[Mlir-commits] [mlir] [mlir][sparse] minor edits to support lib files (PR #68137)

Aart Bik llvmlistbot at llvm.org
Tue Oct 3 11:22:18 PDT 2023


https://github.com/aartbik updated https://github.com/llvm/llvm-project/pull/68137

>From 44b857d7f47b5f43d97cd08d21e5faf96d7e5234 Mon Sep 17 00:00:00 2001
From: Aart Bik <ajcbik at google.com>
Date: Tue, 3 Oct 2023 10:45:49 -0700
Subject: [PATCH 1/3] [mlir][sparse] minor edits to support lib files

---
 .../mlir/ExecutionEngine/SparseTensor/COO.h   | 63 ++++------------
 .../mlir/ExecutionEngine/SparseTensor/File.h  | 29 ++------
 .../ExecutionEngine/SparseTensor/Storage.h    | 72 ++++++-------------
 .../ExecutionEngine/SparseTensorRuntime.h     | 11 ++-
 4 files changed, 44 insertions(+), 131 deletions(-)

diff --git a/mlir/include/mlir/ExecutionEngine/SparseTensor/COO.h b/mlir/include/mlir/ExecutionEngine/SparseTensor/COO.h
index 40c68177bbea821..c8a9ee28f39e58b 100644
--- a/mlir/include/mlir/ExecutionEngine/SparseTensor/COO.h
+++ b/mlir/include/mlir/ExecutionEngine/SparseTensor/COO.h
@@ -23,20 +23,19 @@ namespace mlir {
 namespace sparse_tensor {
 
 /// An element of a sparse tensor in coordinate-scheme representation
-/// (i.e., a pair of coordinates and value).  For example, a rank-1
+/// (i.e., a pair of coordinates and value). For example, a rank-1
 /// vector element would look like
 ///   ({i}, a[i])
 /// and a rank-5 tensor element would look like
 ///   ({i,j,k,l,m}, a[i,j,k,l,m])
 ///
-/// The coordinates are represented as a (non-owning) pointer into
-/// a shared pool of coordinates, rather than being stored directly in
-/// this object.  This significantly improves performance because it:
-/// (1) reduces the per-element memory footprint, and (2) centralizes
-/// the memory management for coordinates.  The only downside is that
-/// the coordinates themselves cannot be retrieved without knowing the
-/// rank of the tensor to which this element belongs (and that rank is
-/// not stored in this object).
+/// The coordinates are represented as a (non-owning) pointer into a
+/// shared pool of coordinates, rather than being stored directly in this
+/// object. This significantly improves performance because it reduces the
+/// per-element memory footprint and centralizes the memory management for
+/// coordinates. The only downside is that the coordinates themselves cannot
+/// be retrieved without knowing the rank of the tensor to which this element
+/// belongs (and that rank is not stored in this object).
 template <typename V>
 struct Element final {
   Element(const uint64_t *coords, V val) : coords(coords), value(val){};
@@ -48,10 +47,6 @@ struct Element final {
 template <typename V>
 struct ElementLT final {
   ElementLT(uint64_t rank) : rank(rank) {}
-
-  /// Compares two elements a la `operator<`.
-  ///
-  /// Precondition: the elements must both be valid for `rank`.
   bool operator()(const Element<V> &e1, const Element<V> &e2) const {
     for (uint64_t d = 0; d < rank; ++d) {
       if (e1.coords[d] == e2.coords[d])
@@ -60,13 +55,10 @@ struct ElementLT final {
     }
     return false;
   }
-
   const uint64_t rank;
 };
 
-/// The type of callback functions which receive an element.  We avoid
-/// packaging the coordinates and value together as an `Element` object
-/// because this helps keep code somewhat cleaner.
+/// The type of callback functions which receive an element.
 template <typename V>
 using ElementConsumer =
     const std::function<void(const std::vector<uint64_t> &, V)> &;
@@ -89,27 +81,13 @@ class SparseTensorCOO final {
   using size_type = typename vector_type::size_type;
 
   /// Constructs a new coordinate-scheme sparse tensor with the given
-  /// sizes and initial storage capacity.
-  ///
-  /// Asserts:
-  /// * `dimSizes` has nonzero size.
-  /// * the elements of `dimSizes` are nonzero.
+  /// sizes and an optional initial storage capacity.
   explicit SparseTensorCOO(const std::vector<uint64_t> &dimSizes,
                            uint64_t capacity = 0)
       : SparseTensorCOO(dimSizes.size(), dimSizes.data(), capacity) {}
 
-  // TODO: make a class for capturing known-valid sizes (a la PermutationRef),
-  // so that `SparseTensorStorage::toCOO` can avoid redoing these assertions.
-  // Also so that we can enforce the asserts *before* copying into `dimSizes`.
-  //
   /// Constructs a new coordinate-scheme sparse tensor with the given
-  /// sizes and initial storage capacity.
-  ///
-  /// Precondition: `dimSizes` must be valid for `dimRank`.
-  ///
-  /// Asserts:
-  /// * `dimRank` is nonzero.
-  /// * the elements of `dimSizes` are nonzero.
+  /// sizes and an optional initial storage capacity.
   explicit SparseTensorCOO(uint64_t dimRank, const uint64_t *dimSizes,
                            uint64_t capacity = 0)
       : dimSizes(dimSizes, dimSizes + dimRank), isSorted(true) {
@@ -134,16 +112,7 @@ class SparseTensorCOO final {
   /// Returns the `operator<` closure object for the COO's element type.
   ElementLT<V> getElementLT() const { return ElementLT<V>(getRank()); }
 
-  /// Adds an element to the tensor.  This method does not check whether
-  /// `dimCoords` is already associated with a value, it adds it regardless.
-  /// Resolving such conflicts is left up to clients of the iterator
-  /// interface.
-  ///
-  /// This method invalidates all iterators.
-  ///
-  /// Asserts:
-  /// * the `dimCoords` is valid for `getRank`.
-  /// * the components of `dimCoords` are valid for `getDimSizes`.
+  /// Adds an element to the tensor. This method invalidates all iterators.
   void add(const std::vector<uint64_t> &dimCoords, V val) {
     const uint64_t *base = coordinates.data();
     const uint64_t size = coordinates.size();
@@ -154,7 +123,7 @@ class SparseTensorCOO final {
              "Coordinate is too large for the dimension");
       coordinates.push_back(dimCoords[d]);
     }
-    // This base only changes if `coordinates` was reallocated.  In which
+    // This base only changes if `coordinates` was reallocated. In which
     // case, we need to correct all previous pointers into the vector.
     // Note that this only happens if we did not set the initial capacity
     // right, and then only for every internal vector reallocation (which
@@ -175,11 +144,9 @@ class SparseTensorCOO final {
   const_iterator begin() const { return elements.cbegin(); }
   const_iterator end() const { return elements.cend(); }
 
-  /// Sorts elements lexicographically by coordinates.  If a coordinate
+  /// Sorts elements lexicographically by coordinates. If a coordinate
   /// is mapped to multiple values, then the relative order of those
-  /// values is unspecified.
-  ///
-  /// This method invalidates all iterators.
+  /// values is unspecified. This method invalidates all iterators.
   void sort() {
     if (isSorted)
       return;
diff --git a/mlir/include/mlir/ExecutionEngine/SparseTensor/File.h b/mlir/include/mlir/ExecutionEngine/SparseTensor/File.h
index 1b6736b0cdd1d12..be1c4f72e1200da 100644
--- a/mlir/include/mlir/ExecutionEngine/SparseTensor/File.h
+++ b/mlir/include/mlir/ExecutionEngine/SparseTensor/File.h
@@ -6,8 +6,8 @@
 //
 //===----------------------------------------------------------------------===//
 //
-// This file implements parsing and printing of files in one of the
-// following external formats:
+// This file implements reading and writing files in one of the following
+// external formats:
 //
 // (1) Matrix Market Exchange (MME): *.mtx
 //     https://math.nist.gov/MatrixMarket/formats.html
@@ -197,31 +197,14 @@ class SparseTensorReader final {
 
   /// Allocates a new COO object for `lvlSizes`, initializes it by reading
   /// all the elements from the file and applying `dim2lvl` to their
-  /// dim-coordinates, and then closes the file.
-  ///
-  /// Preconditions:
-  /// * `lvlSizes` must be valid for `lvlRank`.
-  /// * `dim2lvl` must be valid for `getRank()`.
-  /// * `dim2lvl` maps `getDimSizes()`-coordinates to `lvlSizes`-coordinates.
-  /// * the file's actual value type can be read as `V`.
-  ///
-  /// Asserts:
-  /// * `isValid()`
-  /// * `dim2lvl` is a permutation, and therefore also `lvlRank == getRank()`.
-  ///   (This requirement will be lifted once we functionalize `dim2lvl`.)
-  //
-  // NOTE: This method is factored out of `readSparseTensor` primarily to
-  // reduce code bloat (since the bulk of the code doesn't care about the
-  // `<P,I>` type template parameters).  But we leave it public since it's
-  // perfectly reasonable for clients to use.
+  /// dim-coordinates, and then closes the file. Templated on V only.
   template <typename V>
   SparseTensorCOO<V> *readCOO(uint64_t lvlRank, const uint64_t *lvlSizes,
                               const uint64_t *dim2lvl);
 
   /// Allocates a new sparse-tensor storage object with the given encoding,
   /// initializes it by reading all the elements from the file, and then
-  /// closes the file.  Preconditions/assertions are as per `readCOO`
-  /// and `SparseTensorStorage::newFromCOO`.
+  /// closes the file. Templated on P, I, and V.
   template <typename P, typename I, typename V>
   SparseTensorStorage<P, I, V> *
   readSparseTensor(uint64_t lvlRank, const uint64_t *lvlSizes,
@@ -312,10 +295,6 @@ SparseTensorCOO<V> *SparseTensorReader::readCOO(uint64_t lvlRank,
                                                 const uint64_t *lvlSizes,
                                                 const uint64_t *dim2lvl) {
   assert(isValid() && "Attempt to readCOO() before readHeader()");
-  // Construct a `PermutationRef` for the `pushforward` below.
-  // TODO: This specific implementation does not generalize to arbitrary
-  // mappings, but once we functionalize the `dim2lvl` argument we can
-  // simply use that function instead.
   const uint64_t dimRank = getRank();
   assert(lvlRank == dimRank && "Rank mismatch");
   detail::PermutationRef d2l(dimRank, dim2lvl);
diff --git a/mlir/include/mlir/ExecutionEngine/SparseTensor/Storage.h b/mlir/include/mlir/ExecutionEngine/SparseTensor/Storage.h
index 3c6d6c5bf5c998e..2cab0c01d134285 100644
--- a/mlir/include/mlir/ExecutionEngine/SparseTensor/Storage.h
+++ b/mlir/include/mlir/ExecutionEngine/SparseTensor/Storage.h
@@ -25,9 +25,28 @@
 #include "mlir/ExecutionEngine/SparseTensor/COO.h"
 #include "mlir/ExecutionEngine/SparseTensor/ErrorHandling.h"
 
+#define ASSERT_VALID_DIM(d)                                                    \
+  assert(d < getDimRank() && "Dimension is out of bounds");
+#define ASSERT_VALID_LVL(l)                                                    \
+  assert(l < getLvlRank() && "Level is out of bounds");
+#define ASSERT_COMPRESSED_LVL(l)                                               \
+  assert(isCompressedLvl(l) && "Level is not compressed");
+#define ASSERT_COMPRESSED_OR_SINGLETON_LVL(l)                                  \
+  do {                                                                         \
+    const DimLevelType dlt = getLvlType(l);                                    \
+    (void)dlt;                                                                 \
+    assert((isCompressedDLT(dlt) || isSingletonDLT(dlt)) &&                    \
+           "Level is neither compressed nor singleton");                       \
+  } while (false)
+#define ASSERT_DENSE_DLT(dlt) assert(isDenseDLT(dlt) && "Level is not dense");
+
 namespace mlir {
 namespace sparse_tensor {
 
+// Forward references.
+template <typename V> class SparseTensorEnumeratorBase;
+template <typename P, typename C, typename V> class SparseTensorEnumerator;
+
 namespace detail {
 
 /// Checks whether the `perm` array is a permutation of `[0 .. size)`.
@@ -125,33 +144,6 @@ class PermutationRef final {
 
 } // namespace detail
 
-//===----------------------------------------------------------------------===//
-// This forward decl is sufficient to split `SparseTensorStorageBase` into
-// its own header, but isn't sufficient for `SparseTensorStorage` to join it.
-template <typename V>
-class SparseTensorEnumeratorBase;
-
-// These macros ensure consistent error messages, without risk of incuring
-// an additional method call to do so.
-#define ASSERT_VALID_DIM(d)                                                    \
-  assert(d < getDimRank() && "Dimension is out of bounds");
-#define ASSERT_VALID_LVL(l)                                                    \
-  assert(l < getLvlRank() && "Level is out of bounds");
-#define ASSERT_COMPRESSED_LVL(l)                                               \
-  assert(isCompressedLvl(l) && "Level is not compressed");
-#define ASSERT_COMPRESSED_OR_SINGLETON_LVL(l)                                  \
-  do {                                                                         \
-    const DimLevelType dlt = getLvlType(l);                                    \
-    (void)dlt;                                                                 \
-    assert((isCompressedDLT(dlt) || isSingletonDLT(dlt)) &&                    \
-           "Level is neither compressed nor singleton");                       \
-  } while (false)
-// Because the `SparseTensorStorageBase` ctor uses `MLIR_SPARSETENSOR_FATAL`
-// (rather than `assert`) when validating level-types, all the uses of
-// `ASSERT_DENSE_DLT` are technically unnecessary.  However, they are
-// retained for the sake of future-proofing.
-#define ASSERT_DENSE_DLT(dlt) assert(isDenseDLT(dlt) && "Level is not dense");
-
 /// Abstract base class for `SparseTensorStorage<P,C,V>`.  This class
 /// takes responsibility for all the `<P,C,V>`-independent aspects
 /// of the tensor (e.g., shape, sparsity, permutation).  In addition,
@@ -185,23 +177,9 @@ class SparseTensorEnumeratorBase;
 /// specified.  Thus, dynamic cardinalities always have an "immutable but
 /// unknown" value; so the term "dynamic" should not be taken to indicate
 /// run-time mutability.
-//
-// TODO: we'd like to factor out a class akin to `PermutationRef` for
-// capturing known-valid sizes to avoid redundant validity assertions.
-// But calling that class "SizesRef" would be a terrible name (and
-// "ValidSizesRef" isn't much better).  Whereas, calling it "ShapeRef"
-// would be a lot nicer, but then that conflicts with the terminology
-// introduced above.  So we need to come up with some new terminology
-// for distinguishing things, which allows a reasonable class name too.
 class SparseTensorStorageBase {
 protected:
-  // Since this class is virtual, we must disallow public copying in
-  // order to avoid "slicing".  Since this class has data members,
-  // that means making copying protected.
-  // <https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rc-copy-virtual>
   SparseTensorStorageBase(const SparseTensorStorageBase &) = default;
-  // Copy-assignment would be implicitly deleted (because our fields
-  // are const), so we explicitly delete it for clarity.
   SparseTensorStorageBase &operator=(const SparseTensorStorageBase &) = delete;
 
 public:
@@ -313,10 +291,8 @@ class SparseTensorStorageBase {
   MLIR_SPARSETENSOR_FOREVERY_V(DECL_GETVALUES)
 #undef DECL_GETVALUES
 
-  /// Element-wise insertion in lexicographic coordinate order.  The first
+  /// Element-wise insertion in lexicographic coordinate order. The first
   /// argument is the level-coordinates for the value being inserted.
-  // TODO: For better safety, this should take a parameter for the
-  // length of `lvlCoords` and check that against `getLvlRank()`.
 #define DECL_LEXINSERT(VNAME, V) virtual void lexInsert(const uint64_t *, V);
   MLIR_SPARSETENSOR_FOREVERY_V(DECL_LEXINSERT)
 #undef DECL_LEXINSERT
@@ -348,12 +324,6 @@ class SparseTensorStorageBase {
   const std::vector<uint64_t> lvl2dim;
 };
 
-//===----------------------------------------------------------------------===//
-// This forward decl is necessary for defining `SparseTensorStorage`,
-// but isn't sufficient for splitting it off.
-template <typename P, typename C, typename V>
-class SparseTensorEnumerator;
-
 /// A memory-resident sparse tensor using a storage scheme based on
 /// per-level sparse/dense annotations.  This data structure provides
 /// a bufferized form of a sparse tensor type.  In contrast to generating
@@ -612,7 +582,7 @@ class SparseTensorStorage final : public SparseTensorStorageBase {
         [&coo](const auto &trgCoords, V val) { coo->add(trgCoords, val); });
     // TODO: This assertion assumes there are no stored zeros,
     // or if there are then that we don't filter them out.
-    // Cf., <https://github.com/llvm/llvm-project/issues/54179>
+    // <https://github.com/llvm/llvm-project/issues/54179>
     assert(coo->getElements().size() == values.size());
     return coo;
   }
diff --git a/mlir/include/mlir/ExecutionEngine/SparseTensorRuntime.h b/mlir/include/mlir/ExecutionEngine/SparseTensorRuntime.h
index 14f89bee05bf550..ebf6c5cd235b980 100644
--- a/mlir/include/mlir/ExecutionEngine/SparseTensorRuntime.h
+++ b/mlir/include/mlir/ExecutionEngine/SparseTensorRuntime.h
@@ -6,9 +6,8 @@
 //
 //===----------------------------------------------------------------------===//
 //
-// This header file provides the enums and functions which comprise the
-// public API of the `ExecutionEngine/SparseTensorRuntime.cpp` runtime
-// support library for the SparseTensor dialect.
+// This header file provides the functions which comprise the public API of the
+// sparse tensor runtime support library for the SparseTensor dialect.
 //
 //===----------------------------------------------------------------------===//
 
@@ -153,8 +152,7 @@ MLIR_SPARSETENSOR_FOREVERY_V(DECL_GETNEXT)
 #undef DECL_GETNEXT
 
 /// Reads the sparse tensor, stores the coordinates and values to the given
-/// memrefs. Returns a boolean value to indicate whether the COO elements are
-/// sorted.
+/// memrefs. Returns a boolean to indicate whether the COO elements are sorted.
 #define DECL_GETNEXT(VNAME, V, CNAME, C)                                       \
   MLIR_CRUNNERUTILS_EXPORT bool                                                \
       _mlir_ciface_getSparseTensorReaderReadToBuffers##CNAME##VNAME(           \
@@ -240,8 +238,7 @@ MLIR_CRUNNERUTILS_EXPORT index_type getSparseTensorReaderNSE(void *p);
 MLIR_CRUNNERUTILS_EXPORT index_type getSparseTensorReaderDimSize(void *p,
                                                                  index_type d);
 
-/// Releases the SparseTensorReader. This also closes the file associated with
-/// the reader.
+/// Releases the SparseTensorReaderand closes the associated file.
 MLIR_CRUNNERUTILS_EXPORT void delSparseTensorReader(void *p);
 
 /// Creates a SparseTensorWriter for outputting a sparse tensor to a file

>From bfc7d00e5edcb2c59455161804388e73deac38a5 Mon Sep 17 00:00:00 2001
From: Aart Bik <ajcbik at google.com>
Date: Tue, 3 Oct 2023 10:56:14 -0700
Subject: [PATCH 2/3] minor edit

---
 mlir/include/mlir/ExecutionEngine/SparseTensorRuntime.h | 2 +-
 1 file changed, 1 insertion(+), 1 deletion(-)

diff --git a/mlir/include/mlir/ExecutionEngine/SparseTensorRuntime.h b/mlir/include/mlir/ExecutionEngine/SparseTensorRuntime.h
index ebf6c5cd235b980..8f320f04f23fc84 100644
--- a/mlir/include/mlir/ExecutionEngine/SparseTensorRuntime.h
+++ b/mlir/include/mlir/ExecutionEngine/SparseTensorRuntime.h
@@ -238,7 +238,7 @@ MLIR_CRUNNERUTILS_EXPORT index_type getSparseTensorReaderNSE(void *p);
 MLIR_CRUNNERUTILS_EXPORT index_type getSparseTensorReaderDimSize(void *p,
                                                                  index_type d);
 
-/// Releases the SparseTensorReaderand closes the associated file.
+/// Releases the SparseTensorReader and closes the associated file.
 MLIR_CRUNNERUTILS_EXPORT void delSparseTensorReader(void *p);
 
 /// Creates a SparseTensorWriter for outputting a sparse tensor to a file

>From fab1ee6cc3fb49fbb80bd07b811bae4540b83472 Mon Sep 17 00:00:00 2001
From: Aart Bik <ajcbik at google.com>
Date: Tue, 3 Oct 2023 11:21:42 -0700
Subject: [PATCH 3/3] format

---
 mlir/include/mlir/ExecutionEngine/SparseTensor/Storage.h | 6 ++++--
 1 file changed, 4 insertions(+), 2 deletions(-)

diff --git a/mlir/include/mlir/ExecutionEngine/SparseTensor/Storage.h b/mlir/include/mlir/ExecutionEngine/SparseTensor/Storage.h
index 2cab0c01d134285..28c28c28109c3c7 100644
--- a/mlir/include/mlir/ExecutionEngine/SparseTensor/Storage.h
+++ b/mlir/include/mlir/ExecutionEngine/SparseTensor/Storage.h
@@ -44,8 +44,10 @@ namespace mlir {
 namespace sparse_tensor {
 
 // Forward references.
-template <typename V> class SparseTensorEnumeratorBase;
-template <typename P, typename C, typename V> class SparseTensorEnumerator;
+template <typename V>
+class SparseTensorEnumeratorBase;
+template <typename P, typename C, typename V>
+class SparseTensorEnumerator;
 
 namespace detail {
 



More information about the Mlir-commits mailing list