[Mlir-commits] [mlir] [mlir][tensor][bufferize] Reshapes: Fix memory side effects and memory space (PR #68195)
llvmlistbot at llvm.org
llvmlistbot at llvm.org
Wed Oct 4 03:02:23 PDT 2023
llvmbot wrote:
<!--LLVM PR SUMMARY COMMENT-->
@llvm/pr-subscribers-mlir-tensor
<details>
<summary>Changes</summary>
* `tensor.collapse_shape` may bufferize to a memory read because the op may have to reallocate the source buffer.
* `tensor.reshape` should not use `bufferization.clone` for reallocation. This op has requirements wrt. the order of buffer writes/reads. Use `memref.alloc` and `memref.copy` instead. Also fix a bug where the memory space of the source buffer was not propagated to the reallocated buffer.
---
Full diff: https://github.com/llvm/llvm-project/pull/68195.diff
2 Files Affected:
- (modified) mlir/lib/Dialect/Tensor/Transforms/BufferizableOpInterfaceImpl.cpp (+17-6)
- (modified) mlir/test/Dialect/Tensor/one-shot-bufferize.mlir (+38-13)
``````````diff
diff --git a/mlir/lib/Dialect/Tensor/Transforms/BufferizableOpInterfaceImpl.cpp b/mlir/lib/Dialect/Tensor/Transforms/BufferizableOpInterfaceImpl.cpp
index b08283f0070784c..9ac9f3eae120dc9 100644
--- a/mlir/lib/Dialect/Tensor/Transforms/BufferizableOpInterfaceImpl.cpp
+++ b/mlir/lib/Dialect/Tensor/Transforms/BufferizableOpInterfaceImpl.cpp
@@ -119,7 +119,10 @@ struct CollapseShapeOpInterface
tensor::CollapseShapeOp> {
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
- return false;
+ // tensor.collapse_shape may reallocate, at which point the source buffer is
+ // copied. I.e., there will be a memory read side effect on the bufferized
+ // source.
+ return true;
}
bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
@@ -288,6 +291,8 @@ struct ExpandShapeOpInterface
tensor::ExpandShapeOp> {
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
+ // In contrast to tensor.collapse_shape, this op can always be bufferized
+ // without a copy.
return false;
}
@@ -838,6 +843,7 @@ struct ReshapeOpInterface
tensor::ReshapeOp> {
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
+ // Depending on the layout map, the source buffer may have to be copied.
auto reshapeOp = cast<tensor::ReshapeOp>(op);
return &opOperand == &reshapeOp.getShapeMutable()[0];
}
@@ -867,15 +873,20 @@ struct ReshapeOpInterface
return failure();
// memref.reshape requires the source buffer to have an identity layout.
- // If the source memref does not have an identity layout, clone the source
+ // If the source memref does not have an identity layout, copy the source
// into a new buffer with an identity layout.
auto srcType = llvm::dyn_cast<MemRefType>(srcBuffer->getType());
if (srcType && !srcType.getLayout().isIdentity()) {
- auto identityType =
- MemRefType::get(srcType.getShape(), srcType.getElementType());
+ FailureOr<Value> tensorAlloc = allocateTensorForShapedValue(
+ rewriter, op->getLoc(), reshapeOp.getSource(), options);
+ if (failed(tensorAlloc))
+ return failure();
+ auto memrefType = MemRefType::get(
+ srcType.getShape(), srcType.getElementType(), AffineMap(),
+ cast<BaseMemRefType>(srcBuffer->getType()).getMemorySpace());
srcBuffer = rewriter
- .create<bufferization::CloneOp>(op->getLoc(),
- identityType, *srcBuffer)
+ .create<bufferization::ToMemrefOp>(
+ op->getLoc(), memrefType, *tensorAlloc)
.getResult();
}
diff --git a/mlir/test/Dialect/Tensor/one-shot-bufferize.mlir b/mlir/test/Dialect/Tensor/one-shot-bufferize.mlir
index 9052744a1d3f984..48eeb5c4dd077e9 100644
--- a/mlir/test/Dialect/Tensor/one-shot-bufferize.mlir
+++ b/mlir/test/Dialect/Tensor/one-shot-bufferize.mlir
@@ -384,20 +384,45 @@ func.func @tensor.reshape() -> tensor<2x2x5xf32> {
// -----
// CHECK-LABEL: @reshape_with_non_identity_layout(
-// CHECK-SAME: %[[INPUT:[a-zA-Z0-9]*]]: memref<2x2xf32, strided<[?, ?], offset: ?>>,
-// CHECK-SAME: %[[LAYOUT:[a-zA-Z0-9]*]]: memref<2xi32, strided<[?], offset: ?>>)
-func.func @reshape_with_non_identity_layout(%arg0: tensor<2x2xf32>, %arg1: tensor<2xi32>) -> tensor<1x2xf32> {
-
- // CHECK: %[[SUBVIEW:.+]] = memref.subview %[[INPUT]][1, 0] [1, 2] [1, 1] : memref<2x2xf32, strided<[?, ?], offset: ?>> to memref<2xf32, strided<[?], offset: ?>>
- %extracted_slice = tensor.extract_slice %arg0[1, 0] [1, 2] [1, 1] : tensor<2x2xf32> to tensor<2xf32>
+// CHECK-SAME: %[[INPUT:[a-zA-Z0-9]*]]: memref<2x2xf32, strided<[?, ?], offset: ?>, 3>,
+// CHECK-SAME: %[[LAYOUT:[a-zA-Z0-9]*]]: memref<2xi32, strided<[?], offset: ?>>,
+func.func @reshape_with_non_identity_layout(%arg0: memref<2x2xf32, strided<[?, ?], offset: ?>, 3>, %arg1: tensor<2xi32>, %idx: index) -> f32 {
+ %t = bufferization.to_tensor %arg0 restrict : memref<2x2xf32, strided<[?, ?], offset: ?>, 3>
+
+ // CHECK: %[[SUBVIEW:.+]] = memref.subview %[[INPUT]][1, 0] [1, 2] [1, 1] : memref<2x2xf32, strided<[?, ?], offset: ?>, 3> to memref<2xf32, strided<[?], offset: ?>, 3>
+ %extracted_slice = tensor.extract_slice %t[1, 0] [1, 2] [1, 1] : tensor<2x2xf32> to tensor<2xf32>
+
+ // To satisify the constraints of memref.reshape, the subview must be
+ // reallocated a buffer with an identity layout.
+ // CHECK: %[[ALLOC:.+]] = memref.alloc() {{.*}} : memref<2xf32, 3>
+ // CHECK: memref.copy %[[SUBVIEW]], %[[ALLOC]]
+ // CHECK: %[[RESHAPED:.+]] = memref.reshape %[[ALLOC]](%[[LAYOUT]]) : (memref<2xf32, 3>, memref<2xi32, strided<[?], offset: ?>>) -> memref<1x2xf32, 3>\
+ %reshape = tensor.reshape %extracted_slice(%arg1) : (tensor<2xf32>, tensor<2xi32>) -> tensor<1x2xf32>
- // To satisify the constraints of memref.reshape, the subview must be cloned into
- // a buffer with an identity layout.
- // CHECK: %[[CLONED:.+]] = bufferization.clone %[[SUBVIEW]] : memref<2xf32, strided<[?], offset: ?>> to memref<2xf32>
- // CHECK: %[[RESHAPED:.+]] = memref.reshape %[[CLONED]](%[[LAYOUT]]) : (memref<2xf32>, memref<2xi32, strided<[?], offset: ?>>) -> memref<1x2xf32>
+ %r = tensor.extract %reshape[%idx, %idx] : tensor<1x2xf32>
+ return %r : f32
+}
- %reshape = tensor.reshape %extracted_slice(%arg1) : (tensor<2xf32>, tensor<2xi32>) -> tensor<1x2xf32>
+// -----
- // CHECK: return %[[RESHAPED]] : memref<1x2xf32>
- return %reshape : tensor<1x2xf32>
+// CHECK-LABEL: func @collapse_shape_regression(
+// CHECK-SAME: %[[t:.*]]: memref<10x20xf32,
+func.func @collapse_shape_regression(
+ %t: tensor<10x20xf32>, %f: f32, %idx: index) {
+ // CHECK: %[[subview:.*]] = memref.subview %[[t]]
+ %0 = tensor.extract_slice %t [2, 3] [5, 6] [1, 1]
+ : tensor<10x20xf32> to tensor<5x6xf32>
+
+ // Insert a copy because the original %0 is read later.
+ // CHECK: %[[alloc1:.*]] = memref.alloc() {{.*}} : memref<5x6xf32>
+ // CHECK: memref.copy %[[subview]], %[[alloc1]]
+ // CHECK: memref.store {{.*}}, %[[alloc1]]
+ tensor.insert %f into %0[%idx, %idx] : tensor<5x6xf32>
+
+ // Insert a copy because the shape cannot be collapsed.
+ // CHECK: %[[alloc2:.*]] = memref.alloc() {{.*}} : memref<5x6xf32>
+ // CHECK: memref.copy %[[subview]], %[[alloc2]]
+ // CHECK: memref.collapse_shape %[[alloc2]]
+ tensor.collapse_shape %0[[0, 1]] : tensor<5x6xf32> into tensor<30xf32>
+ return
}
``````````
</details>
https://github.com/llvm/llvm-project/pull/68195
More information about the Mlir-commits
mailing list