[Mlir-commits] [mlir] 4a3d208 - [mlir][linalg] Add TransposeConv2D Transform Op (#68567)
llvmlistbot at llvm.org
llvmlistbot at llvm.org
Tue Nov 28 01:56:17 PST 2023
Author: Jack Frankland
Date: 2023-11-28T09:56:12Z
New Revision: 4a3d2088d61e994dd1aa4e66cdecd15f28d2f397
URL: https://github.com/llvm/llvm-project/commit/4a3d2088d61e994dd1aa4e66cdecd15f28d2f397
DIFF: https://github.com/llvm/llvm-project/commit/4a3d2088d61e994dd1aa4e66cdecd15f28d2f397.diff
LOG: [mlir][linalg] Add TransposeConv2D Transform Op (#68567)
* Add a LinAlg pass to convert 2D convolutions and quantized 2D
convolutions that have the `FHWC` filter channel ordering into a
transpose followed by 2D convolutions that have the `HWCF` channel
ordering.
* Add a lit test to check the semantics of the transformation are
correct for both quantized and unquantized variants.
Signed-off-by: Jack Frankland <jack.frankland at arm.com>
Added:
mlir/lib/Dialect/Linalg/Transforms/TransposeConv2D.cpp
mlir/test/Dialect/Linalg/transpose-conv2d.mlir
Modified:
mlir/include/mlir/Dialect/Linalg/TransformOps/LinalgTransformOps.td
mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h
mlir/lib/Dialect/Linalg/TransformOps/LinalgTransformOps.cpp
mlir/lib/Dialect/Linalg/Transforms/CMakeLists.txt
Removed:
################################################################################
diff --git a/mlir/include/mlir/Dialect/Linalg/TransformOps/LinalgTransformOps.td b/mlir/include/mlir/Dialect/Linalg/TransformOps/LinalgTransformOps.td
index f1c3d717f1fa951..fb660c646126632 100644
--- a/mlir/include/mlir/Dialect/Linalg/TransformOps/LinalgTransformOps.td
+++ b/mlir/include/mlir/Dialect/Linalg/TransformOps/LinalgTransformOps.td
@@ -2249,6 +2249,55 @@ def ConvertConv2DToImg2ColOp : Op<Transform_Dialect,
}];
}
+//===----------------------------------------------------------------------===//
+// Transpose Conv2D
+//===----------------------------------------------------------------------===//
+
+def TransposeConv2DOp : Op<Transform_Dialect,
+ "structured.transpose_conv2d",
+ [FunctionalStyleTransformOpTrait,
+ MemoryEffectsOpInterface,
+ TransformOpInterface,
+ TransformEachOpTrait,
+ ReportTrackingListenerFailuresOpTrait]> {
+ let description = [{
+ Convert linalg.conv_2d_nhwc_fhwc into linalg.conv_2d_nhwc_hwcf by introducing
+ a linalg.transpose on the filter tensor/memref.
+
+ Whilst the fhwc filter channel ordering can be desirable for certain targets
+ and is a more direct mapping to higher level dialects such as TOSA (which only
+ supports this ordering) hwcf is better suited for transformations such as
+ img2col which can make use of optimized BLAS routines such as GEMM.
+
+ Returns one handle:
+ - The final operation of the sequence that replaces the original
+ convolution.
+
+ #### Return modes:
+
+ Returns a definite failure if target is not isolated from above.
+ Returns a silenceable failure if the pattern application failed.
+ }];
+
+ let arguments = (ins TransformHandleTypeInterface:$target);
+ let results = (outs TransformHandleTypeInterface:$transformed);
+
+ let assemblyFormat =
+ "$target attr-dict `:` functional-type($target, results)";
+
+ let builders = [
+ OpBuilder<(ins "Value":$target)>
+ ];
+
+ let extraClassDeclaration = [{
+ ::mlir::DiagnosedSilenceableFailure applyToOne(
+ ::mlir::transform::TransformRewriter &rewriter,
+ ::mlir::linalg::LinalgOp target,
+ ::mlir::transform::ApplyToEachResultList &results,
+ ::mlir::transform::TransformState &state);
+ }];
+}
+
//===----------------------------------------------------------------------===//
// InsertSliceToCopyOp
//===----------------------------------------------------------------------===//
diff --git a/mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h b/mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h
index 6547648f7495c31..6c4e16bd94f47d4 100644
--- a/mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h
+++ b/mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h
@@ -1225,6 +1225,13 @@ rewriteInIm2Col(RewriterBase &rewriter,
FailureOr<std::pair<Operation *, Operation *>>
rewriteInIm2Col(RewriterBase &rewriter, linalg::Conv2DNchwFchwOp convOp);
+/// Convert linalg.conv_2d_nhwc_fhwc(_q) to linalg.conv_2d_nhwc_hwcf(_q) by
+/// materializing transpose.
+FailureOr<Operation *> transposeConv2D(RewriterBase &rewriter,
+ linalg::Conv2DNhwcFhwcOp op);
+FailureOr<Operation *> transposeConv2D(RewriterBase &rewriter,
+ linalg::Conv2DNhwcFhwcQOp op);
+
//===----------------------------------------------------------------------===//
// Rewrite patterns wrapping transformations.
// TODO: every single such pattern should be a close to noop wrapper around a
diff --git a/mlir/lib/Dialect/Linalg/TransformOps/LinalgTransformOps.cpp b/mlir/lib/Dialect/Linalg/TransformOps/LinalgTransformOps.cpp
index ef5d88d46dd28a0..14404d837ff748d 100644
--- a/mlir/lib/Dialect/Linalg/TransformOps/LinalgTransformOps.cpp
+++ b/mlir/lib/Dialect/Linalg/TransformOps/LinalgTransformOps.cpp
@@ -3169,6 +3169,33 @@ DiagnosedSilenceableFailure transform::ConvertConv2DToImg2ColOp::applyToOne(
return DiagnosedSilenceableFailure::success();
}
+//===----------------------------------------------------------------------===//
+// TransposeConv2DOp
+//===----------------------------------------------------------------------===//
+
+DiagnosedSilenceableFailure transform::TransposeConv2DOp::applyToOne(
+ transform::TransformRewriter &rewriter, linalg::LinalgOp target,
+ transform::ApplyToEachResultList &results,
+ transform::TransformState &state) {
+ rewriter.setInsertionPoint(target);
+ auto maybeTransformed =
+ TypeSwitch<Operation *, FailureOr<Operation *>>(target)
+ .Case([&](linalg::Conv2DNhwcFhwcOp op) {
+ return transposeConv2D(rewriter, op);
+ })
+ .Case([&](linalg::Conv2DNhwcFhwcQOp op) {
+ return transposeConv2D(rewriter, op);
+ })
+ .Default([&](Operation *op) {
+ return rewriter.notifyMatchFailure(op, "not supported");
+ });
+ if (failed(maybeTransformed))
+ return emitDefaultSilenceableFailure(target);
+ // Handle to the new Conv2D operation with transposed filters
+ results.push_back(*maybeTransformed);
+ return DiagnosedSilenceableFailure::success();
+}
+
//===----------------------------------------------------------------------===//
// InsertSliceToCopyOp
//===----------------------------------------------------------------------===//
diff --git a/mlir/lib/Dialect/Linalg/Transforms/CMakeLists.txt b/mlir/lib/Dialect/Linalg/Transforms/CMakeLists.txt
index 2f7b556bb24604e..4f47e3b87184549 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/CMakeLists.txt
+++ b/mlir/lib/Dialect/Linalg/Transforms/CMakeLists.txt
@@ -32,6 +32,7 @@ add_mlir_dialect_library(MLIRLinalgTransforms
Tiling.cpp
TilingInterfaceImpl.cpp
Transforms.cpp
+ TransposeConv2D.cpp
Vectorization.cpp
ADDITIONAL_HEADER_DIRS
diff --git a/mlir/lib/Dialect/Linalg/Transforms/TransposeConv2D.cpp b/mlir/lib/Dialect/Linalg/Transforms/TransposeConv2D.cpp
new file mode 100644
index 000000000000000..9e0829ee67c0136
--- /dev/null
+++ b/mlir/lib/Dialect/Linalg/Transforms/TransposeConv2D.cpp
@@ -0,0 +1,150 @@
+//===- TransposeConv2D.cpp - Convolution transposition -------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "mlir/Dialect/Func/IR/FuncOps.h"
+#include "mlir/Dialect/Linalg/IR/Linalg.h"
+#include "mlir/Dialect/MemRef/IR/MemRef.h"
+#include "mlir/Dialect/Tensor/IR/Tensor.h"
+#include "mlir/IR/BuiltinTypes.h"
+#include "mlir/IR/PatternMatch.h"
+#include "mlir/IR/ValueRange.h"
+#include "mlir/Support/LogicalResult.h"
+#include "mlir/Transforms/DialectConversion.h"
+#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/RWMutex.h"
+#include <memory>
+#include <numeric>
+
+namespace mlir {
+namespace linalg {
+namespace {
+// clang-format off
+/// Convolution converter that applies the following rewrite:
+///
+/// Before:
+///
+/// %0 = linalg.conv_2d_nhwc_fhwc {dilations = dense<1> : tensor<2xi64>,
+/// strides = dense<2> : tensor<2xi64>}
+/// ins (%input, %filter: tensor<1x4x4x6xf32>, tensor<8x2x2x6xf32>)
+/// outs (%init: tensor<1x2x2x8xf32>) -> tensor<1x2x2x8xf32>
+///
+/// After:
+///
+/// %cst = arith.constant 0.000000e+00 : f32
+/// %0 = tensor.empty() : tensor<2x2x6x8xf32>
+/// %1 = linalg.fill ins(%cst : f32) outs(%0 : tensor<2x2x6x8xf32>) -> tensor<2x2x6x8xf32>
+/// %transposed = linalg.transpose ins(%arg1 : tensor<8x2x2x6xf32>) outs(%1 : tensor<2x2x6x8xf32>)
+/// permutation = [1, 2, 3, 0]
+/// %2 = linalg.conv_2d_nhwc_hwcf {dilations = dense<1> : tensor<2xi64>, strides = dense<2> : tensor<2xi64>}
+/// ins(%arg0, %transposed : tensor<1x4x4x6xf32>, tensor<2x2x6x8xf32>) outs(%arg2 : tensor<1x2x2x8xf32>)
+/// -> tensor<1x2x2x8xf32>
+///
+/// with an analogous example for the quantized case.
+// clang-format on
+template <typename FHWCConvOp, typename HWCFConvOp>
+FailureOr<Operation *> transposeConv2DHelper(RewriterBase &rewriter,
+ FHWCConvOp op) {
+ // Construct a permutation of the filter tensor dimensions. For a 2D
+ // convolution this will be known statically as [1, 2, 3, 0].
+ SmallVector<int64_t> filterPerm({1, 2, 3, 0});
+
+ // Create the type for the transposed filter tensor.
+ auto filter = op->getOperand(1);
+ auto filterTy = cast<ShapedType>(filter.getType());
+ SmallVector<int64_t> newFilterShape(filterPerm.size());
+ std::generate(std::begin(newFilterShape), std::end(newFilterShape),
+ [dim = 0, &filterTy, &filterPerm]() mutable {
+ return filterTy.getShape()[filterPerm[dim++]];
+ });
+
+ // Because linalg.transpose expects an "out" parameter we need to pass it a
+ // tensor of zeros of the result type so here we construct that tensor.
+ auto inputType = op->getOperand(0).getType();
+ auto elementTy = cast<ShapedType>(inputType).getElementType();
+ auto loc = op->getLoc();
+
+ const auto isTensorOp = isa<TensorType>(inputType);
+ Value input;
+ if (isTensorOp) {
+
+ input = rewriter.create<tensor::EmptyOp>(loc, newFilterShape, elementTy)
+ .getResult();
+ } else {
+ input = rewriter
+ .create<memref::AllocOp>(
+ loc, MemRefType::get(newFilterShape, elementTy))
+ .getResult();
+ }
+
+ // We can then construct the transposition on our filter.
+ auto transpose =
+ rewriter.create<linalg::TransposeOp>(loc, filter, input, filterPerm);
+
+ Value newFilter;
+ if (isTensorOp) {
+ newFilter = transpose.getResult()[0];
+ } else {
+ newFilter = input;
+ }
+
+ SmallVector<Value> newInputs{op.getInputs()};
+ // The filter is always the second input argument, the other inputs can be
+ // left as they are.
+ newInputs[1] = newFilter;
+ // It is possible the convolution doesn't define any results and its
+ // out argument is just used instead.
+ SmallVector<Type> resultTy;
+ if (op.getNumResults()) {
+ resultTy.push_back(op->getResult(0).getType());
+ }
+ auto newConv =
+ rewriter.create<HWCFConvOp>(loc, resultTy, newInputs, op.getOutputs(),
+ op.getStrides(), op.getDilations());
+ rewriter.replaceOp(op, newConv);
+ return newConv.getOperation();
+}
+
+template <typename FHWCConvOp, typename HWCFConvOp>
+class ConvConverter : public OpRewritePattern<FHWCConvOp> {
+public:
+ using OpRewritePattern<FHWCConvOp>::OpRewritePattern;
+ LogicalResult matchAndRewrite(FHWCConvOp op,
+ PatternRewriter &rewriter) const final {
+ if (failed(transposeConv2DHelper<FHWCConvOp, HWCFConvOp>(rewriter, op))) {
+ return failure();
+ }
+ return success();
+ }
+};
+} // namespace
+
+FailureOr<Operation *> transposeConv2D(RewriterBase &rewriter,
+ linalg::Conv2DNhwcFhwcOp op) {
+
+ return transposeConv2DHelper<linalg::Conv2DNhwcFhwcOp,
+ linalg::Conv2DNhwcHwcfOp>(rewriter, op);
+}
+
+FailureOr<Operation *> transposeConv2D(RewriterBase &rewriter,
+ linalg::Conv2DNhwcFhwcQOp op) {
+
+ return transposeConv2DHelper<linalg::Conv2DNhwcFhwcQOp,
+ linalg::Conv2DNhwcHwcfQOp>(rewriter, op);
+}
+
+void populateTranposeConv2DPatterns(RewritePatternSet &patterns) {
+ MLIRContext *context = patterns.getContext();
+ patterns.insert<
+ ConvConverter<linalg::Conv2DNhwcFhwcOp, linalg::Conv2DNhwcHwcfOp>,
+ ConvConverter<linalg::Conv2DNhwcFhwcQOp, linalg::Conv2DNhwcHwcfQOp>>(
+ context);
+}
+} // namespace linalg
+} // namespace mlir
diff --git a/mlir/test/Dialect/Linalg/transpose-conv2d.mlir b/mlir/test/Dialect/Linalg/transpose-conv2d.mlir
new file mode 100644
index 000000000000000..4655a261d986b23
--- /dev/null
+++ b/mlir/test/Dialect/Linalg/transpose-conv2d.mlir
@@ -0,0 +1,177 @@
+// RUN: mlir-opt %s -transform-interpreter -verify-diagnostics | FileCheck %s
+
+// CHECK-LABEL: @conv_2d_nhwc_fhwc_f64
+// CHECK-SAME: (%[[INPUT:.+]]: tensor<1x4x4x6xf64>, %[[FILTER:.+]]: tensor<8x2x2x6xf64>, %[[INIT:.+]]: tensor<1x2x2x8xf64>) -> tensor<1x2x2x8xf64> {
+// CHECK-DAG: %[[NEWF:.+]] = tensor.empty() : tensor<2x2x6x8xf64>
+// CHECK: %[[TRANSPOSE:.+]] = linalg.transpose ins(%[[FILTER]] : tensor<8x2x2x6xf64>) outs(%[[NEWF]] : tensor<2x2x6x8xf64>) permutation = [1, 2, 3, 0]
+// CHECK: %[[CONV:.+]] = linalg.conv_2d_nhwc_hwcf {dilations = dense<1> : tensor<2xi64>, strides = dense<2> : tensor<2xi64>} ins(%[[INPUT]], %[[TRANSPOSE]] : tensor<1x4x4x6xf64>, tensor<2x2x6x8xf64>) outs(%[[INIT]] : tensor<1x2x2x8xf64>) -> tensor<1x2x2x8xf64>
+// CHECK: return %[[CONV]] : tensor<1x2x2x8xf64>
+func.func @conv_2d_nhwc_fhwc_f64(%input: tensor<1x4x4x6xf64>, %filter: tensor<8x2x2x6xf64>, %init: tensor<1x2x2x8xf64>) -> tensor<1x2x2x8xf64> {
+ %0 = linalg.conv_2d_nhwc_fhwc {dilations = dense<1> : tensor<2xi64>,
+ strides = dense<2> : tensor<2xi64>}
+ ins (%input, %filter: tensor<1x4x4x6xf64>, tensor<8x2x2x6xf64>)
+ outs (%init: tensor<1x2x2x8xf64>) -> tensor<1x2x2x8xf64>
+ return %0 : tensor<1x2x2x8xf64>
+}
+
+// CHECK-LABEL: @conv_2d_nhwc_fhwc_f32
+// CHECK-SAME: (%[[INPUT:.+]]: tensor<1x4x4x6xf32>, %[[FILTER:.+]]: tensor<8x2x2x6xf32>, %[[INIT:.+]]: tensor<1x2x2x8xf32>) -> tensor<1x2x2x8xf32> {
+// CHECK-DAG: %[[NEWF:.+]] = tensor.empty() : tensor<2x2x6x8xf32>
+// CHECK: %[[TRANSPOSE:.+]] = linalg.transpose ins(%[[FILTER]] : tensor<8x2x2x6xf32>) outs(%[[NEWF]] : tensor<2x2x6x8xf32>) permutation = [1, 2, 3, 0]
+// CHECK: %[[CONV:.+]] = linalg.conv_2d_nhwc_hwcf {dilations = dense<1> : tensor<2xi64>, strides = dense<2> : tensor<2xi64>} ins(%[[INPUT]], %[[TRANSPOSE]] : tensor<1x4x4x6xf32>, tensor<2x2x6x8xf32>) outs(%[[INIT]] : tensor<1x2x2x8xf32>) -> tensor<1x2x2x8xf32>
+// CHECK: return %[[CONV]] : tensor<1x2x2x8xf32>
+func.func @conv_2d_nhwc_fhwc_f32(%input: tensor<1x4x4x6xf32>, %filter: tensor<8x2x2x6xf32>, %init: tensor<1x2x2x8xf32>) -> tensor<1x2x2x8xf32> {
+ %0 = linalg.conv_2d_nhwc_fhwc {dilations = dense<1> : tensor<2xi64>,
+ strides = dense<2> : tensor<2xi64>}
+ ins (%input, %filter: tensor<1x4x4x6xf32>, tensor<8x2x2x6xf32>)
+ outs (%init: tensor<1x2x2x8xf32>) -> tensor<1x2x2x8xf32>
+ return %0 : tensor<1x2x2x8xf32>
+}
+
+// CHECK-LABEL: @conv_2d_nhwc_fhwc_f16
+// CHECK-SAME: (%[[INPUT:.+]]: tensor<1x4x4x6xf16>, %[[FILTER:.+]]: tensor<8x2x2x6xf16>, %[[INIT:.+]]: tensor<1x2x2x8xf16>) -> tensor<1x2x2x8xf16> {
+// CHECK-DAG: %[[NEWF:.+]] = tensor.empty() : tensor<2x2x6x8xf16>
+// CHECK: %[[TRANSPOSE:.+]] = linalg.transpose ins(%[[FILTER]] : tensor<8x2x2x6xf16>) outs(%[[NEWF]] : tensor<2x2x6x8xf16>) permutation = [1, 2, 3, 0]
+// CHECK: %[[CONV:.+]] = linalg.conv_2d_nhwc_hwcf {dilations = dense<1> : tensor<2xi64>, strides = dense<2> : tensor<2xi64>} ins(%[[INPUT]], %[[TRANSPOSE]] : tensor<1x4x4x6xf16>, tensor<2x2x6x8xf16>) outs(%[[INIT]] : tensor<1x2x2x8xf16>) -> tensor<1x2x2x8xf16>
+// CHECK: return %[[CONV]] : tensor<1x2x2x8xf16>
+func.func @conv_2d_nhwc_fhwc_f16(%input: tensor<1x4x4x6xf16>, %filter: tensor<8x2x2x6xf16>, %init: tensor<1x2x2x8xf16>) -> tensor<1x2x2x8xf16> {
+ %0 = linalg.conv_2d_nhwc_fhwc {dilations = dense<1> : tensor<2xi64>,
+ strides = dense<2> : tensor<2xi64>}
+ ins (%input, %filter: tensor<1x4x4x6xf16>, tensor<8x2x2x6xf16>)
+ outs (%init: tensor<1x2x2x8xf16>) -> tensor<1x2x2x8xf16>
+ return %0 : tensor<1x2x2x8xf16>
+}
+
+// CHECK-LABEL: @conv_2d_nhwc_fhwc_b16
+// CHECK-SAME: (%[[INPUT:.+]]: tensor<1x4x4x6xbf16>, %[[FILTER:.+]]: tensor<8x2x2x6xbf16>, %[[INIT:.+]]: tensor<1x2x2x8xbf16>) -> tensor<1x2x2x8xbf16> {
+// CHECK-DAG: %[[NEWF:.+]] = tensor.empty() : tensor<2x2x6x8xbf16>
+// CHECK: %[[TRANSPOSE:.+]] = linalg.transpose ins(%[[FILTER]] : tensor<8x2x2x6xbf16>) outs(%[[NEWF]] : tensor<2x2x6x8xbf16>) permutation = [1, 2, 3, 0]
+// CHECK: %[[CONV:.+]] = linalg.conv_2d_nhwc_hwcf {dilations = dense<1> : tensor<2xi64>, strides = dense<2> : tensor<2xi64>} ins(%[[INPUT]], %[[TRANSPOSE]] : tensor<1x4x4x6xbf16>, tensor<2x2x6x8xbf16>) outs(%[[INIT]] : tensor<1x2x2x8xbf16>) -> tensor<1x2x2x8xbf16>
+// CHECK: return %[[CONV]] : tensor<1x2x2x8xbf16>
+func.func @conv_2d_nhwc_fhwc_b16(%input: tensor<1x4x4x6xbf16>, %filter: tensor<8x2x2x6xbf16>, %init: tensor<1x2x2x8xbf16>) -> tensor<1x2x2x8xbf16> {
+ %0 = linalg.conv_2d_nhwc_fhwc {dilations = dense<1> : tensor<2xi64>,
+ strides = dense<2> : tensor<2xi64>}
+ ins (%input, %filter: tensor<1x4x4x6xbf16>, tensor<8x2x2x6xbf16>)
+ outs (%init: tensor<1x2x2x8xbf16>) -> tensor<1x2x2x8xbf16>
+ return %0 : tensor<1x2x2x8xbf16>
+}
+
+// CHECK-LABEL: @conv_2d_nhwc_fhwc
+// CHECK-SAME: (%[[INPUT:.+]]: tensor<1x4x4x6xi64>, %[[FILTER:.+]]: tensor<8x2x2x6xi64>, %[[INIT:.+]]: tensor<1x2x2x8xi64>) -> tensor<1x2x2x8xi64> {
+// CHECK-DAG: %[[NEWF:.+]] = tensor.empty() : tensor<2x2x6x8xi64>
+// CHECK: %[[TRANSPOSE:.+]] = linalg.transpose ins(%[[FILTER]] : tensor<8x2x2x6xi64>) outs(%[[NEWF]] : tensor<2x2x6x8xi64>) permutation = [1, 2, 3, 0]
+// CHECK: %[[CONV:.+]] = linalg.conv_2d_nhwc_hwcf {dilations = dense<1> : tensor<2xi64>, strides = dense<2> : tensor<2xi64>} ins(%[[INPUT]], %[[TRANSPOSE]] : tensor<1x4x4x6xi64>, tensor<2x2x6x8xi64>) outs(%[[INIT]] : tensor<1x2x2x8xi64>) -> tensor<1x2x2x8xi64>
+// CHECK: return %[[CONV]] : tensor<1x2x2x8xi64>
+func.func @conv_2d_nhwc_fhwc_i64(%input: tensor<1x4x4x6xi64>, %filter: tensor<8x2x2x6xi64>, %init: tensor<1x2x2x8xi64>) -> tensor<1x2x2x8xi64> {
+ %0 = linalg.conv_2d_nhwc_fhwc {dilations = dense<1> : tensor<2xi64>,
+ strides = dense<2> : tensor<2xi64>}
+ ins (%input, %filter: tensor<1x4x4x6xi64>, tensor<8x2x2x6xi64>)
+ outs (%init: tensor<1x2x2x8xi64>) -> tensor<1x2x2x8xi64>
+ return %0 : tensor<1x2x2x8xi64>
+}
+
+// CHECK-LABEL: @conv_2d_nhwc_fhwc_i32
+// CHECK-SAME: (%[[INPUT:.+]]: tensor<1x4x4x6xi32>, %[[FILTER:.+]]: tensor<8x2x2x6xi32>, %[[INIT:.+]]: tensor<1x2x2x8xi32>) -> tensor<1x2x2x8xi32> {
+// CHECK-DAG: %[[NEWF:.+]] = tensor.empty() : tensor<2x2x6x8xi32>
+// CHECK: %[[TRANSPOSE:.+]] = linalg.transpose ins(%[[FILTER]] : tensor<8x2x2x6xi32>) outs(%[[NEWF]] : tensor<2x2x6x8xi32>) permutation = [1, 2, 3, 0]
+// CHECK: %[[CONV:.+]] = linalg.conv_2d_nhwc_hwcf {dilations = dense<1> : tensor<2xi64>, strides = dense<2> : tensor<2xi64>} ins(%[[INPUT]], %[[TRANSPOSE]] : tensor<1x4x4x6xi32>, tensor<2x2x6x8xi32>) outs(%[[INIT]] : tensor<1x2x2x8xi32>) -> tensor<1x2x2x8xi32>
+// CHECK: return %[[CONV]] : tensor<1x2x2x8xi32>
+func.func @conv_2d_nhwc_fhwc_i32(%input: tensor<1x4x4x6xi32>, %filter: tensor<8x2x2x6xi32>, %init: tensor<1x2x2x8xi32>) -> tensor<1x2x2x8xi32> {
+ %0 = linalg.conv_2d_nhwc_fhwc {dilations = dense<1> : tensor<2xi64>,
+ strides = dense<2> : tensor<2xi64>}
+ ins (%input, %filter: tensor<1x4x4x6xi32>, tensor<8x2x2x6xi32>)
+ outs (%init: tensor<1x2x2x8xi32>) -> tensor<1x2x2x8xi32>
+ return %0 : tensor<1x2x2x8xi32>
+}
+
+// CHECK-LABEL: @conv_2d_nhwc_fhwc_i16
+// CHECK-SAME: (%[[INPUT:.+]]: tensor<1x4x4x6xi16>, %[[FILTER:.+]]: tensor<8x2x2x6xi16>, %[[INIT:.+]]: tensor<1x2x2x8xi16>) -> tensor<1x2x2x8xi16> {
+// CHECK-DAG: %[[NEWF:.+]] = tensor.empty() : tensor<2x2x6x8xi16>
+// CHECK: %[[TRANSPOSE:.+]] = linalg.transpose ins(%[[FILTER]] : tensor<8x2x2x6xi16>) outs(%[[NEWF]] : tensor<2x2x6x8xi16>) permutation = [1, 2, 3, 0]
+// CHECK: %[[CONV:.+]] = linalg.conv_2d_nhwc_hwcf {dilations = dense<1> : tensor<2xi64>, strides = dense<2> : tensor<2xi64>} ins(%[[INPUT]], %[[TRANSPOSE]] : tensor<1x4x4x6xi16>, tensor<2x2x6x8xi16>) outs(%[[INIT]] : tensor<1x2x2x8xi16>) -> tensor<1x2x2x8xi16>
+// CHECK: return %[[CONV]] : tensor<1x2x2x8xi16>
+func.func @conv_2d_nhwc_fhwc_i16(%input: tensor<1x4x4x6xi16>, %filter: tensor<8x2x2x6xi16>, %init: tensor<1x2x2x8xi16>) -> tensor<1x2x2x8xi16> {
+ %0 = linalg.conv_2d_nhwc_fhwc {dilations = dense<1> : tensor<2xi64>,
+ strides = dense<2> : tensor<2xi64>}
+ ins (%input, %filter: tensor<1x4x4x6xi16>, tensor<8x2x2x6xi16>)
+ outs (%init: tensor<1x2x2x8xi16>) -> tensor<1x2x2x8xi16>
+ return %0 : tensor<1x2x2x8xi16>
+}
+
+// CHECK-LABEL: @conv_2d_nhwc_fhwc_i8
+// CHECK-SAME: (%[[INPUT:.+]]: tensor<1x4x4x6xi8>, %[[FILTER:.+]]: tensor<8x2x2x6xi8>, %[[INIT:.+]]: tensor<1x2x2x8xi8>) -> tensor<1x2x2x8xi8> {
+// CHECK-DAG: %[[NEWF:.+]] = tensor.empty() : tensor<2x2x6x8xi8>
+// CHECK: %[[TRANSPOSE:.+]] = linalg.transpose ins(%[[FILTER]] : tensor<8x2x2x6xi8>) outs(%[[NEWF]] : tensor<2x2x6x8xi8>) permutation = [1, 2, 3, 0]
+// CHECK: %[[CONV:.+]] = linalg.conv_2d_nhwc_hwcf {dilations = dense<1> : tensor<2xi64>, strides = dense<2> : tensor<2xi64>} ins(%[[INPUT]], %[[TRANSPOSE]] : tensor<1x4x4x6xi8>, tensor<2x2x6x8xi8>) outs(%[[INIT]] : tensor<1x2x2x8xi8>) -> tensor<1x2x2x8xi8>
+// CHECK: return %[[CONV]] : tensor<1x2x2x8xi8>
+func.func @conv_2d_nhwc_fhwc_i8(%input: tensor<1x4x4x6xi8>, %filter: tensor<8x2x2x6xi8>, %init: tensor<1x2x2x8xi8>) -> tensor<1x2x2x8xi8> {
+ %0 = linalg.conv_2d_nhwc_fhwc {dilations = dense<1> : tensor<2xi64>,
+ strides = dense<2> : tensor<2xi64>}
+ ins (%input, %filter: tensor<1x4x4x6xi8>, tensor<8x2x2x6xi8>)
+ outs (%init: tensor<1x2x2x8xi8>) -> tensor<1x2x2x8xi8>
+ return %0 : tensor<1x2x2x8xi8>
+}
+
+// CHECK-LABEL: @conv_2d_nhwc_fhwc_q
+// CHECK-SAME: (%[[INPUT:.+]]: tensor<1x4x4x6xf32>, %[[FILTER:.+]]: tensor<8x2x2x6xf32>, %[[INIT:.+]]: tensor<1x2x2x8xf32>, %[[A:.+]]: i32, %[[B:.+]]: i32) -> tensor<1x2x2x8xf32> {
+// CHECK-DAG: %[[NEWF:.+]] = tensor.empty() : tensor<2x2x6x8xf32>
+// CHECK: %[[TRANSPOSE:.+]] = linalg.transpose ins(%[[FILTER]] : tensor<8x2x2x6xf32>) outs(%[[NEWF]] : tensor<2x2x6x8xf32>) permutation = [1, 2, 3, 0]
+// CHECK: %[[CONV:.+]] = linalg.conv_2d_nhwc_hwcf_q {dilations = dense<1> : tensor<2xi64>, strides = dense<2> : tensor<2xi64>} ins(%[[INPUT]], %[[TRANSPOSE]], %[[A]], %[[B]] : tensor<1x4x4x6xf32>, tensor<2x2x6x8xf32>, i32, i32) outs(%[[INIT]] : tensor<1x2x2x8xf32>) -> tensor<1x2x2x8xf32>
+// CHECK: return %[[CONV]] : tensor<1x2x2x8xf32>
+ func.func @conv_2d_nhwc_fhwc_q(%input: tensor<1x4x4x6xf32>, %filter: tensor<8x2x2x6xf32>, %init: tensor<1x2x2x8xf32>, %a: i32, %b: i32) -> tensor<1x2x2x8xf32> {
+ %0 = linalg.conv_2d_nhwc_fhwc_q {dilations = dense<1> : tensor<2xi64>,
+ strides = dense<2> : tensor<2xi64>}
+ ins (%input, %filter, %a, %b: tensor<1x4x4x6xf32>, tensor<8x2x2x6xf32>, i32, i32)
+ outs (%init: tensor<1x2x2x8xf32>) -> tensor<1x2x2x8xf32>
+ return %0 : tensor<1x2x2x8xf32>
+}
+
+// CHECK-LABEL: @conv_2d_nhwc_fhwc_f32_unit_stride
+// CHECK-SAME: (%[[INPUT:.+]]: tensor<1x4x4x6xf32>, %[[FILTER:.+]]: tensor<8x2x2x6xf32>, %[[INIT:.+]]: tensor<1x3x3x8xf32>) -> tensor<1x3x3x8xf32> {
+// CHECK-DAG: %[[NEWF:.+]] = tensor.empty() : tensor<2x2x6x8xf32>
+// CHECK: %[[TRANSPOSE:.+]] = linalg.transpose ins(%[[FILTER]] : tensor<8x2x2x6xf32>) outs(%[[NEWF]] : tensor<2x2x6x8xf32>) permutation = [1, 2, 3, 0]
+// CHECK: %[[CONV:.+]] = linalg.conv_2d_nhwc_hwcf {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%[[INPUT]], %[[TRANSPOSE]] : tensor<1x4x4x6xf32>, tensor<2x2x6x8xf32>) outs(%[[INIT]] : tensor<1x3x3x8xf32>) -> tensor<1x3x3x8xf32>
+// CHECK: return %[[CONV]] : tensor<1x3x3x8xf32>
+func.func @conv_2d_nhwc_fhwc_f32_unit_stride(%input: tensor<1x4x4x6xf32>, %filter: tensor<8x2x2x6xf32>, %init: tensor<1x3x3x8xf32>) -> tensor<1x3x3x8xf32> {
+ %0 = linalg.conv_2d_nhwc_fhwc {dilations = dense<1> : tensor<2xi64>,
+ strides = dense<1> : tensor<2xi64>}
+ ins (%input, %filter: tensor<1x4x4x6xf32>, tensor<8x2x2x6xf32>)
+ outs (%init: tensor<1x3x3x8xf32>) -> tensor<1x3x3x8xf32>
+ return %0 : tensor<1x3x3x8xf32>
+}
+
+// CHECK-LABEL: @conv_2d_nhwc_fhwc_f32_2_dialation
+// CHECK-SAME: (%[[INPUT:.+]]: tensor<1x4x4x6xf32>, %[[FILTER:.+]]: tensor<8x2x2x6xf32>, %[[INIT:.+]]: tensor<1x2x2x8xf32>) -> tensor<1x2x2x8xf32> {
+// CHECK-DAG: %[[NEWF:.+]] = tensor.empty() : tensor<2x2x6x8xf32>
+// CHECK: %[[TRANSPOSE:.+]] = linalg.transpose ins(%[[FILTER]] : tensor<8x2x2x6xf32>) outs(%[[NEWF]] : tensor<2x2x6x8xf32>) permutation = [1, 2, 3, 0]
+// CHECK: %[[CONV:.+]] = linalg.conv_2d_nhwc_hwcf {dilations = dense<2> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%[[INPUT]], %[[TRANSPOSE]] : tensor<1x4x4x6xf32>, tensor<2x2x6x8xf32>) outs(%[[INIT]] : tensor<1x2x2x8xf32>) -> tensor<1x2x2x8xf32>
+// CHECK: return %[[CONV]] : tensor<1x2x2x8xf32>
+func.func @conv_2d_nhwc_fhwc_f32_2_dialation(%input: tensor<1x4x4x6xf32>, %filter: tensor<8x2x2x6xf32>, %init: tensor<1x2x2x8xf32>) -> tensor<1x2x2x8xf32> {
+ %0 = linalg.conv_2d_nhwc_fhwc {dilations = dense<2> : tensor<2xi64>,
+ strides = dense<1> : tensor<2xi64>}
+ ins (%input, %filter: tensor<1x4x4x6xf32>, tensor<8x2x2x6xf32>)
+ outs (%init: tensor<1x2x2x8xf32>) -> tensor<1x2x2x8xf32>
+ return %0 : tensor<1x2x2x8xf32>
+}
+
+// CHECK-LABEL: @conv_2d_nhwc_fhwc_memref
+// CHECK-SAME: (%[[INPUT:.+]]: memref<1x4x4x6xf32>, %[[FILTER:.+]]: memref<8x2x2x6xf32>, %[[INIT:.+]]: memref<1x2x2x8xf32>) -> memref<1x2x2x8xf32> {
+// CHECK-DAG: %[[NEWF:.+]] = memref.alloc() : memref<2x2x6x8xf32>
+// CHECK: linalg.transpose ins(%[[FILTER]] : memref<8x2x2x6xf32>) outs(%[[NEWF]] : memref<2x2x6x8xf32>) permutation = [1, 2, 3, 0]
+// CHECK: linalg.conv_2d_nhwc_hwcf {dilations = dense<1> : tensor<2xi64>, strides = dense<2> : tensor<2xi64>} ins(%[[INPUT]], %[[NEWF]] : memref<1x4x4x6xf32>, memref<2x2x6x8xf32>) outs(%[[INIT]] : memref<1x2x2x8xf32>)
+// CHECK: return %[[INIT]] : memref<1x2x2x8xf32>
+func.func @conv_2d_nhwc_fhwc_memref(%input: memref<1x4x4x6xf32>, %filter: memref<8x2x2x6xf32>, %init: memref<1x2x2x8xf32>) -> memref<1x2x2x8xf32> {
+ linalg.conv_2d_nhwc_fhwc {dilations = dense<1> : tensor<2xi64>,
+ strides = dense<2> : tensor<2xi64>}
+ ins (%input, %filter: memref<1x4x4x6xf32>, memref<8x2x2x6xf32>)
+ outs (%init: memref<1x2x2x8xf32>)
+ return %init : memref<1x2x2x8xf32>
+}
+
+module attributes {transform.with_named_sequence} {
+ transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
+ %0 = transform.structured.match ops{["linalg.conv_2d_nhwc_fhwc", "linalg.conv_2d_nhwc_fhwc_q"]} in %arg1 : (!transform.any_op) -> !transform.any_op
+ %1 = transform.structured.transpose_conv2d %0 : (!transform.any_op) -> (!transform.any_op)
+ transform.yield
+ }
+}
More information about the Mlir-commits
mailing list