[Mlir-commits] [mlir] ea71d2d - [mlir][tensor][bufferize] Reshapes: Fix memory side effects and memory space (#68195)

llvmlistbot at llvm.org llvmlistbot at llvm.org
Thu Oct 5 05:33:07 PDT 2023


Author: Matthias Springer
Date: 2023-10-05T14:33:04+02:00
New Revision: ea71d2d0fe8f172fde5b39c702cfa4dc5c3df88e

URL: https://github.com/llvm/llvm-project/commit/ea71d2d0fe8f172fde5b39c702cfa4dc5c3df88e
DIFF: https://github.com/llvm/llvm-project/commit/ea71d2d0fe8f172fde5b39c702cfa4dc5c3df88e.diff

LOG: [mlir][tensor][bufferize] Reshapes: Fix memory side effects and memory space (#68195)

* `tensor.collapse_shape` may bufferize to a memory read because the op
may have to reallocate the source buffer.
* `tensor.reshape` should not use `bufferization.clone` for
reallocation. This op has requirements wrt. the order of buffer
writes/reads. Use `memref.alloc` and `memref.copy` instead. Also fix a
bug where the memory space of the source buffer was not propagated to
the reallocated buffer.

Added: 
    

Modified: 
    mlir/lib/Dialect/Tensor/Transforms/BufferizableOpInterfaceImpl.cpp
    mlir/test/Dialect/Tensor/one-shot-bufferize.mlir

Removed: 
    


################################################################################
diff  --git a/mlir/lib/Dialect/Tensor/Transforms/BufferizableOpInterfaceImpl.cpp b/mlir/lib/Dialect/Tensor/Transforms/BufferizableOpInterfaceImpl.cpp
index ac128d0a97bda4f..9386d0fd0f04faf 100644
--- a/mlir/lib/Dialect/Tensor/Transforms/BufferizableOpInterfaceImpl.cpp
+++ b/mlir/lib/Dialect/Tensor/Transforms/BufferizableOpInterfaceImpl.cpp
@@ -119,7 +119,11 @@ struct CollapseShapeOpInterface
                                                     tensor::CollapseShapeOp> {
   bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
                               const AnalysisState &state) const {
-    return false;
+    // tensor.collapse_shape may reallocate, at which point the source buffer is
+    // copied. I.e., there will be a memory read side effect on the bufferized
+    // source. This function conservatively returns "true" because whether a
+    // copy will be created or not is not known at this point.
+    return true;
   }
 
   bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
@@ -291,6 +295,8 @@ struct ExpandShapeOpInterface
                                                     tensor::ExpandShapeOp> {
   bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
                               const AnalysisState &state) const {
+    // In contrast to tensor.collapse_shape, this op can always be bufferized
+    // without a copy.
     return false;
   }
 
@@ -841,6 +847,7 @@ struct ReshapeOpInterface
                                                     tensor::ReshapeOp> {
   bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
                               const AnalysisState &state) const {
+    // Depending on the layout map, the source buffer may have to be copied.
     auto reshapeOp = cast<tensor::ReshapeOp>(op);
     return &opOperand == &reshapeOp.getShapeMutable();
   }
@@ -870,15 +877,20 @@ struct ReshapeOpInterface
       return failure();
 
     // memref.reshape requires the source buffer to have an identity layout.
-    // If the source memref does not have an identity layout, clone the source
+    // If the source memref does not have an identity layout, copy the source
     // into a new buffer with an identity layout.
     auto srcType = llvm::dyn_cast<MemRefType>(srcBuffer->getType());
     if (srcType && !srcType.getLayout().isIdentity()) {
-      auto identityType =
-          MemRefType::get(srcType.getShape(), srcType.getElementType());
+      FailureOr<Value> tensorAlloc = allocateTensorForShapedValue(
+          rewriter, op->getLoc(), reshapeOp.getSource(), options);
+      if (failed(tensorAlloc))
+        return failure();
+      auto memrefType = MemRefType::get(
+          srcType.getShape(), srcType.getElementType(), AffineMap(),
+          cast<BaseMemRefType>(srcBuffer->getType()).getMemorySpace());
       srcBuffer = rewriter
-                      .create<bufferization::CloneOp>(op->getLoc(),
-                                                      identityType, *srcBuffer)
+                      .create<bufferization::ToMemrefOp>(
+                          op->getLoc(), memrefType, *tensorAlloc)
                       .getResult();
     }
 

diff  --git a/mlir/test/Dialect/Tensor/one-shot-bufferize.mlir b/mlir/test/Dialect/Tensor/one-shot-bufferize.mlir
index 9052744a1d3f984..38c3bb8af8107d8 100644
--- a/mlir/test/Dialect/Tensor/one-shot-bufferize.mlir
+++ b/mlir/test/Dialect/Tensor/one-shot-bufferize.mlir
@@ -384,20 +384,45 @@ func.func @tensor.reshape() -> tensor<2x2x5xf32> {
 // -----
 
 // CHECK-LABEL: @reshape_with_non_identity_layout(
-// CHECK-SAME:    %[[INPUT:[a-zA-Z0-9]*]]: memref<2x2xf32, strided<[?, ?], offset: ?>>,
-// CHECK-SAME:    %[[LAYOUT:[a-zA-Z0-9]*]]: memref<2xi32, strided<[?], offset: ?>>)
-func.func @reshape_with_non_identity_layout(%arg0: tensor<2x2xf32>, %arg1: tensor<2xi32>) -> tensor<1x2xf32> {
-
-  // CHECK: %[[SUBVIEW:.+]] = memref.subview %[[INPUT]][1, 0] [1, 2] [1, 1] : memref<2x2xf32, strided<[?, ?], offset: ?>> to memref<2xf32, strided<[?], offset: ?>>
-  %extracted_slice = tensor.extract_slice %arg0[1, 0] [1, 2] [1, 1] : tensor<2x2xf32> to tensor<2xf32>
+// CHECK-SAME:    %[[INPUT:[a-zA-Z0-9]*]]: memref<2x2xf32, strided<[?, ?], offset: ?>, 3>,
+// CHECK-SAME:    %[[LAYOUT:[a-zA-Z0-9]*]]: memref<2xi32, strided<[?], offset: ?>>,
+func.func @reshape_with_non_identity_layout(%arg0: memref<2x2xf32, strided<[?, ?], offset: ?>, 3>, %arg1: tensor<2xi32>, %idx: index) -> f32 {
+  %t = bufferization.to_tensor %arg0 restrict : memref<2x2xf32, strided<[?, ?], offset: ?>, 3>
+
+  // CHECK: %[[SUBVIEW:.+]] = memref.subview %[[INPUT]][1, 0] [1, 2] [1, 1] : memref<2x2xf32, strided<[?, ?], offset: ?>, 3> to memref<2xf32, strided<[?], offset: ?>, 3>
+  %extracted_slice = tensor.extract_slice %t[1, 0] [1, 2] [1, 1] : tensor<2x2xf32> to tensor<2xf32>
+
+  // To satisify the constraints of memref.reshape, the subview must be
+  // reallocated a buffer with an identity layout.
+  // CHECK: %[[ALLOC:.+]] = memref.alloc() {{.*}} : memref<2xf32, 3>
+  // CHECK: memref.copy %[[SUBVIEW]], %[[ALLOC]]
+  // CHECK: %[[RESHAPED:.+]] = memref.reshape %[[ALLOC]](%[[LAYOUT]]) : (memref<2xf32, 3>, memref<2xi32, strided<[?], offset: ?>>) -> memref<1x2xf32, 3>
+  %reshape = tensor.reshape %extracted_slice(%arg1) : (tensor<2xf32>, tensor<2xi32>) -> tensor<1x2xf32>
 
-  // To satisify the constraints of memref.reshape, the subview must be cloned into
-  // a buffer with an identity layout.
-  // CHECK: %[[CLONED:.+]] = bufferization.clone %[[SUBVIEW]] : memref<2xf32, strided<[?], offset: ?>> to memref<2xf32>
-  // CHECK: %[[RESHAPED:.+]] = memref.reshape %[[CLONED]](%[[LAYOUT]]) : (memref<2xf32>, memref<2xi32, strided<[?], offset: ?>>) -> memref<1x2xf32>
+  %r = tensor.extract %reshape[%idx, %idx] : tensor<1x2xf32>
+  return %r : f32
+}
 
-  %reshape = tensor.reshape %extracted_slice(%arg1) : (tensor<2xf32>, tensor<2xi32>) -> tensor<1x2xf32>
+// -----
 
-  // CHECK: return %[[RESHAPED]] : memref<1x2xf32>
-  return %reshape : tensor<1x2xf32>
+// CHECK-LABEL: func @collapse_shape_regression(
+//  CHECK-SAME:     %[[t:.*]]: memref<10x20xf32,
+func.func @collapse_shape_regression(
+    %t: tensor<10x20xf32>, %f: f32, %idx: index) {
+  // CHECK: %[[subview:.*]] = memref.subview %[[t]]
+  %0 = tensor.extract_slice %t [2, 3] [5, 6] [1, 1]
+      : tensor<10x20xf32> to tensor<5x6xf32>
+
+  // Insert a copy because the original %0 is read later.
+  // CHECK: %[[alloc1:.*]] = memref.alloc() {{.*}} : memref<5x6xf32>
+  // CHECK: memref.copy %[[subview]], %[[alloc1]]
+  // CHECK: memref.store {{.*}}, %[[alloc1]]
+  tensor.insert %f into %0[%idx, %idx] : tensor<5x6xf32>
+
+  // Insert a copy because the shape cannot be collapsed.
+  // CHECK: %[[alloc2:.*]] = memref.alloc() {{.*}} : memref<5x6xf32>
+  // CHECK: memref.copy %[[subview]], %[[alloc2]]
+  // CHECK: memref.collapse_shape %[[alloc2]]
+  tensor.collapse_shape %0[[0, 1]] : tensor<5x6xf32> into tensor<30xf32>
+  return
 }


        


More information about the Mlir-commits mailing list