterns,
-            vectorize_nd_extract=vectorize_nd_extract,
-            vectorize_padding=vectorize_padding,
-            loc=loc,
-            ip=ip,
-        )
diff --git a/mlir/python/mlir/dialects/_tensor_ops_ext.py b/mlir/python/mlir/dialects/_tensor_ops_ext.py
deleted file mode 100644
index 09b9ec68db7d9c7..000000000000000
--- a/mlir/python/mlir/dialects/_tensor_ops_ext.py
+++ /dev/null
@@ -1,44 +0,0 @@
-#  Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-#  See https://llvm.org/LICENSE.txt for license information.
-#  SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-
-try:
-    from ..ir import *
-except ImportError as e:
-    raise RuntimeError("Error loading imports from extension module") from e
-
-from typing import Any, Optional, Sequence, Union
-from ._ods_common import (
-    get_op_result_or_value as _get_op_result_or_value,
-    get_op_results_or_values as _get_op_results_or_values,
-)
-
-
-class EmptyOp:
-    """Extends the tensor.empty op."""
-
-    def __init__(
-        self,
-        sizes: Sequence[Union[int, Value]],
-        element_type: Type,
-        *,
-        loc=None,
-        ip=None
-    ):
-        """Constructs an `empty` with mixed static/dynamic sizes."""
-        # TODO: Refactor the EmptyOp to take an element type attribute and
-        # then use normal result type inference, unifying the Python and C++ side
-        # with a standard mechanism (versus stashing that in builders).
-        dynamic_sizes = []
-        static_sizes = []
-        for s in sizes:
-            if isinstance(s, int):
-                static_sizes.append(s)
-            else:
-                static_sizes.append(ShapedType.get_dynamic_size())
-                dynamic_sizes.append(s)
-        result_type = RankedTensorType.get(static_sizes, element_type)
-        op = self.build_generic(
-            results=[result_type], operands=dynamic_sizes, attributes={}, loc=loc, ip=ip
-        )
-        OpView.__init__(self, op)
diff --git a/mlir/python/mlir/dialects/_tensor_transform_ops_ext.py b/mlir/python/mlir/dialects/_tensor_transform_ops_ext.py
deleted file mode 100644
index 996093fbc913e8a..000000000000000
--- a/mlir/python/mlir/dialects/_tensor_transform_ops_ext.py
+++ /dev/null
@@ -1,64 +0,0 @@
-#  Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-#  See https://llvm.org/LICENSE.txt for license information.
-#  SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-
-try:
-    from ..ir import *
-    from ..dialects import transform
-except ImportError as e:
-    raise RuntimeError("Error loading imports from extension module") from e
-
-from typing import Optional, overload, Union
-
-
-class MakeLoopIndependentOp:
-    """Specialization for MakeLoopIndependentOp class."""
-
-    @overload
-    def __init__(
-        self,
-        transformed_type: Type,
-        target: Union[Operation, OpView, Value],
-        num_loops: Union[int, IntegerAttr],
-        *,
-        loc=None,
-        ip=None
-    ):
-        ...
-
-    @overload
-    def __init__(
-        self,
-        target: Union[Operation, OpView, Value],
-        num_loops: Union[int, IntegerAttr],
-        *,
-        loc=None,
-        ip=None
-    ):
-        ...
-
-    def __init__(
-        self,
-        transformed_type_or_target: Type,
-        target_or_num_loops: Union[int, IntegerAttr, Operation, OpView, Value] = None,
-        num_loops_or_none: Optional[Union[int, IntegerAttr]] = None,
-        *,
-        loc=None,
-        ip=None
-    ):
-        if isinstance(transformed_type_or_target, Type):
-            transformed_type = transformed_type_or_target
-            target = target_or_num_loops
-            num_loops = num_loops_or_none
-        else:
-            transformed_type = transform.AnyOpType.get()
-            target = transformed_type_or_target
-            num_loops = target_or_num_loops
-
-        super().__init__(
-            transformed_type,
-            target,
-            num_loops,
-            loc=loc,
-            ip=ip,
-        )
diff --git a/mlir/python/mlir/dialects/_transform_ops_ext.py b/mlir/python/mlir/dialects/_transform_ops_ext.py
deleted file mode 100644
index b1e7b892536f4a1..000000000000000
--- a/mlir/python/mlir/dialects/_transform_ops_ext.py
+++ /dev/null
@@ -1,176 +0,0 @@
-#  Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-#  See https://llvm.org/LICENSE.txt for license information.
-#  SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-
-try:
-    from ..ir import *
-    from ._ods_common import (
-        get_op_result_or_value as _get_op_result_or_value,
-        get_op_results_or_values as _get_op_results_or_values,
-    )
-except ImportError as e:
-    raise RuntimeError("Error loading imports from extension module") from e
-
-from typing import Optional, Sequence, Union
-
-
-class CastOp:
-    def __init__(
-        self,
-        result_type: Type,
-        target: Union[Operation, Value],
-        *,
-        loc=None,
-        ip=None,
-    ):
-        super().__init__(result_type, _get_op_result_or_value(target), loc=loc, ip=ip)
-
-
-class ApplyPatternsOp:
-    def __init__(
-        self,
-        target: Union[Operation, Value, OpView],
-        *,
-        loc=None,
-        ip=None,
-    ):
-        operands = []
-        operands.append(_get_op_result_or_value(target))
-        super().__init__(
-            self.build_generic(
-                attributes={},
-                results=[],
-                operands=operands,
-                successors=None,
-                regions=None,
-                loc=loc,
-                ip=ip,
-            )
-        )
-        self.regions[0].blocks.append()
-
-    @property
-    def patterns(self) -> Block:
-        return self.regions[0].blocks[0]
-
-
-class testGetParentOp:
-    def __init__(
-        self,
-        result_type: Type,
-        target: Union[Operation, Value],
-        *,
-        isolated_from_above: bool = False,
-        op_name: Optional[str] = None,
-        deduplicate: bool = False,
-        loc=None,
-        ip=None,
-    ):
-        super().__init__(
-            result_type,
-            _get_op_result_or_value(target),
-            isolated_from_above=isolated_from_above,
-            op_name=op_name,
-            deduplicate=deduplicate,
-            loc=loc,
-            ip=ip,
-        )
-
-
-class MergeHandlesOp:
-    def __init__(
-        self,
-        handles: Sequence[Union[Operation, Value]],
-        *,
-        deduplicate: bool = False,
-        loc=None,
-        ip=None,
-    ):
-        super().__init__(
-            [_get_op_result_or_value(h) for h in handles],
-            deduplicate=deduplicate,
-            loc=loc,
-            ip=ip,
-        )
-
-
-class ReplicateOp:
-    def __init__(
-        self,
-        pattern: Union[Operation, Value],
-        handles: Sequence[Union[Operation, Value]],
-        *,
-        loc=None,
-        ip=None,
-    ):
-        super().__init__(
-            [_get_op_result_or_value(h).type for h in handles],
-            _get_op_result_or_value(pattern),
-            [_get_op_result_or_value(h) for h in handles],
-            loc=loc,
-            ip=ip,
-        )
-
-
-class SequenceOp:
-    def __init__(
-        self,
-        failure_propagation_mode,
-        results: Sequence[Type],
-        target: Union[Operation, Value, Type],
-        extra_bindings: Optional[
-            Union[Sequence[Value], Sequence[Type], Operation, OpView]
-        ] = None,
-    ):
-        root = (
-            _get_op_result_or_value(target)
-            if isinstance(target, (Operation, Value))
-            else None
-        )
-        root_type = root.type if not isinstance(target, Type) else target
-
-        if extra_bindings is None:
-            extra_bindings = []
-        if isinstance(extra_bindings, (Operation, OpView)):
-            extra_bindings = _get_op_results_or_values(extra_bindings)
-
-        extra_binding_types = []
-        if len(extra_bindings) != 0:
-            if isinstance(extra_bindings[0], Type):
-                extra_binding_types = extra_bindings
-                extra_bindings = []
-            else:
-                extra_binding_types = [v.type for v in extra_bindings]
-
-        super().__init__(
-            results_=results,
-            failure_propagation_mode=failure_propagation_mode,
-            root=root,
-            extra_bindings=extra_bindings,
-        )
-        self.regions[0].blocks.append(*tuple([root_type] + extra_binding_types))
-
-    @property
-    def body(self) -> Block:
-        return self.regions[0].blocks[0]
-
-    @property
-    def bodyTarget(self) -> Value:
-        return self.body.arguments[0]
-
-    @property
-    def bodyExtraArgs(self) -> BlockArgumentList:
-        return self.body.arguments[1:]
-
-
-class YieldOp:
-    def __init__(
-        self,
-        operands: Optional[Union[Operation, Sequence[Value]]] = None,
-        *,
-        loc=None,
-        ip=None,
-    ):
-        if operands is None:
-            operands = []
-        super().__init__(_get_op_results_or_values(operands), loc=loc, ip=ip)
diff --git a/mlir/python/mlir/dialects/_transform_pdl_extension_ops_ext.py b/mlir/python/mlir/dialects/_transform_pdl_extension_ops_ext.py
deleted file mode 100644
index c4e4b4b4254b038..000000000000000
--- a/mlir/python/mlir/dialects/_transform_pdl_extension_ops_ext.py
+++ /dev/null
@@ -1,55 +0,0 @@
-#  Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-#  See https://llvm.org/LICENSE.txt for license information.
-#  SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-
-try:
-  from ..ir import *
-  from ._ods_common import (
-      get_op_result_or_value as _get_op_result_or_value,
-      get_op_results_or_values as _get_op_results_or_values,
-  )
-except ImportError as e:
-  raise RuntimeError("Error loading imports from extension module") from e
-
-from typing import Union
-
-class PDLMatchOp:
-
-  def __init__(
-      self,
-      result_type: Type,
-      target: Union[Operation, Value],
-      pattern_name: Union[Attribute, str],
-      *,
-      loc=None,
-      ip=None,
-  ):
-    super().__init__(
-        result_type,
-        _get_op_result_or_value(target),
-        pattern_name,
-        loc=loc,
-        ip=ip,
-    )
-
-
-class WithPDLPatternsOp:
-
-  def __init__(self,
-               target: Union[Operation, Value, Type],
-               *,
-               loc=None,
-               ip=None):
-    root = _get_op_result_or_value(target) if not isinstance(target,
-                                                             Type) else None
-    root_type = target if isinstance(target, Type) else root.type
-    super().__init__(root=root, loc=loc, ip=ip)
-    self.regions[0].blocks.append(root_type)
-
-  @property
-  def body(self) -> Block:
-    return self.regions[0].blocks[0]
-
-  @property
-  def bodyTarget(self) -> Value:
-    return self.body.arguments[0]
diff --git a/mlir/python/mlir/dialects/arith.py b/mlir/python/mlir/dialects/arith.py
index fb13beb63ca66c3..e3b6a428c879de5 100644
--- a/mlir/python/mlir/dialects/arith.py
+++ b/mlir/python/mlir/dialects/arith.py
@@ -3,4 +3,71 @@
 #  SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
 from ._arith_ops_gen import *
+from ._arith_ops_gen import _Dialect
 from ._arith_enum_gen import *
+
+try:
+    from ..ir import *
+    from ._ods_common import get_default_loc_context as _get_default_loc_context, _cext as _ods_cext
+
+    from typing import Any, List, Union
+except ImportError as e:
+    raise RuntimeError("Error loading imports from extension module") from e
+
+
+def _isa(obj: Any, cls: type):
+    try:
+        cls(obj)
+    except ValueError:
+        return False
+    return True
+
+
+def _is_any_of(obj: Any, classes: List[type]):
+    return any(_isa(obj, cls) for cls in classes)
+
+
+def _is_integer_like_type(type: Type):
+    return _is_any_of(type, [IntegerType, IndexType])
+
+
+def _is_float_type(type: Type):
+    return _is_any_of(type, [BF16Type, F16Type, F32Type, F64Type])
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class ConstantOp(ConstantOp):
+    """Specialization for the constant op class."""
+
+    def __init__(
+        self, result: Type, value: Union[int, float, Attribute], *, loc=None, ip=None
+    ):
+        if isinstance(value, int):
+            super().__init__(IntegerAttr.get(result, value), loc=loc, ip=ip)
+        elif isinstance(value, float):
+            super().__init__(FloatAttr.get(result, value), loc=loc, ip=ip)
+        else:
+            super().__init__(value, loc=loc, ip=ip)
+
+    @classmethod
+    def create_index(cls, value: int, *, loc=None, ip=None):
+        """Create an index-typed constant."""
+        return cls(
+            IndexType.get(context=_get_default_loc_context(loc)), value, loc=loc, ip=ip
+        )
+
+    @property
+    def type(self):
+        return self.results[0].type
+
+    @property
+    def value(self):
+        return Attribute(self.operation.attributes["value"])
+
+    @property
+    def literal_value(self) -> Union[int, float]:
+        if _is_integer_like_type(self.type):
+            return IntegerAttr(self.value).value
+        elif _is_float_type(self.type):
+            return FloatAttr(self.value).value
+        else:
+            raise ValueError("only integer and float constants have literal values")
diff --git a/mlir/python/mlir/dialects/bufferization.py b/mlir/python/mlir/dialects/bufferization.py
index 759b6aa24a9ff73..78139c8f5cc3b0a 100644
--- a/mlir/python/mlir/dialects/bufferization.py
+++ b/mlir/python/mlir/dialects/bufferization.py
@@ -3,4 +3,47 @@
 #  SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
 from ._bufferization_ops_gen import *
+from ._bufferization_ops_gen import _Dialect
 from ._bufferization_enum_gen import *
+
+try:
+    from typing import Sequence, Union
+    from ..ir import *
+    from ._ods_common import get_default_loc_context, _cext as _ods_cext
+
+    from typing import Any, List, Union
+except ImportError as e:
+    raise RuntimeError("Error loading imports from extension module") from e
+
+_AllocTensorOp = AllocTensorOp
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class AllocTensorOp(_AllocTensorOp):
+    """Extends the bufferization.alloc_tensor op."""
+
+    def __init__(
+        self,
+        tensor_type: Type,
+        dynamic_sizes: Sequence[Value],
+        copy: Value,
+        size_hint: Value,
+        escape: BoolAttr,
+        *,
+        loc=None,
+        ip=None,
+    ):
+        """Constructs an `alloc_tensor` with static and/or dynamic sizes."""
+        context = get_default_loc_context(loc)
+        attributes = {}
+        if escape:
+            attributes["escape"] = escape
+        super(_AllocTensorOp, self).__init__(
+            self.build_generic(
+                results=[tensor_type],
+                operands=[dynamic_sizes, copy, size_hint],
+                attributes=attributes,
+                loc=loc,
+                ip=ip,
+            )
+        )
diff --git a/mlir/python/mlir/dialects/builtin.py b/mlir/python/mlir/dialects/builtin.py
index 30279e1611f99aa..1c8215ba4b67532 100644
--- a/mlir/python/mlir/dialects/builtin.py
+++ b/mlir/python/mlir/dialects/builtin.py
@@ -3,3 +3,27 @@
 #  SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
 from ._builtin_ops_gen import *
+from ._builtin_ops_gen import _Dialect
+
+try:
+    from ..ir import *
+    from ._ods_common import _cext as _ods_cext
+except ImportError as e:
+    raise RuntimeError("Error loading imports from extension module") from e
+
+_ModuleOp = ModuleOp
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class ModuleOp(_ModuleOp):
+    """Specialization for the module op class."""
+
+    def __init__(self, *, loc=None, ip=None):
+        super(_ModuleOp, self).__init__(
+            self.build_generic(results=[], operands=[], loc=loc, ip=ip)
+        )
+        body = self.regions[0].blocks.append()
+
+    @property
+    def body(self):
+        return self.regions[0].blocks[0]
diff --git a/mlir/python/mlir/dialects/func.py b/mlir/python/mlir/dialects/func.py
index dc554c22173bc60..9c6c4c9092c7a88 100644
--- a/mlir/python/mlir/dialects/func.py
+++ b/mlir/python/mlir/dialects/func.py
@@ -3,3 +3,326 @@
 #  SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
 from ._func_ops_gen import *
+from ._func_ops_gen import _Dialect
+
+try:
+    from ..ir import *
+    from ._ods_common import (
+        get_default_loc_context as _get_default_loc_context,
+        _cext as _ods_cext,
+    )
+
+    import inspect
+
+    from typing import Any, List, Optional, Sequence, Union
+except ImportError as e:
+    raise RuntimeError("Error loading imports from extension module") from e
+
+ARGUMENT_ATTRIBUTE_NAME = "arg_attrs"
+RESULT_ATTRIBUTE_NAME = "res_attrs"
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class ConstantOp(ConstantOp):
+    """Specialization for the constant op class."""
+
+    def __init__(self, result: Type, value: Attribute, *, loc=None, ip=None):
+        super().__init__(result, value, loc=loc, ip=ip)
+
+    @property
+    def type(self):
+        return self.results[0].type
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class FuncOp(FuncOp):
+    """Specialization for the func op class."""
+
+    def __init__(
+        self, name, type, *, visibility=None, body_builder=None, loc=None, ip=None
+    ):
+        """
+        Create a FuncOp with the provided `name`, `type`, and `visibility`.
+        - `name` is a string representing the function name.
+        - `type` is either a FunctionType or a pair of list describing inputs and
+          results.
+        - `visibility` is a string matching `public`, `private`, or `nested`. None
+          implies private visibility.
+        - `body_builder` is an optional callback, when provided a new entry block
+          is created and the callback is invoked with the new op as argument within
+          an InsertionPoint context already set for the block. The callback is
+          expected to insert a terminator in the block.
+        """
+        sym_name = StringAttr.get(str(name))
+
+        # If the type is passed as a tuple, build a FunctionType on the fly.
+        if isinstance(type, tuple):
+            type = FunctionType.get(inputs=type[0], results=type[1])
+
+        type = TypeAttr.get(type)
+        sym_visibility = (
+            StringAttr.get(str(visibility)) if visibility is not None else None
+        )
+        super().__init__(sym_name, type, sym_visibility=sym_visibility, loc=loc, ip=ip)
+        if body_builder:
+            entry_block = self.add_entry_block()
+            with InsertionPoint(entry_block):
+                body_builder(self)
+
+    @property
+    def is_external(self):
+        return len(self.regions[0].blocks) == 0
+
+    @property
+    def body(self):
+        return self.regions[0]
+
+    @property
+    def type(self):
+        return FunctionType(TypeAttr(self.attributes["function_type"]).value)
+
+    @property
+    def visibility(self):
+        return self.attributes["sym_visibility"]
+
+    @property
+    def name(self) -> StringAttr:
+        return StringAttr(self.attributes["sym_name"])
+
+    @property
+    def entry_block(self):
+        if self.is_external:
+            raise IndexError("External function does not have a body")
+        return self.regions[0].blocks[0]
+
+    def add_entry_block(self, arg_locs: Optional[Sequence[Location]] = None):
+        """
+        Add an entry block to the function body using the function signature to
+        infer block arguments.
+        Returns the newly created block
+        """
+        if not self.is_external:
+            raise IndexError("The function already has an entry block!")
+        self.body.blocks.append(*self.type.inputs, arg_locs=arg_locs)
+        return self.body.blocks[0]
+
+    @property
+    def arg_attrs(self):
+        return ArrayAttr(self.attributes[ARGUMENT_ATTRIBUTE_NAME])
+
+    @arg_attrs.setter
+    def arg_attrs(self, attribute: Union[ArrayAttr, list]):
+        if isinstance(attribute, ArrayAttr):
+            self.attributes[ARGUMENT_ATTRIBUTE_NAME] = attribute
+        else:
+            self.attributes[ARGUMENT_ATTRIBUTE_NAME] = ArrayAttr.get(
+                attribute, context=self.context
+            )
+
+    @property
+    def arguments(self):
+        return self.entry_block.arguments
+
+    @property
+    def result_attrs(self):
+        return self.attributes[RESULT_ATTRIBUTE_NAME]
+
+    @result_attrs.setter
+    def result_attrs(self, attribute: ArrayAttr):
+        self.attributes[RESULT_ATTRIBUTE_NAME] = attribute
+
+    @classmethod
+    def from_py_func(
+        FuncOp,
+        *inputs: Type,
+        results: Optional[Sequence[Type]] = None,
+        name: Optional[str] = None,
+    ):
+        """Decorator to define an MLIR FuncOp specified as a python function.
+
+        Requires that an `mlir.ir.InsertionPoint` and `mlir.ir.Location` are
+        active for the current thread (i.e. established in a `with` block).
+
+        When applied as a decorator to a Python function, an entry block will
+        be constructed for the FuncOp with types as specified in `*inputs`. The
+        block arguments will be passed positionally to the Python function. In
+        addition, if the Python function accepts keyword arguments generally or
+        has a corresponding keyword argument, the following will be passed:
+          * `func_op`: The `func` op being defined.
+
+        By default, the function name will be the Python function `__name__`. This
+        can be overriden by passing the `name` argument to the decorator.
+
+        If `results` is not specified, then the decorator will implicitly
+        insert a `ReturnOp` with the `Value`'s returned from the decorated
+        function. It will also set the `FuncOp` type with the actual return
+        value types. If `results` is specified, then the decorated function
+        must return `None` and no implicit `ReturnOp` is added (nor are the result
+        types updated). The implicit behavior is intended for simple, single-block
+        cases, and users should specify result types explicitly for any complicated
+        cases.
+
+        The decorated function can further be called from Python and will insert
+        a `CallOp` at the then-current insertion point, returning either None (
+        if no return values), a unary Value (for one result), or a list of Values).
+        This mechanism cannot be used to emit recursive calls (by construction).
+        """
+
+        def decorator(f):
+            from . import func
+
+            # Introspect the callable for optional features.
+            sig = inspect.signature(f)
+            has_arg_func_op = False
+            for param in sig.parameters.values():
+                if param.kind == param.VAR_KEYWORD:
+                    has_arg_func_op = True
+                if param.name == "func_op" and (
+                    param.kind == param.POSITIONAL_OR_KEYWORD
+                    or param.kind == param.KEYWORD_ONLY
+                ):
+                    has_arg_func_op = True
+
+            # Emit the FuncOp.
+            implicit_return = results is None
+            symbol_name = name or f.__name__
+            function_type = FunctionType.get(
+                inputs=inputs, results=[] if implicit_return else results
+            )
+            func_op = FuncOp(name=symbol_name, type=function_type)
+            with InsertionPoint(func_op.add_entry_block()):
+                func_args = func_op.entry_block.arguments
+                func_kwargs = {}
+                if has_arg_func_op:
+                    func_kwargs["func_op"] = func_op
+                return_values = f(*func_args, **func_kwargs)
+                if not implicit_return:
+                    return_types = list(results)
+                    assert return_values is None, (
+                        "Capturing a python function with explicit `results=` "
+                        "requires that the wrapped function returns None."
+                    )
+                else:
+                    # Coerce return values, add ReturnOp and rewrite func type.
+                    if return_values is None:
+                        return_values = []
+                    elif isinstance(return_values, tuple):
+                        return_values = list(return_values)
+                    elif isinstance(return_values, Value):
+                        # Returning a single value is fine, coerce it into a list.
+                        return_values = [return_values]
+                    elif isinstance(return_values, OpView):
+                        # Returning a single operation is fine, coerce its results a list.
+                        return_values = return_values.operation.results
+                    elif isinstance(return_values, Operation):
+                        # Returning a single operation is fine, coerce its results a list.
+                        return_values = return_values.results
+                    else:
+                        return_values = list(return_values)
+                    func.ReturnOp(return_values)
+                    # Recompute the function type.
+                    return_types = [v.type for v in return_values]
+                    function_type = FunctionType.get(
+                        inputs=inputs, results=return_types
+                    )
+                    func_op.attributes["function_type"] = TypeAttr.get(function_type)
+
+            def emit_call_op(*call_args):
+                call_op = func.CallOp(
+                    return_types, FlatSymbolRefAttr.get(symbol_name), call_args
+                )
+                if return_types is None:
+                    return None
+                elif len(return_types) == 1:
+                    return call_op.result
+                else:
+                    return call_op.results
+
+            wrapped = emit_call_op
+            wrapped.__name__ = f.__name__
+            wrapped.func_op = func_op
+            return wrapped
+
+        return decorator
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class CallOp(CallOp):
+    """Specialization for the call op class."""
+
+    def __init__(
+        self,
+        calleeOrResults: Union[FuncOp, List[Type]],
+        argumentsOrCallee: Union[List, FlatSymbolRefAttr, str],
+        arguments: Optional[List] = None,
+        *,
+        loc=None,
+        ip=None,
+    ):
+        """Creates an call operation.
+
+        The constructor accepts three different forms:
+
+          1. A function op to be called followed by a list of arguments.
+          2. A list of result types, followed by the name of the function to be
+             called as string, following by a list of arguments.
+          3. A list of result types, followed by the name of the function to be
+             called as symbol reference attribute, followed by a list of arguments.
+
+        For example
+
+            f = func.FuncOp("foo", ...)
+            func.CallOp(f, [args])
+            func.CallOp([result_types], "foo", [args])
+
+        In all cases, the location and insertion point may be specified as keyword
+        arguments if not provided by the surrounding context managers.
+        """
+
+        # TODO: consider supporting constructor "overloads", e.g., through a custom
+        # or pybind-provided metaclass.
+        if isinstance(calleeOrResults, FuncOp):
+            if not isinstance(argumentsOrCallee, list):
+                raise ValueError(
+                    "when constructing a call to a function, expected "
+                    + "the second argument to be a list of call arguments, "
+                    + f"got {type(argumentsOrCallee)}"
+                )
+            if arguments is not None:
+                raise ValueError(
+                    "unexpected third argument when constructing a call"
+                    + "to a function"
+                )
+
+            super().__init__(
+                calleeOrResults.type.results,
+                FlatSymbolRefAttr.get(
+                    calleeOrResults.name.value, context=_get_default_loc_context(loc)
+                ),
+                argumentsOrCallee,
+                loc=loc,
+                ip=ip,
+            )
+            return
+
+        if isinstance(argumentsOrCallee, list):
+            raise ValueError(
+                "when constructing a call to a function by name, "
+                + "expected the second argument to be a string or a "
+                + f"FlatSymbolRefAttr, got {type(argumentsOrCallee)}"
+            )
+
+        if isinstance(argumentsOrCallee, FlatSymbolRefAttr):
+            super().__init__(
+                calleeOrResults, argumentsOrCallee, arguments, loc=loc, ip=ip
+            )
+        elif isinstance(argumentsOrCallee, str):
+            super().__init__(
+                calleeOrResults,
+                FlatSymbolRefAttr.get(
+                    argumentsOrCallee, context=_get_default_loc_context(loc)
+                ),
+                arguments,
+                loc=loc,
+                ip=ip,
+            )
diff --git a/mlir/python/mlir/dialects/linalg/opdsl/lang/emitter.py b/mlir/python/mlir/dialects/linalg/opdsl/lang/emitter.py
index 6f9d72164429eea..f91fc8b7160089b 100644
--- a/mlir/python/mlir/dialects/linalg/opdsl/lang/emitter.py
+++ b/mlir/python/mlir/dialects/linalg/opdsl/lang/emitter.py
@@ -310,7 +310,7 @@ def emit_named_structured_op(
         )
 
     # Set the index attributes used to compute the indexing maps.
-    named_op = getattr(linalg, op_class_name)(ins, outs, result_types)
+    named_op = getattr(linalg, op_class_name)(result_types, ins, outs)
     for name, value in index_attrs.items():
         named_op.operation.attributes[name] = value
 
diff --git a/mlir/python/mlir/dialects/memref.py b/mlir/python/mlir/dialects/memref.py
index 3afb6a70cb9e0db..111ad2178703d28 100644
--- a/mlir/python/mlir/dialects/memref.py
+++ b/mlir/python/mlir/dialects/memref.py
@@ -3,3 +3,41 @@
 #  SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
 from ._memref_ops_gen import *
+from ._memref_ops_gen import _Dialect
+
+try:
+    from ..ir import *
+    from ._ods_common import (
+        get_op_result_or_value as _get_op_result_or_value,
+        get_op_results_or_values as _get_op_results_or_values,
+        _cext as _ods_cext,
+    )
+except ImportError as e:
+    raise RuntimeError("Error loading imports from extension module") from e
+
+from typing import Optional, Sequence, Union
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class LoadOp(LoadOp):
+    """Specialization for the MemRef load operation."""
+
+    def __init__(
+        self,
+        memref: Union[Operation, OpView, Value],
+        indices: Optional[Union[Operation, OpView, Sequence[Value]]] = None,
+        *,
+        loc=None,
+        ip=None,
+    ):
+        """Creates a memref load operation.
+
+        Args:
+          memref: the buffer to load from.
+          indices: the list of subscripts, may be empty for zero-dimensional
+            buffers.
+          loc: user-visible location of the operation.
+          ip: insertion point.
+        """
+        indices_resolved = [] if indices is None else _get_op_results_or_values(indices)
+        super().__init__(memref, indices_resolved, loc=loc, ip=ip)
diff --git a/mlir/python/mlir/dialects/ml_program.py b/mlir/python/mlir/dialects/ml_program.py
index a654529b4bb8843..dfb6d7f2c03b1cf 100644
--- a/mlir/python/mlir/dialects/ml_program.py
+++ b/mlir/python/mlir/dialects/ml_program.py
@@ -2,4 +2,118 @@
 #  See https://llvm.org/LICENSE.txt for license information.
 #  SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
+from typing import Union
+
 from ._ml_program_ops_gen import *
+from ._ml_program_ops_gen import _Dialect
+
+try:
+    from ..ir import *
+    from ._ods_common import (
+        get_default_loc_context as _get_default_loc_context,
+        _cext as _ods_cext,
+    )
+except ImportError as e:
+    raise RuntimeError("Error loading imports from extension module") from e
+
+
+ARGUMENT_ATTRIBUTE_NAME = "arg_attrs"
+RESULT_ATTRIBUTE_NAME = "res_attrs"
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class FuncOp(FuncOp):
+    """Specialization for the func op class."""
+
+    def __init__(
+        self, name, type, *, visibility=None, body_builder=None, loc=None, ip=None
+    ):
+        """
+        Create a FuncOp with the provided `name`, `type`, and `visibility`.
+        - `name` is a string representing the function name.
+        - `type` is either a FunctionType or a pair of list describing inputs and
+          results.
+        - `visibility` is a string matching `public`, `private`, or `nested`. None
+          implies private visibility.
+        - `body_builder` is an optional callback, when provided a new entry block
+          is created and the callback is invoked with the new op as argument within
+          an InsertionPoint context already set for the block. The callback is
+          expected to insert a terminator in the block.
+        """
+        sym_name = StringAttr.get(str(name))
+
+        # If the type is passed as a tuple, build a FunctionType on the fly.
+        if isinstance(type, tuple):
+            type = FunctionType.get(inputs=type[0], results=type[1])
+
+        type = TypeAttr.get(type)
+        sym_visibility = (
+            StringAttr.get(str(visibility)) if visibility is not None else None
+        )
+        super().__init__(sym_name, type, sym_visibility=sym_visibility, loc=loc, ip=ip)
+        if body_builder:
+            entry_block = self.add_entry_block()
+            with InsertionPoint(entry_block):
+                body_builder(self)
+
+    @property
+    def is_external(self):
+        return len(self.regions[0].blocks) == 0
+
+    @property
+    def body(self):
+        return self.regions[0]
+
+    @property
+    def type(self):
+        return FunctionType(TypeAttr(self.attributes["function_type"]).value)
+
+    @property
+    def visibility(self):
+        return self.attributes["sym_visibility"]
+
+    @property
+    def name(self) -> StringAttr:
+        return StringAttr(self.attributes["sym_name"])
+
+    @property
+    def entry_block(self):
+        if self.is_external:
+            raise IndexError("External function does not have a body")
+        return self.regions[0].blocks[0]
+
+    def add_entry_block(self):
+        """
+        Add an entry block to the function body using the function signature to
+        infer block arguments.
+        Returns the newly created block
+        """
+        if not self.is_external:
+            raise IndexError("The function already has an entry block!")
+        self.body.blocks.append(*self.type.inputs)
+        return self.body.blocks[0]
+
+    @property
+    def arg_attrs(self):
+        return ArrayAttr(self.attributes[ARGUMENT_ATTRIBUTE_NAME])
+
+    @arg_attrs.setter
+    def arg_attrs(self, attribute: Union[ArrayAttr, list]):
+        if isinstance(attribute, ArrayAttr):
+            self.attributes[ARGUMENT_ATTRIBUTE_NAME] = attribute
+        else:
+            self.attributes[ARGUMENT_ATTRIBUTE_NAME] = ArrayAttr.get(
+                attribute, context=self.context
+            )
+
+    @property
+    def arguments(self):
+        return self.entry_block.arguments
+
+    @property
+    def result_attrs(self):
+        return self.attributes[RESULT_ATTRIBUTE_NAME]
+
+    @result_attrs.setter
+    def result_attrs(self, attribute: ArrayAttr):
+        self.attributes[RESULT_ATTRIBUTE_NAME] = attribute
diff --git a/mlir/python/mlir/dialects/pdl.py b/mlir/python/mlir/dialects/pdl.py
index dda2b7d6521965f..a8d9c56f4233d9e 100644
--- a/mlir/python/mlir/dialects/pdl.py
+++ b/mlir/python/mlir/dialects/pdl.py
@@ -3,4 +3,289 @@
 #  SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
 from ._pdl_ops_gen import *
+from ._pdl_ops_gen import _Dialect
 from .._mlir_libs._mlirDialectsPDL import *
+
+
+try:
+    from ..ir import *
+    from ..dialects import pdl
+except ImportError as e:
+    raise RuntimeError("Error loading imports from extension module") from e
+
+from typing import Union, Optional, Sequence, Mapping
+from ._ods_common import (
+    get_op_result_or_value as _get_value,
+    get_op_results_or_values as _get_values,
+    _cext as _ods_cext,
+)
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class ApplyNativeConstraintOp(ApplyNativeConstraintOp):
+    """Specialization for PDL apply native constraint op class."""
+
+    def __init__(
+        self,
+        name: Union[str, StringAttr],
+        args: Optional[Sequence[Union[OpView, Operation, Value]]] = None,
+        *,
+        loc=None,
+        ip=None,
+    ):
+        if args is None:
+            args = []
+        args = _get_values(args)
+        super().__init__(name, args, loc=loc, ip=ip)
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class ApplyNativeRewriteOp(ApplyNativeRewriteOp):
+    """Specialization for PDL apply native rewrite op class."""
+
+    def __init__(
+        self,
+        results: Sequence[Type],
+        name: Union[str, StringAttr],
+        args: Optional[Sequence[Union[OpView, Operation, Value]]] = None,
+        *,
+        loc=None,
+        ip=None,
+    ):
+        if args is None:
+            args = []
+        args = _get_values(args)
+        super().__init__(results, name, args, loc=loc, ip=ip)
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class AttributeOp(AttributeOp):
+    """Specialization for PDL attribute op class."""
+
+    def __init__(
+        self,
+        valueType: Optional[Union[OpView, Operation, Value]] = None,
+        value: Optional[Attribute] = None,
+        *,
+        loc=None,
+        ip=None,
+    ):
+        valueType = valueType if valueType is None else _get_value(valueType)
+        result = pdl.AttributeType.get()
+        super().__init__(result, valueType=valueType, value=value, loc=loc, ip=ip)
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class EraseOp(EraseOp):
+    """Specialization for PDL erase op class."""
+
+    def __init__(
+        self,
+        operation: Optional[Union[OpView, Operation, Value]] = None,
+        *,
+        loc=None,
+        ip=None,
+    ):
+        operation = _get_value(operation)
+        super().__init__(operation, loc=loc, ip=ip)
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class OperandOp(OperandOp):
+    """Specialization for PDL operand op class."""
+
+    def __init__(
+        self,
+        type: Optional[Union[OpView, Operation, Value]] = None,
+        *,
+        loc=None,
+        ip=None,
+    ):
+        type = type if type is None else _get_value(type)
+        result = pdl.ValueType.get()
+        super().__init__(result, valueType=type, loc=loc, ip=ip)
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class OperandsOp(OperandsOp):
+    """Specialization for PDL operands op class."""
+
+    def __init__(
+        self,
+        types: Optional[Union[OpView, Operation, Value]] = None,
+        *,
+        loc=None,
+        ip=None,
+    ):
+        types = types if types is None else _get_value(types)
+        result = pdl.RangeType.get(pdl.ValueType.get())
+        super().__init__(result, valueType=types, loc=loc, ip=ip)
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class OperationOp(OperationOp):
+    """Specialization for PDL operand op class."""
+
+    def __init__(
+        self,
+        name: Optional[Union[str, StringAttr]] = None,
+        args: Optional[Sequence[Union[OpView, Operation, Value]]] = None,
+        attributes: Optional[Mapping[str, Union[OpView, Operation, Value]]] = None,
+        types: Optional[Sequence[Union[OpView, Operation, Value]]] = None,
+        *,
+        loc=None,
+        ip=None,
+    ):
+        if types is None:
+            types = []
+        if attributes is None:
+            attributes = {}
+        if args is None:
+            args = []
+        args = _get_values(args)
+        attrNames = []
+        attrValues = []
+        for attrName, attrValue in attributes.items():
+            attrNames.append(StringAttr.get(attrName))
+            attrValues.append(_get_value(attrValue))
+        attrNames = ArrayAttr.get(attrNames)
+        types = _get_values(types)
+        result = pdl.OperationType.get()
+        super().__init__(
+            result, args, attrValues, attrNames, types, opName=name, loc=loc, ip=ip
+        )
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class PatternOp(PatternOp):
+    """Specialization for PDL pattern op class."""
+
+    def __init__(
+        self,
+        benefit: Union[IntegerAttr, int],
+        name: Optional[Union[StringAttr, str]] = None,
+        *,
+        loc=None,
+        ip=None,
+    ):
+        """Creates an PDL `pattern` operation."""
+        super().__init__(benefit, sym_name=name, loc=loc, ip=ip)
+        self.regions[0].blocks.append()
+
+    @property
+    def body(self):
+        """Return the body (block) of the pattern."""
+        return self.regions[0].blocks[0]
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class ReplaceOp(ReplaceOp):
+    """Specialization for PDL replace op class."""
+
+    def __init__(
+        self,
+        op: Union[OpView, Operation, Value],
+        *,
+        with_op: Optional[Union[OpView, Operation, Value]] = None,
+        with_values: Optional[Sequence[Union[OpView, Operation, Value]]] = None,
+        loc=None,
+        ip=None,
+    ):
+        if with_values is None:
+            with_values = []
+        op = _get_value(op)
+        with_op = with_op if with_op is None else _get_value(with_op)
+        with_values = _get_values(with_values)
+        super().__init__(op, with_values, replOperation=with_op, loc=loc, ip=ip)
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class ResultOp(ResultOp):
+    """Specialization for PDL result op class."""
+
+    def __init__(
+        self,
+        parent: Union[OpView, Operation, Value],
+        index: Union[IntegerAttr, int],
+        *,
+        loc=None,
+        ip=None,
+    ):
+        parent = _get_value(parent)
+        result = pdl.ValueType.get()
+        super().__init__(result, parent, index, loc=loc, ip=ip)
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class ResultsOp(ResultsOp):
+    """Specialization for PDL results op class."""
+
+    def __init__(
+        self,
+        result: Type,
+        parent: Union[OpView, Operation, Value],
+        index: Optional[Union[IntegerAttr, int]] = None,
+        *,
+        loc=None,
+        ip=None,
+    ):
+        parent = _get_value(parent)
+        super().__init__(result, parent, index=index, loc=loc, ip=ip)
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class RewriteOp(RewriteOp):
+    """Specialization for PDL rewrite op class."""
+
+    def __init__(
+        self,
+        root: Optional[Union[OpView, Operation, Value]] = None,
+        name: Optional[Union[StringAttr, str]] = None,
+        args: Optional[Sequence[Union[OpView, Operation, Value]]] = None,
+        *,
+        loc=None,
+        ip=None,
+    ):
+        if args is None:
+            args = []
+        root = root if root is None else _get_value(root)
+        args = _get_values(args)
+        super().__init__(args, root=root, name=name, loc=loc, ip=ip)
+
+    def add_body(self):
+        """Add body (block) to the rewrite."""
+        self.regions[0].blocks.append()
+        return self.body
+
+    @property
+    def body(self):
+        """Return the body (block) of the rewrite."""
+        return self.regions[0].blocks[0]
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class TypeOp(TypeOp):
+    """Specialization for PDL type op class."""
+
+    def __init__(
+        self, constantType: Optional[Union[TypeAttr, Type]] = None, *, loc=None, ip=None
+    ):
+        result = pdl.TypeType.get()
+        super().__init__(result, constantType=constantType, loc=loc, ip=ip)
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class TypesOp(TypesOp):
+    """Specialization for PDL types op class."""
+
+    def __init__(
+        self,
+        constantTypes: Optional[Sequence[Union[TypeAttr, Type]]] = None,
+        *,
+        loc=None,
+        ip=None,
+    ):
+        if constantTypes is None:
+            constantTypes = []
+        result = pdl.RangeType.get(pdl.TypeType.get())
+        super().__init__(result, constantTypes=constantTypes, loc=loc, ip=ip)
diff --git a/mlir/python/mlir/dialects/scf.py b/mlir/python/mlir/dialects/scf.py
index 49685ca2271fc61..43ad9f4e2d65f51 100644
--- a/mlir/python/mlir/dialects/scf.py
+++ b/mlir/python/mlir/dialects/scf.py
@@ -2,11 +2,122 @@
 #  See https://llvm.org/LICENSE.txt for license information.
 #  SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
-from typing import Optional, Sequence
 
 from ._scf_ops_gen import *
+from ._scf_ops_gen import _Dialect
 from .arith import constant
-from ..ir import *
+
+try:
+    from ..ir import *
+    from ._ods_common import (
+        get_op_result_or_value as _get_op_result_or_value,
+        get_op_results_or_values as _get_op_results_or_values,
+        _cext as _ods_cext,
+    )
+except ImportError as e:
+    raise RuntimeError("Error loading imports from extension module") from e
+
+from typing import Optional, Sequence, Union
+
+
+_ForOp = ForOp
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class ForOp(_ForOp):
+    """Specialization for the SCF for op class."""
+
+    def __init__(
+        self,
+        lower_bound,
+        upper_bound,
+        step,
+        iter_args: Optional[Union[Operation, OpView, Sequence[Value]]] = None,
+        *,
+        loc=None,
+        ip=None,
+    ):
+        """Creates an SCF `for` operation.
+
+        - `lower_bound` is the value to use as lower bound of the loop.
+        - `upper_bound` is the value to use as upper bound of the loop.
+        - `step` is the value to use as loop step.
+        - `iter_args` is a list of additional loop-carried arguments or an operation
+          producing them as results.
+        """
+        if iter_args is None:
+            iter_args = []
+        iter_args = _get_op_results_or_values(iter_args)
+
+        results = [arg.type for arg in iter_args]
+        super(_ForOp, self).__init__(
+            self.build_generic(
+                regions=1,
+                results=results,
+                operands=[
+                    _get_op_result_or_value(o) for o in [lower_bound, upper_bound, step]
+                ]
+                + list(iter_args),
+                loc=loc,
+                ip=ip,
+            )
+        )
+        self.regions[0].blocks.append(self.operands[0].type, *results)
+
+    @property
+    def body(self):
+        """Returns the body (block) of the loop."""
+        return self.regions[0].blocks[0]
+
+    @property
+    def induction_variable(self):
+        """Returns the induction variable of the loop."""
+        return self.body.arguments[0]
+
+    @property
+    def inner_iter_args(self):
+        """Returns the loop-carried arguments usable within the loop.
+
+        To obtain the loop-carried operands, use `iter_args`.
+        """
+        return self.body.arguments[1:]
+
+
+_IfOp = IfOp
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class IfOp(_IfOp):
+    """Specialization for the SCF if op class."""
+
+    def __init__(self, cond, results_=[], *, hasElse=False, loc=None, ip=None):
+        """Creates an SCF `if` operation.
+
+        - `cond` is a MLIR value of 'i1' type to determine which regions of code will be executed.
+        - `hasElse` determines whether the if operation has the else branch.
+        """
+        operands = []
+        operands.append(cond)
+        results = []
+        results.extend(results_)
+        super(_IfOp, self).__init__(
+            self.build_generic(
+                regions=2, results=results, operands=operands, loc=loc, ip=ip
+            )
+        )
+        self.regions[0].blocks.append(*[])
+        if hasElse:
+            self.regions[1].blocks.append(*[])
+
+    @property
+    def then_block(self):
+        """Returns the then block of the if operation."""
+        return self.regions[0].blocks[0]
+
+    @property
+    def else_block(self):
+        """Returns the else block of the if operation."""
+        return self.regions[1].blocks[0]
 
 
 def for_(
diff --git a/mlir/python/mlir/dialects/tensor.py b/mlir/python/mlir/dialects/tensor.py
index 26edf6b6436dad5..a007d683ca7be32 100644
--- a/mlir/python/mlir/dialects/tensor.py
+++ b/mlir/python/mlir/dialects/tensor.py
@@ -3,3 +3,50 @@
 #  SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
 from ._tensor_ops_gen import *
+from ._tensor_ops_gen import _Dialect
+
+try:
+    from ..ir import *
+except ImportError as e:
+    raise RuntimeError("Error loading imports from extension module") from e
+
+from typing import Sequence, Union
+from ._ods_common import _cext as _ods_cext
+
+_EmptyOp = EmptyOp
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class EmptyOp(_EmptyOp):
+    """Extends the tensor.empty op."""
+
+    def __init__(
+        self,
+        sizes: Sequence[Union[int, Value]],
+        element_type: Type,
+        *,
+        loc=None,
+        ip=None,
+    ):
+        """Constructs an `empty` with mixed static/dynamic sizes."""
+        # TODO: Refactor the EmptyOp to take an element type attribute and
+        # then use normal result type inference, unifying the Python and C++ side
+        # with a standard mechanism (versus stashing that in builders).
+        dynamic_sizes = []
+        static_sizes = []
+        for s in sizes:
+            if isinstance(s, int):
+                static_sizes.append(s)
+            else:
+                static_sizes.append(ShapedType.get_dynamic_size())
+                dynamic_sizes.append(s)
+        result_type = RankedTensorType.get(static_sizes, element_type)
+        super(_EmptyOp, self).__init__(
+            self.build_generic(
+                results=[result_type],
+                operands=dynamic_sizes,
+                attributes={},
+                loc=loc,
+                ip=ip,
+            )
+        )
diff --git a/mlir/python/mlir/dialects/transform/__init__.py b/mlir/python/mlir/dialects/transform/__init__.py
index b020ad35fcf062f..a33b096675f1a7b 100644
--- a/mlir/python/mlir/dialects/transform/__init__.py
+++ b/mlir/python/mlir/dialects/transform/__init__.py
@@ -4,4 +4,189 @@
 
 from .._transform_enum_gen import *
 from .._transform_ops_gen import *
+from .._transform_ops_gen import _Dialect
 from ..._mlir_libs._mlirDialectsTransform import *
+
+try:
+    from ...ir import *
+    from .._ods_common import (
+        get_op_result_or_value as _get_op_result_or_value,
+        get_op_results_or_values as _get_op_results_or_values,
+        _cext as _ods_cext,
+    )
+except ImportError as e:
+    raise RuntimeError("Error loading imports from extension module") from e
+
+from typing import Optional, Sequence, Union
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class CastOp(CastOp):
+    def __init__(
+        self,
+        result_type: Type,
+        target: Union[Operation, Value],
+        *,
+        loc=None,
+        ip=None,
+    ):
+        super().__init__(result_type, _get_op_result_or_value(target), loc=loc, ip=ip)
+
+
+_ApplyPatternsOp = ApplyPatternsOp
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class ApplyPatternsOp(_ApplyPatternsOp):
+    def __init__(
+        self,
+        target: Union[Operation, Value, OpView],
+        *,
+        loc=None,
+        ip=None,
+    ):
+        operands = []
+        operands.append(_get_op_result_or_value(target))
+        super(_ApplyPatternsOp, self).__init__(
+            self.build_generic(
+                attributes={},
+                results=[],
+                operands=operands,
+                successors=None,
+                regions=None,
+                loc=loc,
+                ip=ip,
+            )
+        )
+        self.regions[0].blocks.append()
+
+    @property
+    def patterns(self) -> Block:
+        return self.regions[0].blocks[0]
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class GetParentOp(GetParentOp):
+    def __init__(
+        self,
+        result_type: Type,
+        target: Union[Operation, Value],
+        *,
+        isolated_from_above: bool = False,
+        op_name: Optional[str] = None,
+        deduplicate: bool = False,
+        loc=None,
+        ip=None,
+    ):
+        super().__init__(
+            result_type,
+            _get_op_result_or_value(target),
+            isolated_from_above=isolated_from_above,
+            op_name=op_name,
+            deduplicate=deduplicate,
+            loc=loc,
+            ip=ip,
+        )
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class MergeHandlesOp(MergeHandlesOp):
+    def __init__(
+        self,
+        handles: Sequence[Union[Operation, Value]],
+        *,
+        deduplicate: bool = False,
+        loc=None,
+        ip=None,
+    ):
+        super().__init__(
+            [_get_op_result_or_value(h) for h in handles],
+            deduplicate=deduplicate,
+            loc=loc,
+            ip=ip,
+        )
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class ReplicateOp(ReplicateOp):
+    def __init__(
+        self,
+        pattern: Union[Operation, Value],
+        handles: Sequence[Union[Operation, Value]],
+        *,
+        loc=None,
+        ip=None,
+    ):
+        super().__init__(
+            [_get_op_result_or_value(h).type for h in handles],
+            _get_op_result_or_value(pattern),
+            [_get_op_result_or_value(h) for h in handles],
+            loc=loc,
+            ip=ip,
+        )
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class SequenceOp(SequenceOp):
+    def __init__(
+        self,
+        failure_propagation_mode,
+        results: Sequence[Type],
+        target: Union[Operation, Value, Type],
+        extra_bindings: Optional[
+            Union[Sequence[Value], Sequence[Type], Operation, OpView]
+        ] = None,
+    ):
+        root = (
+            _get_op_result_or_value(target)
+            if isinstance(target, (Operation, Value))
+            else None
+        )
+        root_type = root.type if not isinstance(target, Type) else target
+
+        if extra_bindings is None:
+            extra_bindings = []
+        if isinstance(extra_bindings, (Operation, OpView)):
+            extra_bindings = _get_op_results_or_values(extra_bindings)
+
+        extra_binding_types = []
+        if len(extra_bindings) != 0:
+            if isinstance(extra_bindings[0], Type):
+                extra_binding_types = extra_bindings
+                extra_bindings = []
+            else:
+                extra_binding_types = [v.type for v in extra_bindings]
+
+        super().__init__(
+            results_=results,
+            failure_propagation_mode=failure_propagation_mode,
+            root=root,
+            extra_bindings=extra_bindings,
+        )
+        self.regions[0].blocks.append(*tuple([root_type] + extra_binding_types))
+
+    @property
+    def body(self) -> Block:
+        return self.regions[0].blocks[0]
+
+    @property
+    def bodyTarget(self) -> Value:
+        return self.body.arguments[0]
+
+    @property
+    def bodyExtraArgs(self) -> BlockArgumentList:
+        return self.body.arguments[1:]
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class YieldOp(YieldOp):
+    def __init__(
+        self,
+        operands: Optional[Union[Operation, Sequence[Value]]] = None,
+        *,
+        loc=None,
+        ip=None,
+    ):
+        if operands is None:
+            operands = []
+        super().__init__(_get_op_results_or_values(operands), loc=loc, ip=ip)
diff --git a/mlir/python/mlir/dialects/transform/bufferization.py b/mlir/python/mlir/dialects/transform/bufferization.py
index eb77b746cf864fa..485a8a36b6305e9 100644
--- a/mlir/python/mlir/dialects/transform/bufferization.py
+++ b/mlir/python/mlir/dialects/transform/bufferization.py
@@ -3,3 +3,132 @@
 #  SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
 from .._bufferization_transform_ops_gen import *
+from .._bufferization_transform_ops_gen import _Dialect
+
+try:
+    from ...ir import *
+    from ...dialects import transform
+    from .._ods_common import _cext as _ods_cext
+except ImportError as e:
+    raise RuntimeError("Error loading imports from extension module") from e
+
+from enum import Enum
+from typing import Optional, overload, Union
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class EmptyTensorToAllocTensorOp(EmptyTensorToAllocTensorOp):
+    """Specialization for EmptyTensorToAllocTensorOp class."""
+
+    @overload
+    def __init__(
+        self,
+        transformed_type: Type,
+        target: Union[Operation, OpView, Value],
+        *,
+        loc=None,
+        ip=None,
+    ):
+        ...
+
+    @overload
+    def __init__(self, target: Union[Operation, OpView, Value], *, loc=None, ip=None):
+        ...
+
+    def __init__(
+        self,
+        transformed_type_or_target: Type,
+        target_or_none: Optional[Union[Operation, OpView, Value]] = None,
+        *,
+        loc=None,
+        ip=None,
+    ):
+        if isinstance(transformed_type_or_target, Type):
+            transformed_type = transformed_type_or_target
+            target = target_or_none
+        else:
+            transformed_type = transform.OperationType.get("bufferization.alloc_tensor")
+            target = transformed_type_or_target
+
+        super().__init__(
+            transformed_type,
+            target,
+            loc=loc,
+            ip=ip,
+        )
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class OneShotBufferizeOp(OneShotBufferizeOp):
+    """Specialization for OneShotBufferizeOp class."""
+
+    @overload
+    def __init__(
+        self,
+        transformed_type: Type,
+        target: Union[Operation, OpView, Value],
+        *,
+        allow_return_allocs_from_loops: Optional[bool] = None,
+        allow_unknown_ops: Optional[bool] = None,
+        bufferize_function_boundaries: Optional[bool] = None,
+        function_boundary_type_conversion: Optional[Enum] = None,
+        memcpy_op: Optional[str] = None,
+        print_conflicts: Optional[bool] = None,
+        test_analysis_only: Optional[bool] = None,
+        loc=None,
+        ip=None,
+    ):
+        ...
+
+    @overload
+    def __init__(
+        self,
+        target: Union[Operation, OpView, Value],
+        *,
+        allow_return_allocs_from_loops: Optional[bool] = None,
+        allow_unknown_ops: Optional[bool] = None,
+        bufferize_function_boundaries: Optional[bool] = None,
+        function_boundary_type_conversion: Optional[Enum] = None,
+        memcpy_op: Optional[str] = None,
+        print_conflicts: Optional[bool] = None,
+        test_analysis_only: Optional[bool] = None,
+        loc=None,
+        ip=None,
+    ):
+        ...
+
+    def __init__(
+        self,
+        transformed_type_or_target: Type,
+        target_or_none: Optional[Union[Operation, OpView, Value]] = None,
+        *,
+        allow_return_allocs_from_loops: Optional[bool] = None,
+        allow_unknown_ops: Optional[bool] = None,
+        bufferize_function_boundaries: Optional[bool] = None,
+        function_boundary_type_conversion: Optional[Enum] = None,
+        memcpy_op: Optional[str] = None,
+        print_conflicts: Optional[bool] = None,
+        test_analysis_only: Optional[bool] = None,
+        loc=None,
+        ip=None,
+    ):
+        if isinstance(transformed_type_or_target, Type):
+            transformed_type = transformed_type_or_target
+            target = target_or_none
+        else:
+            transformed_type = transform.AnyOpType.get()
+            target = transformed_type_or_target
+
+        super().__init__(
+            transformed_type,
+            target,
+            allow_return_allocs_from_loops=allow_return_allocs_from_loops,
+            allow_unknown_ops=allow_unknown_ops,
+            bufferize_function_boundaries=bufferize_function_boundaries,
+            function_boundary_type_conversion=function_boundary_type_conversion,
+            memcpy_op=memcpy_op,
+            print_conflicts=print_conflicts,
+            test_analysis_only=test_analysis_only,
+            loc=loc,
+            ip=ip,
+        )
diff --git a/mlir/python/mlir/dialects/transform/gpu.py b/mlir/python/mlir/dialects/transform/gpu.py
index 8c3de0de7ea3f19..00cf0840eeae9e1 100644
--- a/mlir/python/mlir/dialects/transform/gpu.py
+++ b/mlir/python/mlir/dialects/transform/gpu.py
@@ -3,3 +3,128 @@
 #  SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
 from .._gpu_transform_ops_gen import *
+from .._gpu_transform_ops_gen import _Dialect
+
+try:
+    from ...ir import *
+    from ...dialects import transform
+    from .._ods_common import _cext as _ods_cext
+except ImportError as e:
+    raise RuntimeError("Error loading imports from extension module") from e
+
+from typing import Optional, Sequence, Union, overload
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class MapForallToBlocks(MapForallToBlocks):
+    """Specialization for MapForallToBlocks class."""
+
+    @overload
+    def __init__(
+        self,
+        result_type: Type,
+        target: Union[Operation, OpView, Value],
+        *,
+        grid_dims: Optional[Union[Sequence[int], Attribute]] = None,
+        generate_gpu_launch: Optional[Union[bool, Attribute]] = None,
+        loc=None,
+        ip=None,
+    ):
+        ...
+
+    @overload
+    def __init__(
+        self,
+        target: Union[Operation, OpView, Value],
+        *,
+        grid_dims: Optional[Union[Sequence[int], Attribute]] = None,
+        generate_gpu_launch: Optional[Union[bool, Attribute]] = None,
+        loc=None,
+        ip=None,
+    ):
+        ...
+
+    def __init__(
+        self,
+        result_type_or_target: Union[Operation, OpView, Type, Value],
+        target_or_none: Optional[Union[Operation, OpView, Value]] = None,
+        *,
+        grid_dims: Optional[Union[Sequence[int], Attribute]] = None,
+        generate_gpu_launch: Optional[Union[bool, Attribute]] = None,
+        loc=None,
+        ip=None,
+    ):
+        if isinstance(result_type_or_target, Type):
+            result_type = result_type_or_target
+            target = target_or_none
+        else:
+            result_type = transform.AnyOpType.get()
+            target = result_type_or_target
+
+        super().__init__(
+            result_type,
+            target,
+            grid_dims=grid_dims,
+            generate_gpu_launch=generate_gpu_launch,
+            loc=loc,
+            ip=ip,
+        )
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class MapNestedForallToThreads(MapNestedForallToThreads):
+    """Specialization for MapNestedForallToThreads class."""
+
+    @overload
+    def __init__(
+        self,
+        result_type: Type,
+        target: Union[Operation, OpView, Value],
+        *,
+        block_dims: Optional[Sequence[int]] = None,
+        warp_size: Optional[Sequence[int]] = None,
+        sync_after_distribute: Optional[bool] = None,
+        loc=None,
+        ip=None,
+    ):
+        ...
+
+    @overload
+    def __init__(
+        self,
+        target: Union[Operation, OpView, Value],
+        *,
+        block_dims: Optional[Sequence[int]] = None,
+        warp_size: Optional[Sequence[int]] = None,
+        sync_after_distribute: Optional[bool] = None,
+        loc=None,
+        ip=None,
+    ):
+        ...
+
+    def __init__(
+        self,
+        result_type_or_target: Union[Operation, OpView, Value, Type],
+        target_or_none: Optional[Union[Operation, OpView, Value]] = None,
+        *,
+        block_dims: Optional[Union[Sequence[int], Attribute]] = None,
+        warp_size: Optional[Union[Sequence[int], Attribute]] = None,
+        sync_after_distribute: Optional[bool] = None,
+        loc=None,
+        ip=None,
+    ):
+        if isinstance(result_type_or_target, Type):
+            result_type = result_type_or_target
+            target = target_or_none
+        else:
+            result_type = result_type_or_target.type
+            target = result_type_or_target
+        super().__init__(
+            result_type,
+            target,
+            block_dims=block_dims,
+            warp_size=warp_size,
+            sync_after_distribute=sync_after_distribute,
+            loc=loc,
+            ip=ip,
+        )
diff --git a/mlir/python/mlir/dialects/transform/loop.py b/mlir/python/mlir/dialects/transform/loop.py
index 86f72788d86c369..6c89025f413839e 100644
--- a/mlir/python/mlir/dialects/transform/loop.py
+++ b/mlir/python/mlir/dialects/transform/loop.py
@@ -3,3 +3,143 @@
 #  SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
 from .._loop_transform_ops_gen import *
+from .._loop_transform_ops_gen import _Dialect
+
+try:
+    from ...ir import *
+    from .._ods_common import (
+        get_op_result_or_value as _get_op_result_or_value,
+        _cext as _ods_cext,
+    )
+except ImportError as e:
+    raise RuntimeError("Error loading imports from extension module") from e
+
+from typing import Optional, Union
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class GetParentForOp(GetParentForOp):
+    """Extension for GetParentForOp."""
+
+    def __init__(
+        self,
+        result_type: Type,
+        target: Union[Operation, Value],
+        *,
+        num_loops: Optional[int] = None,
+        ip=None,
+        loc=None,
+    ):
+        if num_loops is None:
+            num_loops = 1
+        super().__init__(
+            result_type,
+            _get_op_result_or_value(target),
+            num_loops=num_loops,
+            ip=ip,
+            loc=loc,
+        )
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class LoopOutlineOp(LoopOutlineOp):
+    """Extension for LoopOutlineOp."""
+
+    def __init__(
+        self,
+        function_type: Type,
+        call_type: Type,
+        target: Union[Operation, Value],
+        *,
+        func_name: Union[str, StringAttr],
+        ip=None,
+        loc=None,
+    ):
+        super().__init__(
+            function_type,
+            call_type,
+            _get_op_result_or_value(target),
+            func_name=(
+                func_name
+                if isinstance(func_name, StringAttr)
+                else StringAttr.get(func_name)
+            ),
+            ip=ip,
+            loc=loc,
+        )
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class LoopPeelOp(LoopPeelOp):
+    """Extension for LoopPeelOp."""
+
+    def __init__(
+        self,
+        main_loop_type: Type,
+        remainder_loop_type: Type,
+        target: Union[Operation, Value],
+        *,
+        fail_if_already_divisible: Union[bool, BoolAttr] = False,
+        ip=None,
+        loc=None,
+    ):
+        super().__init__(
+            main_loop_type,
+            remainder_loop_type,
+            _get_op_result_or_value(target),
+            fail_if_already_divisible=(
+                fail_if_already_divisible
+                if isinstance(fail_if_already_divisible, BoolAttr)
+                else BoolAttr.get(fail_if_already_divisible)
+            ),
+            ip=ip,
+            loc=loc,
+        )
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class LoopPipelineOp(LoopPipelineOp):
+    """Extension for LoopPipelineOp."""
+
+    def __init__(
+        self,
+        result_type: Type,
+        target: Union[Operation, Value],
+        *,
+        iteration_interval: Optional[Union[int, IntegerAttr]] = None,
+        read_latency: Optional[Union[int, IntegerAttr]] = None,
+        ip=None,
+        loc=None,
+    ):
+        if iteration_interval is None:
+            iteration_interval = 1
+        if read_latency is None:
+            read_latency = 10
+        super().__init__(
+            result_type,
+            _get_op_result_or_value(target),
+            iteration_interval=iteration_interval,
+            read_latency=read_latency,
+            ip=ip,
+            loc=loc,
+        )
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class LoopUnrollOp(LoopUnrollOp):
+    """Extension for LoopUnrollOp."""
+
+    def __init__(
+        self,
+        target: Union[Operation, Value],
+        *,
+        factor: Union[int, IntegerAttr],
+        ip=None,
+        loc=None,
+    ):
+        super().__init__(
+            _get_op_result_or_value(target),
+            factor=factor,
+            ip=ip,
+            loc=loc,
+        )
diff --git a/mlir/python/mlir/dialects/transform/memref.py b/mlir/python/mlir/dialects/transform/memref.py
index 1ff04ef6a60a180..56ea61eb817f89c 100644
--- a/mlir/python/mlir/dialects/transform/memref.py
+++ b/mlir/python/mlir/dialects/transform/memref.py
@@ -3,3 +3,118 @@
 #  SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
 from .._memref_transform_ops_gen import *
+from .._memref_transform_ops_gen import _Dialect
+
+try:
+    from ...ir import *
+    from ...dialects import transform
+    from .._ods_common import _cext as _ods_cext
+except ImportError as e:
+    raise RuntimeError("Error loading imports from extension module") from e
+
+from typing import Optional, overload, Union
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class MemRefAllocaToGlobalOp(MemRefAllocaToGlobalOp):
+    """Specialization for MemRefAllocaToGlobalOp class."""
+
+    @overload
+    def __init__(
+        self,
+        get_global_type: Type,
+        global_type: Type,
+        alloca: Union[Operation, OpView, Value],
+        *,
+        loc=None,
+        ip=None,
+    ):
+        ...
+
+    @overload
+    def __init__(self, alloca: Union[Operation, OpView, Value], *, loc=None, ip=None):
+        ...
+
+    def __init__(
+        self,
+        get_global_type_or_alloca: Union[Operation, OpView, Type, Value],
+        global_type_or_none: Optional[Type] = None,
+        alloca_or_none: Optional[Union[Operation, OpView, Value]] = None,
+        *,
+        loc=None,
+        ip=None,
+    ):
+        if isinstance(get_global_type_or_alloca, Type):
+            get_global_type = get_global_type_or_alloca
+            global_type = global_type_or_none
+            alloca = alloca_or_none
+        else:
+            get_global_type = transform.AnyOpType.get()
+            global_type = transform.AnyOpType.get()
+            alloca = get_global_type_or_alloca
+
+        super().__init__(
+            get_global_type,
+            global_type,
+            alloca,
+            loc=loc,
+            ip=ip,
+        )
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class MemRefMultiBufferOp(MemRefMultiBufferOp):
+    """Specialization for MemRefMultiBufferOp class."""
+
+    @overload
+    def __init__(
+        self,
+        transformed_type: Type,
+        target: Union[Operation, OpView, Value],
+        factor: Union[int, IntegerAttr],
+        *,
+        skip_analysis: Optional[bool] = None,
+        loc=None,
+        ip=None,
+    ):
+        ...
+
+    @overload
+    def __init__(
+        self,
+        target: Union[Operation, OpView, Value],
+        factor: Union[int, IntegerAttr],
+        *,
+        skip_analysis: Optional[bool] = None,
+        loc=None,
+        ip=None,
+    ):
+        ...
+
+    def __init__(
+        self,
+        transformed_type_or_target: Type,
+        target_or_factor: Union[int, IntegerAttr, Operation, OpView, Value] = None,
+        factor_or_none: Optional[Union[int, IntegerAttr]] = None,
+        *,
+        skip_analysis: Optional[bool] = None,
+        loc=None,
+        ip=None,
+    ):
+        if isinstance(transformed_type_or_target, Type):
+            transformed_type = transformed_type_or_target
+            target = target_or_factor
+            factor = factor_or_none
+        else:
+            transformed_type = transform.AnyOpType.get()
+            target = transformed_type_or_target
+            factor = target_or_factor
+
+        super().__init__(
+            transformed_type,
+            target,
+            factor,
+            skip_analysis=skip_analysis,
+            loc=loc,
+            ip=ip,
+        )
diff --git a/mlir/python/mlir/dialects/transform/pdl.py b/mlir/python/mlir/dialects/transform/pdl.py
index b1515287a3f1ff0..bb5fa7ffd306583 100644
--- a/mlir/python/mlir/dialects/transform/pdl.py
+++ b/mlir/python/mlir/dialects/transform/pdl.py
@@ -3,3 +3,53 @@
 #  SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
 from .._transform_pdl_extension_ops_gen import *
+from .._transform_pdl_extension_ops_gen import _Dialect
+
+try:
+    from ...ir import *
+    from .._ods_common import (
+        get_op_result_or_value as _get_op_result_or_value,
+        get_op_results_or_values as _get_op_results_or_values,
+        _cext as _ods_cext,
+    )
+except ImportError as e:
+    raise RuntimeError("Error loading imports from extension module") from e
+
+from typing import Union
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class PDLMatchOp(PDLMatchOp):
+    def __init__(
+        self,
+        result_type: Type,
+        target: Union[Operation, Value],
+        pattern_name: Union[Attribute, str],
+        *,
+        loc=None,
+        ip=None,
+    ):
+        super().__init__(
+            result_type,
+            _get_op_result_or_value(target),
+            pattern_name,
+            loc=loc,
+            ip=ip,
+        )
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class WithPDLPatternsOp(WithPDLPatternsOp):
+    def __init__(self, target: Union[Operation, Value, Type], *, loc=None, ip=None):
+        root = _get_op_result_or_value(target) if not isinstance(target, Type) else None
+        root_type = target if isinstance(target, Type) else root.type
+        super().__init__(root=root, loc=loc, ip=ip)
+        self.regions[0].blocks.append(root_type)
+
+    @property
+    def body(self) -> Block:
+        return self.regions[0].blocks[0]
+
+    @property
+    def bodyTarget(self) -> Value:
+        return self.body.arguments[0]
diff --git a/mlir/python/mlir/dialects/transform/structured.py b/mlir/python/mlir/dialects/transform/structured.py
index cb3812301dbd4b5..284c93823acbd34 100644
--- a/mlir/python/mlir/dialects/transform/structured.py
+++ b/mlir/python/mlir/dialects/transform/structured.py
@@ -3,4 +3,777 @@
 #  SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
 from .._structured_transform_ops_gen import *
+from .._structured_transform_ops_gen import _Dialect
 from .._structured_transform_enum_gen import *
+
+try:
+    from ...ir import *
+    from ...dialects import transform
+    from .._ods_common import _cext as _ods_cext
+except ImportError as e:
+    raise RuntimeError("Error loading imports from extension module") from e
+
+from typing import List, Optional, Sequence, Tuple, Union, overload
+
+StaticIntLike = Union[int, IntegerAttr]
+ValueLike = Union[Operation, OpView, Value]
+MixedInt = Union[StaticIntLike, ValueLike]
+
+IntOrAttrList = Sequence[Union[IntegerAttr, int]]
+OptionalIntList = Optional[Union[ArrayAttr, IntOrAttrList]]
+
+BoolOrAttrList = Sequence[Union[BoolAttr, bool]]
+OptionalBoolList = Optional[Union[ArrayAttr, BoolOrAttrList]]
+
+MixedValues = Union[Sequence[Union[StaticIntLike, ValueLike]], ArrayAttr, ValueLike]
+
+DynamicIndexList = Sequence[Union[MixedInt, Sequence[MixedInt]]]
+
+
+def _dispatch_dynamic_index_list(
+    indices: Union[DynamicIndexList, ArrayAttr],
+) -> Tuple[List[ValueLike], Union[List[int], ArrayAttr], List[bool]]:
+    """Dispatches a list of indices to the appropriate form.
+
+    This is similar to the custom `DynamicIndexList` directive upstream:
+    provided indices may be in the form of dynamic SSA values or static values,
+    and they may be scalable (i.e., as a singleton list) or not. This function
+    dispatches each index into its respective form. It also extracts the SSA
+    values and static indices from various similar structures, respectively.
+    """
+    dynamic_indices = []
+    static_indices = [ShapedType.get_dynamic_size()] * len(indices)
+    scalable_indices = [False] * len(indices)
+
+    # ArrayAttr: Extract index values.
+    if isinstance(indices, ArrayAttr):
+        indices = [idx for idx in indices]
+
+    def process_nonscalable_index(i, index):
+        """Processes any form of non-scalable index.
+
+        Returns False if the given index was scalable and thus remains
+        unprocessed; True otherwise.
+        """
+        if isinstance(index, int):
+            static_indices[i] = index
+        elif isinstance(index, IntegerAttr):
+            static_indices[i] = index.value  # pytype: disable=attribute-error
+        elif isinstance(index, (Operation, Value, OpView)):
+            dynamic_indices.append(index)
+        else:
+            return False
+        return True
+
+    # Process each index at a time.
+    for i, index in enumerate(indices):
+        if not process_nonscalable_index(i, index):
+            # If it wasn't processed, it must be a scalable index, which is
+            # provided as a Sequence of one value, so extract and process that.
+            scalable_indices[i] = True
+            assert len(index) == 1
+            ret = process_nonscalable_index(i, index[0])
+            assert ret
+
+    return dynamic_indices, static_indices, scalable_indices
+
+
+# Dispatches `MixedValues` that all represents integers in various forms into
+# the following three categories:
+#   - `dynamic_values`: a list of `Value`s, potentially from op results;
+#   - `packed_values`: a value handle, potentially from an op result, associated
+#                      to one or more payload operations of integer type;
+#   - `static_values`: an `ArrayAttr` of `i64`s with static values, from Python
+#                      `int`s, from `IntegerAttr`s, or from an `ArrayAttr`.
+# The input is in the form for `packed_values`, only that result is set and the
+# other two are empty. Otherwise, the input can be a mix of the other two forms,
+# and for each dynamic value, a special value is added to the `static_values`.
+def _dispatch_mixed_values(
+    values: MixedValues,
+) -> Tuple[List[Value], Union[Operation, Value, OpView], DenseI64ArrayAttr]:
+    dynamic_values = []
+    packed_values = None
+    static_values = None
+    if isinstance(values, ArrayAttr):
+        static_values = values
+    elif isinstance(values, (Operation, Value, OpView)):
+        packed_values = values
+    else:
+        static_values = []
+        for size in values or []:
+            if isinstance(size, int):
+                static_values.append(size)
+            else:
+                static_values.append(ShapedType.get_dynamic_size())
+                dynamic_values.append(size)
+        static_values = DenseI64ArrayAttr.get(static_values)
+
+    return (dynamic_values, packed_values, static_values)
+
+
+def _get_value_or_attribute_value(
+    value_or_attr: Union[any, Attribute, ArrayAttr]
+) -> any:
+    if isinstance(value_or_attr, Attribute) and hasattr(value_or_attr, "value"):
+        return value_or_attr.value
+    if isinstance(value_or_attr, ArrayAttr):
+        return _get_value_list(value_or_attr)
+    return value_or_attr
+
+
+def _get_value_list(
+    sequence_or_array_attr: Union[Sequence[any], ArrayAttr]
+) -> Sequence[any]:
+    return [_get_value_or_attribute_value(v) for v in sequence_or_array_attr]
+
+
+def _get_int_array_attr(values: Optional[Union[ArrayAttr, IntOrAttrList]]) -> ArrayAttr:
+    if values is None:
+        return None
+
+    # Turn into a Python list of Python ints.
+    values = _get_value_list(values)
+
+    # Make an ArrayAttr of IntegerAttrs out of it.
+    return ArrayAttr.get(
+        [IntegerAttr.get(IntegerType.get_signless(64), v) for v in values]
+    )
+
+
+def _get_int_array_array_attr(
+    values: Optional[Union[ArrayAttr, Sequence[Union[ArrayAttr, IntOrAttrList]]]]
+) -> ArrayAttr:
+    """Creates an ArrayAttr of ArrayAttrs of IntegerAttrs.
+
+    The input has to be a collection of collection of integers, where any
+    Python Sequence and ArrayAttr are admissible collections and Python ints and
+    any IntegerAttr are admissible integers. Both levels of collections are
+    turned into ArrayAttr; the inner level is turned into IntegerAttrs of i64s.
+    If the input is None, an empty ArrayAttr is returned.
+    """
+    if values is None:
+        return None
+
+    # Make sure the outer level is a list.
+    values = _get_value_list(values)
+
+    # The inner level is now either invalid or a mixed sequence of ArrayAttrs and
+    # Sequences. Make sure the nested values are all lists.
+    values = [_get_value_list(nested) for nested in values]
+
+    # Turn each nested list into an ArrayAttr.
+    values = [_get_int_array_attr(nested) for nested in values]
+
+    # Turn the outer list into an ArrayAttr.
+    return ArrayAttr.get(values)
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class BufferizeToAllocationOp(BufferizeToAllocationOp):
+    """Specialization for BufferizeToAllocationOp class."""
+
+    def __init__(
+        self,
+        target: Union[Operation, OpView, Value],
+        *,
+        memory_space: Optional[Union[int, str, Attribute]] = None,
+        memcpy_op: Optional[str] = None,
+        alloc_op: Optional[str] = None,
+        bufferize_destination_only: Optional[bool] = None,
+        loc=None,
+        ip=None,
+    ):
+        # No other types are allowed, so hard-code those here.
+        allocated_buffer_type = transform.AnyValueType.get()
+        new_ops_type = transform.AnyOpType.get()
+
+        if isinstance(memory_space, int):
+            memory_space = str(memory_space)
+        if isinstance(memory_space, str):
+            memory_space = Attribute.parse(memory_space)
+
+        super().__init__(
+            allocated_buffer_type,
+            new_ops_type,
+            target,
+            memory_space=memory_space,
+            memcpy_op=memcpy_op,
+            alloc_op=alloc_op,
+            bufferize_destination_only=bufferize_destination_only,
+            loc=loc,
+            ip=ip,
+        )
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class DecomposeOp(DecomposeOp):
+    """Specialization for DecomposeOp class."""
+
+    def __init__(self, target: Union[Operation, Value], *, loc=None, ip=None):
+        transformed_type = transform.AnyOpType.get()
+        super().__init__(transformed_type, target, loc=loc, ip=ip)
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class FuseIntoContainingOp(FuseIntoContainingOp):
+    """Specialization for FuseIntoContainingOp class."""
+
+    @overload
+    def __init__(
+        self,
+        fused_op_type: Type,
+        new_containing_op_type: Type,
+        producer_op: Union[Operation, OpView, Value],
+        containing_op: Union[Operation, OpView, Value],
+        *,
+        loc=None,
+        ip=None,
+    ):
+        ...
+
+    @overload
+    def __init__(
+        self,
+        producer_op: Union[Operation, OpView, Value],
+        containing_op: Union[Operation, OpView, Value],
+        *,
+        loc=None,
+        ip=None,
+    ):
+        ...
+
+    def __init__(
+        self,
+        fused_op_type_or_producer_op: Union[Operation, OpView, Type, Value],
+        new_containing_op_type_or_containing_op: Union[Operation, OpView, Type, Value],
+        producer_op_or_none: Optional[Union[Operation, OpView, Value]] = None,
+        containing_op_or_none: Optional[Union[Operation, OpView, Value]] = None,
+        *,
+        loc=None,
+        ip=None,
+    ):
+        if isinstance(fused_op_type_or_producer_op, Type):
+            if not isinstance(new_containing_op_type_or_containing_op, Type):
+                raise TypeError(
+                    "If 'fused_op_type_or_producer_op' is a type, then "
+                    "'new_containing_op_type_or_containing_op' is expected "
+                    "to be one as well."
+                )
+            fused_op_type = fused_op_type_or_producer_op
+            new_containing_op_type = new_containing_op_type_or_containing_op
+            producer_op = producer_op_or_none
+            containing_op = containing_op_or_none
+        else:
+            fused_op_type = transform.AnyOpType.get()
+            new_containing_op_type = transform.AnyOpType.get()
+            producer_op = fused_op_type_or_producer_op
+            containing_op = new_containing_op_type_or_containing_op
+
+        super().__init__(
+            fused_op_type,
+            new_containing_op_type,
+            producer_op,
+            containing_op,
+            loc=loc,
+            ip=ip,
+        )
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class GeneralizeOp(GeneralizeOp):
+    """Specialization for GeneralizeOp class."""
+
+    def __init__(self, target: Union[Operation, Value], *, loc=None, ip=None):
+        transformed_type = transform.AnyOpType.get()
+        super().__init__(transformed_type, target, loc=loc, ip=ip)
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class InterchangeOp(InterchangeOp):
+    """Specialization for InterchangeOp class."""
+
+    def __init__(
+        self,
+        target: Union[Operation, Value],
+        *,
+        iterator_interchange: OptionalIntList = None,
+        loc=None,
+        ip=None,
+    ):
+        transformed_type = transform.AnyOpType.get()
+        super().__init__(
+            transformed_type,
+            target,
+            iterator_interchange=iterator_interchange,
+            loc=loc,
+            ip=ip,
+        )
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class MapCopyToThreadsOp(MapCopyToThreadsOp):
+    """Specialization for MapCopyToThreadsOp class."""
+
+    @overload
+    def __init__(
+        self,
+        forall_op_type: Type,
+        tiled_op_type: Type,
+        target: Union[Operation, OpView, Value],
+        *,
+        total_num_threads: Union[int, IntegerAttr],
+        desired_bit_alignment: Union[int, IntegerAttr],
+        loc=None,
+        ip=None,
+    ):
+        ...
+
+    @overload
+    def __init__(
+        self,
+        target: Union[Operation, OpView, Value],
+        *,
+        total_num_threads: Union[int, IntegerAttr],
+        desired_bit_alignment: Union[int, IntegerAttr],
+        loc=None,
+        ip=None,
+    ):
+        ...
+
+    def __init__(
+        self,
+        forall_op_type_or_target: Union[Operation, OpView, Type, Value],
+        tiled_op_type_or_none: Optional[Type] = None,
+        target_or_none: Optional[Union[Operation, OpView, Value]] = None,
+        *,
+        total_num_threads: Union[int, IntegerAttr],
+        desired_bit_alignment: Union[int, IntegerAttr],
+        loc=None,
+        ip=None,
+    ):
+        if isinstance(forall_op_type_or_target, Type):
+            forall_op_type = forall_op_type_or_target
+            tiled_op_type = tiled_op_type_or_none
+            target = target_or_none
+        else:
+            forall_op_type = transform.AnyOpType.get()
+            tiled_op_type = transform.AnyOpType.get()
+            target = forall_op_type_or_target
+
+        super().__init__(
+            forall_op_type,
+            tiled_op_type,
+            target,
+            total_num_threads=total_num_threads,
+            desired_bit_alignment=desired_bit_alignment,
+            loc=loc,
+            ip=ip,
+        )
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class VectorizeOp(VectorizeOp):
+    """Specialization for VectorizeOp class."""
+
+    def __init__(
+        self,
+        target: Union[Operation, OpView, Value],
+        vector_sizes: Optional[Union[DynamicIndexList, ArrayAttr]] = None,
+        *,
+        vectorize_nd_extract: Optional[bool] = None,
+        scalable_sizes: OptionalBoolList = None,
+        static_vector_sizes: OptionalIntList = None,
+        loc=None,
+        ip=None,
+    ):
+        if (
+            scalable_sizes is None
+            and static_vector_sizes is None
+            and vector_sizes is None
+        ):
+            dynamic_vector_sizes = []
+        elif scalable_sizes is None and static_vector_sizes is None:
+            (
+                dynamic_vector_sizes,
+                static_vector_sizes,
+                scalable_sizes,
+            ) = _dispatch_dynamic_index_list(vector_sizes)
+        elif scalable_sizes is None or static_vector_sizes is None:
+            raise TypeError(
+                "'scalable_sizes' and 'static_vector_sizes' must either both "
+                "be given explicitly or both be given as part of 'vector_sizes'."
+            )
+        else:
+            dynamic_vector_sizes = vector_sizes
+
+        super().__init__(
+            target,
+            vector_sizes=dynamic_vector_sizes,
+            static_vector_sizes=static_vector_sizes,
+            scalable_sizes=scalable_sizes,
+            vectorize_nd_extract=vectorize_nd_extract,
+            loc=loc,
+            ip=ip,
+        )
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class MatchOp(MatchOp):
+    """Specialization for MatchOp class."""
+
+    @overload
+    @classmethod
+    def match_op_names(
+        cls,
+        target: Union[Operation, Value],
+        names: Union[str, Sequence[str]],
+        *,
+        loc=None,
+        ip=None,
+    ):
+        ...
+
+    @overload
+    @classmethod
+    def match_op_names(
+        cls,
+        result_type: Type,
+        target: Union[Operation, Value],
+        names: Union[str, Sequence[str]],
+        *,
+        loc=None,
+        ip=None,
+    ):
+        ...
+
+    @classmethod
+    def match_op_names(
+        cls,
+        result_type_or_target: Union[Type, Operation, Value],
+        target_or_names: Union[Operation, Value, Sequence[str], str],
+        names_or_none: Optional[Union[Sequence[str], str]] = None,
+        *,
+        loc=None,
+        ip=None,
+    ):
+        if isinstance(result_type_or_target, Type):
+            result_type = result_type_or_target
+            target = target_or_names
+            names = names_or_none
+        else:
+            result_type = transform.AnyOpType.get()
+            target = result_type_or_target
+            names = target_or_names
+
+        if isinstance(names, str):
+            names = [names]
+
+        return cls(
+            result_type,
+            target,
+            ops=ArrayAttr.get(list(map(lambda s: StringAttr.get(s), names))),
+            loc=loc,
+            ip=ip,
+        )
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class MultiTileSizesOp(MultiTileSizesOp):
+    """Specialization for MultiTileSizesOp class."""
+
+    def __init__(
+        self,
+        result_type: Type,
+        target: Union[Operation, Value],
+        *,
+        dimension: Union[int, IntegerAttr],
+        target_size: Union[int, IntegerAttr],
+        divisor: Optional[Optional[Union[int, IntegerAttr]]] = None,
+        loc=None,
+        ip=None,
+    ):
+        super().__init__(
+            result_type,
+            result_type,
+            result_type,
+            target,
+            dimension=dimension,
+            target_size=target_size,
+            divisor=divisor,
+            loc=loc,
+            ip=ip,
+        )
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class PadOp(PadOp):
+    """Specialization for PadOp class."""
+
+    def __init__(
+        self,
+        target: Union[Operation, OpView, Value],
+        *,
+        padding_values: Optional[Union[ArrayAttr, Sequence[Attribute]]] = None,
+        padding_dimensions: OptionalIntList = None,
+        pad_to_multiple_of: OptionalIntList = None,
+        pack_paddings: OptionalIntList = None,
+        transpose_paddings: Optional[
+            Union[ArrayAttr, Sequence[Union[ArrayAttr, IntOrAttrList]]]
+        ] = None,
+        copy_back_op: Optional[Union[str, StringAttr]] = None,
+        loc=None,
+        ip=None,
+    ):
+        transpose_paddings = _get_int_array_array_attr(transpose_paddings)
+
+        any_op_type = transform.AnyOpType.get()
+        super().__init__(
+            any_op_type,
+            any_op_type,
+            any_op_type,
+            target,
+            padding_values=padding_values,
+            padding_dimensions=padding_dimensions,
+            pad_to_multiple_of=pad_to_multiple_of,
+            pack_paddings=pack_paddings,
+            transpose_paddings=transpose_paddings,
+            copy_back_op=copy_back_op,
+            loc=loc,
+            ip=ip,
+        )
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class ScalarizeOp(ScalarizeOp):
+    """Specialization for ScalarizeOp class."""
+
+    def __init__(self, target: Union[Operation, Value], *, loc=None, ip=None):
+        result_type = transform.AnyOpType.get()
+        super().__init__(result_type, target, loc=loc, ip=ip)
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class SplitOp(SplitOp):
+    """Specialization for SplitOp class."""
+
+    def __init__(
+        self,
+        target: Union[Operation, Value],
+        dimension: Union[int, Attribute],
+        split_point: Union[int, Operation, Value, Attribute],
+        *,
+        loc=None,
+        ip=None,
+    ):
+        if isinstance(split_point, int):
+            static_split_point = split_point
+            dynamic_split_point = None
+        else:
+            static_split_point = ShapedType.get_dynamic_size()
+            dynamic_split_point = split_point
+
+        super().__init__(
+            target.type,
+            target.type,
+            target,
+            dimension=dimension,
+            static_split_point=static_split_point,
+            dynamic_split_point=dynamic_split_point,
+            loc=loc,
+            ip=ip,
+        )
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class TileUsingForOp(TileUsingForOp):
+    """Specialization for TileUsingForOp class."""
+
+    @overload
+    def __init__(
+        self,
+        loop_types: Union[Type, List[Type]],
+        target: Union[Operation, Value],
+        *,
+        sizes: Optional[Union[DynamicIndexList, ArrayAttr]] = None,
+        interchange: OptionalIntList = None,
+        loc=None,
+        ip=None,
+    ):
+        ...
+
+    @overload
+    def __init__(
+        self,
+        target: Union[Operation, Value, OpView],
+        *,
+        sizes: Optional[Union[DynamicIndexList, ArrayAttr]] = None,
+        interchange: OptionalIntList = None,
+        loc=None,
+        ip=None,
+    ):
+        ...
+
+    def __init__(
+        self,
+        loop_types_or_target: Union[Type, List[Type], Operation, Value],
+        target_or_none: Optional[Union[Operation, Value, OpView]] = None,
+        *,
+        sizes: Optional[Union[DynamicIndexList, ArrayAttr]] = None,
+        interchange: OptionalIntList = None,
+        loc=None,
+        ip=None,
+    ):
+        (
+            dynamic_sizes,
+            static_sizes,
+            scalable_sizes,
+        ) = _dispatch_dynamic_index_list(sizes)
+
+        num_loops = sum(v if v == 0 else 1 for v in static_sizes)
+
+        if isinstance(loop_types_or_target, (Operation, Value, OpView)):
+            loop_types = [transform.AnyOpType.get()] * num_loops
+            target = loop_types_or_target
+            assert (
+                target_or_none is None
+            ), "Cannot construct TileUsingForOp with two targets."
+        else:
+            loop_types = (
+                ([loop_types_or_target] * num_loops)
+                if isinstance(loop_types_or_target, Type)
+                else loop_types_or_target
+            )
+            target = target_or_none
+
+        super().__init__(
+            target.type,
+            loop_types,
+            target,
+            dynamic_sizes=dynamic_sizes,
+            static_sizes=static_sizes,
+            interchange=interchange,
+            scalable_sizes=scalable_sizes,
+            loc=loc,
+            ip=ip,
+        )
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class TileUsingForallOp(TileUsingForallOp):
+    """Specialization for TileUsingForallOp class."""
+
+    @overload
+    def __init__(
+        self,
+        loops_type: Type,
+        tiled_op_type: Type,
+        target: Union[Operation, Value, OpView],
+        *,
+        num_threads: Optional[MixedValues] = None,
+        tile_sizes: MixedValues = None,
+        mapping=None,
+        loc=None,
+        ip=None,
+    ):
+        ...
+
+    @overload
+    def __init__(
+        self,
+        target: Union[Operation, Value, OpView],
+        *,
+        num_threads: Optional[MixedValues] = None,
+        tile_sizes: MixedValues = None,
+        mapping=None,
+        loc=None,
+        ip=None,
+    ):
+        ...
+
+    def __init__(
+        self,
+        loops_type_or_target: Union[
+            Type, Union[Operation, Value, OpView]  # loops_type
+        ],  # target
+        tiled_op_type_or_none: Optional[Type] = None,
+        target_or_none: Optional[Union[Operation, Value, OpView]] = None,
+        *,
+        num_threads: MixedValues = None,
+        tile_sizes: MixedValues = None,
+        mapping=None,
+        loc=None,
+        ip=None,
+    ):
+        # `Type` arguments in the front are optional: add default values to front.
+        if isinstance(loops_type_or_target, Type):
+            # First overload: type arguments provided.
+            if not isinstance(tiled_op_type_or_none, Type):
+                raise TypeError(
+                    "If 'loops_type_or_target' is a type, then "
+                    "'tiled_op_type_or_none' is expected to be one as well."
+                )
+            loops_type = loops_type_or_target
+            tiled_op_type = tiled_op_type_or_none
+            target = target_or_none
+        else:
+            # Last overload: type arguments missing.
+            loops_type = transform.AnyOpType.get()
+            tiled_op_type = transform.AnyOpType.get()
+            target = loops_type_or_target
+
+        # Unpack mixed num_threads.
+        (
+            dynamic_num_threads,
+            packed_num_threads,
+            num_threads_attr,
+        ) = _dispatch_mixed_values(num_threads)
+
+        # Unpack mixed tile_sizes.
+        (
+            dynamic_tile_sizes,
+            packed_tile_sizes,
+            tile_sizes_attr,
+        ) = _dispatch_mixed_values(tile_sizes)
+
+        super().__init__(
+            loops_type,
+            tiled_op_type,
+            target=target,
+            tile_sizes=dynamic_tile_sizes,
+            packed_tile_sizes=packed_tile_sizes,
+            static_tile_sizes=tile_sizes_attr,
+            num_threads=dynamic_num_threads,
+            packed_num_threads=packed_num_threads,
+            static_num_threads=num_threads_attr,
+            mapping=mapping,
+            loc=loc,
+            ip=ip,
+        )
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class VectorizeChildrenAndApplyPatternsOp(VectorizeChildrenAndApplyPatternsOp):
+    """Specialization for VectorizeChildrenAndApplyPatternsOp class."""
+
+    def __init__(
+        self,
+        target: Union[Operation, Value],
+        *,
+        disable_multi_reduction_to_contract_patterns: bool = False,
+        disable_transfer_permutation_map_lowering_patterns: bool = False,
+        vectorize_nd_extract: bool = False,
+        vectorize_padding: bool = False,
+        loc=None,
+        ip=None,
+    ):
+        transformed_type = transform.AnyOpType.get()
+        super().__init__(
+            transformed_type,
+            target,
+            disable_multi_reduction_to_contract_patterns=disable_multi_reduction_to_contract_patterns,
+            disable_transfer_permutation_map_lowering_patterns=disable_transfer_permutation_map_lowering_patterns,
+            vectorize_nd_extract=vectorize_nd_extract,
+            vectorize_padding=vectorize_padding,
+            loc=loc,
+            ip=ip,
+        )
diff --git a/mlir/python/mlir/dialects/transform/tensor.py b/mlir/python/mlir/dialects/transform/tensor.py
index bf52255b3df7145..4eb30398f087212 100644
--- a/mlir/python/mlir/dialects/transform/tensor.py
+++ b/mlir/python/mlir/dialects/transform/tensor.py
@@ -3,3 +3,67 @@
 #  SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
 from .._tensor_transform_ops_gen import *
+from .._tensor_transform_ops_gen import _Dialect
+
+try:
+    from ...ir import *
+    from ...dialects import transform
+    from .._ods_common import _cext as _ods_cext
+except ImportError as e:
+    raise RuntimeError("Error loading imports from extension module") from e
+
+from typing import Optional, overload, Union
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class MakeLoopIndependentOp(MakeLoopIndependentOp):
+    """Specialization for MakeLoopIndependentOp class."""
+
+    @overload
+    def __init__(
+        self,
+        transformed_type: Type,
+        target: Union[Operation, OpView, Value],
+        num_loops: Union[int, IntegerAttr],
+        *,
+        loc=None,
+        ip=None,
+    ):
+        ...
+
+    @overload
+    def __init__(
+        self,
+        target: Union[Operation, OpView, Value],
+        num_loops: Union[int, IntegerAttr],
+        *,
+        loc=None,
+        ip=None,
+    ):
+        ...
+
+    def __init__(
+        self,
+        transformed_type_or_target: Type,
+        target_or_num_loops: Union[int, IntegerAttr, Operation, OpView, Value] = None,
+        num_loops_or_none: Optional[Union[int, IntegerAttr]] = None,
+        *,
+        loc=None,
+        ip=None,
+    ):
+        if isinstance(transformed_type_or_target, Type):
+            transformed_type = transformed_type_or_target
+            target = target_or_num_loops
+            num_loops = num_loops_or_none
+        else:
+            transformed_type = transform.AnyOpType.get()
+            target = transformed_type_or_target
+            num_loops = target_or_num_loops
+
+        super().__init__(
+            transformed_type,
+            target,
+            num_loops,
+            loc=loc,
+            ip=ip,
+        )
diff --git a/mlir/tools/mlir-tblgen/OpPythonBindingGen.cpp b/mlir/tools/mlir-tblgen/OpPythonBindingGen.cpp
index 2c81538b7b40433..9eaf2f89530c8f1 100644
--- a/mlir/tools/mlir-tblgen/OpPythonBindingGen.cpp
+++ b/mlir/tools/mlir-tblgen/OpPythonBindingGen.cpp
@@ -30,7 +30,7 @@ constexpr const char *fileHeader = R"Py(
 # Autogenerated by mlir-tblgen; don't manually edit.
 
 from ._ods_common import _cext as _ods_cext
-from ._ods_common import extend_opview_class as _ods_extend_opview_class, segmented_accessor as _ods_segmented_accessor, equally_sized_accessor as _ods_equally_sized_accessor, get_default_loc_context as _ods_get_default_loc_context, get_op_result_or_value as _get_op_result_or_value, get_op_results_or_values as _get_op_results_or_values, get_op_result_or_op_results as _get_op_result_or_op_results
+from ._ods_common import segmented_accessor as _ods_segmented_accessor, equally_sized_accessor as _ods_equally_sized_accessor, get_default_loc_context as _ods_get_default_loc_context, get_op_result_or_value as _get_op_result_or_value, get_op_results_or_values as _get_op_results_or_values, get_op_result_or_op_results as _get_op_result_or_op_results
 _ods_ir = _ods_cext.ir
 
 try:
@@ -62,7 +62,6 @@ from ._{0}_ops_gen import _Dialect
 ///   {1} is the operation name.
 constexpr const char *opClassTemplate = R"Py(
 @_ods_cext.register_operation(_Dialect)
- at _ods_extend_opview_class(_ods_ext_module)
 class {0}(_ods_ir.OpView):
   OPERATION_NAME = "{1}"
 )Py";
@@ -850,9 +849,6 @@ populateBuilderRegions(const Operator &op,
 static llvm::SmallVector<std::string> emitDefaultOpBuilder(const Operator &op,
                                                            raw_ostream &os) {
   // If we are asked to skip default builders, comply.
-  if (op.skipDefaultBuilders())
-    return {};
-
   llvm::SmallVector<std::string> builderArgs;
   llvm::SmallVector<std::string> builderLines;
   llvm::SmallVector<std::string> operandArgNames;
@@ -985,9 +981,6 @@ static void emitRegionAccessors(const Operator &op, raw_ostream &os) {
 static void emitValueBuilder(const Operator &op,
                              llvm::SmallVector<std::string> functionArgs,
                              raw_ostream &os) {
-  // If we are asked to skip default builders, comply.
-  if (op.skipDefaultBuilders())
-    return;
   auto name = sanitizeName(op.getOperationName());
   iterator_range<llvm::SplittingIterator> splitName = llvm::split(name, ".");
   // Params with (possibly) default args.



More information about the Mlir-commits mailing list