[Mlir-commits] [mlir] [mlir][tosa] Improve lowering to tosa.fully_connected (PR #73049)

llvmlistbot at llvm.org llvmlistbot at llvm.org
Thu Nov 23 12:40:56 PST 2023


github-actions[bot] wrote:

<!--LLVM CODE FORMAT COMMENT: {clang-format}-->


:warning: C/C++ code formatter, clang-format found issues in your code. :warning:

<details>
<summary>
You can test this locally with the following command:
</summary>

``````````bash
git-clang-format --diff d333c0e062e76df466cd06b1b04d52749acd944d 654ca3e675da6d0be86ecd555563f070c318a344 -- mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamed.cpp
``````````

</details>

<details>
<summary>
View the diff from clang-format here.
</summary>

``````````diff
diff --git a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamed.cpp b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamed.cpp
index 16db17d0fc..2711c6d7ec 100644
--- a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamed.cpp
+++ b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamed.cpp
@@ -88,10 +88,8 @@ linalgIntBroadcastExtSIAdd(PatternRewriter &rewriter, Location loc, Value bias,
 // Broadcast the bias value based on the indexing maps.
 // If required, the element type is expanded using an arith.extsi operation.
 static mlir::Value
-linalgBroadcastAndMaybeExtSI(PatternRewriter &rewriter,
-                             Location loc,
-                             Value bias,
-                             Value result,
+linalgBroadcastAndMaybeExtSI(PatternRewriter &rewriter, Location loc,
+                             Value bias, Value result,
                              ArrayRef<AffineMap> indexingMaps) {
   ShapedType resultTy = cast<ShapedType>(result.getType());
   return rewriter
@@ -671,12 +669,11 @@ public:
         rewriter, loc, bias, biasEmptyTensor, indexingMaps);
 
     if (!op.getQuantizationInfo()) {
-      Value matmul =
-          rewriter
-              .create<linalg::MatmulOp>(loc, TypeRange{op.getType()},
-                                        ValueRange{input, transposedWeight},
-                                        broadcastBias)
-              ->getResult(0);
+      Value matmul = rewriter
+                         .create<linalg::MatmulOp>(
+                             loc, TypeRange{op.getType()},
+                             ValueRange{input, transposedWeight}, broadcastBias)
+                         ->getResult(0);
 
       rewriter.replaceOp(op, matmul);
       return success();

``````````

</details>


https://github.com/llvm/llvm-project/pull/73049


More information about the Mlir-commits mailing list