[Mlir-commits] [mlir] [mlir][sparse] test on read/convert permuted 3d sparse tensors (PR #72925)

Aart Bik llvmlistbot at llvm.org
Mon Nov 20 15:31:55 PST 2023


https://github.com/aartbik created https://github.com/llvm/llvm-project/pull/72925

3! = 6

>From 1a982b66ace73a3dff5035f952eb98d44025fb63 Mon Sep 17 00:00:00 2001
From: Aart Bik <ajcbik at google.com>
Date: Mon, 20 Nov 2023 15:26:37 -0800
Subject: [PATCH] [mlir][sparse] test on read/convert permuted 3d sparse
 tensors

---
 .../SparseTensor/CPU/sparse_permute.mlir      | 262 ++++++++++++++++++
 1 file changed, 262 insertions(+)
 create mode 100644 mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_permute.mlir

diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_permute.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_permute.mlir
new file mode 100644
index 000000000000000..43d49b79a5146ae
--- /dev/null
+++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_permute.mlir
@@ -0,0 +1,262 @@
+//--------------------------------------------------------------------------------------------------
+// WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS.
+//
+// Set-up that's shared across all tests in this directory. In principle, this
+// config could be moved to lit.local.cfg. However, there are downstream users that
+//  do not use these LIT config files. Hence why this is kept inline.
+//
+// DEFINE: %{sparsifier_opts} = enable-runtime-library=true
+// DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts}
+// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
+// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
+// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
+// DEFINE: %{run_opts} = -e main -entry-point-result=void
+// DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
+// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs}
+//
+// DEFINE: %{env} =
+//--------------------------------------------------------------------------------------------------
+
+// REDEFINE: %{env} = TENSOR0=%mlir_src_dir/test/Integration/data/mttkrp_b.tns
+// RUN: %{compile} | env %{env} %{run} | FileCheck %s
+//
+// Do the same run, but now with direct IR generation.
+// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false
+// RUN: %{compile} | env %{env} %{run} | FileCheck %s
+
+!Filename = !llvm.ptr
+
+#S1 = #sparse_tensor.encoding<{
+  map = (d0, d1, d2) -> (d0 : compressed, d1 : compressed, d2 : compressed)
+}>
+
+#S2 = #sparse_tensor.encoding<{
+  map = (d0, d1, d2) -> (d0 : compressed, d2 : compressed, d1 : compressed)
+}>
+
+#S3 = #sparse_tensor.encoding<{
+  map = (d0, d1, d2) -> (d1 : compressed, d0 : compressed, d2 : compressed)
+}>
+
+#S4 = #sparse_tensor.encoding<{
+  map = (d0, d1, d2) -> (d1 : compressed, d2 : compressed, d0 : compressed)
+}>
+
+#S5 = #sparse_tensor.encoding<{
+  map = (d0, d1, d2) -> (d2 : compressed, d0 : compressed, d1 : compressed)
+}>
+
+#S6 = #sparse_tensor.encoding<{
+  map = (d0, d1, d2) -> (d2 : compressed, d1 : compressed, d0 : compressed)
+}>
+
+#trait_3d = {
+  indexing_maps = [
+    affine_map<(i,j,k) -> (i,j,k)>, // B
+    affine_map<(i,j,k) -> (i,j,k)>  // A (out)
+  ],
+  iterator_types = ["parallel", "parallel", "parallel"],
+  doc = "A(i,j,k) = B(i,j,k)"
+}
+
+//
+// Integration test that lowers a kernel annotated as sparse to
+// actual sparse code, initializes a matching sparse storage scheme
+// from file, and runs the resulting code with the JIT compiler.
+//
+module {
+  func.func private @getTensorFilename(index) -> (!Filename)
+
+  func.func @dump(%a: tensor<2x3x4xf64>) {
+    %c0 = arith.constant 0 : index
+    %f0 = arith.constant 0.0 : f64
+    %v = vector.transfer_read %a[%c0, %c0, %c0], %f0 : tensor<2x3x4xf64>, vector<2x3x4xf64>
+    vector.print %v : vector<2x3x4xf64>
+    return
+  }
+
+  //// S1
+
+  func.func @linalg1(%b: tensor<2x3x4xf64, #S1>)-> tensor<2x3x4xf64> {
+    %0 = arith.constant dense<0.000000e+00> : tensor<2x3x4xf64>
+    %a = linalg.generic #trait_3d
+      ins(%b: tensor<2x3x4xf64, #S1>)
+      outs(%0: tensor<2x3x4xf64>) {
+       ^bb(%x: f64, %y: f64):
+        linalg.yield %x : f64
+    } -> tensor<2x3x4xf64>
+    return %a : tensor<2x3x4xf64>
+  }
+
+  func.func @convert1(%b: tensor<2x3x4xf64, #S1>) -> tensor<2x3x4xf64> {
+    %a = sparse_tensor.convert %b : tensor<2x3x4xf64, #S1> to tensor<2x3x4xf64>
+    return %a : tensor<2x3x4xf64>
+  }
+
+  func.func @foo1(%fileName : !Filename) {
+    %b = sparse_tensor.new %fileName : !Filename to tensor<2x3x4xf64, #S1>
+    %0 = call @linalg1(%b) : (tensor<2x3x4xf64, #S1>) -> tensor<2x3x4xf64>
+    call @dump(%0) : (tensor<2x3x4xf64>) -> ()
+    %1 = call @convert1(%b) : (tensor<2x3x4xf64, #S1>) -> tensor<2x3x4xf64>
+    call @dump(%1) : (tensor<2x3x4xf64>) -> ()
+    bufferization.dealloc_tensor %b : tensor<2x3x4xf64, #S1>
+    return
+  }
+
+  //// S2
+
+  func.func @linalg2(%b: tensor<2x3x4xf64, #S2>)-> tensor<2x3x4xf64> {
+    %0 = arith.constant dense<0.000000e+00> : tensor<2x3x4xf64>
+    %a = linalg.generic #trait_3d
+      ins(%b: tensor<2x3x4xf64, #S2>)
+      outs(%0: tensor<2x3x4xf64>) {
+       ^bb(%x: f64, %y: f64):
+        linalg.yield %x : f64
+    } -> tensor<2x3x4xf64>
+    return %a : tensor<2x3x4xf64>
+  }
+
+  func.func @convert2(%b: tensor<2x3x4xf64, #S2>) -> tensor<2x3x4xf64> {
+    %a = sparse_tensor.convert %b : tensor<2x3x4xf64, #S2> to tensor<2x3x4xf64>
+    return %a : tensor<2x3x4xf64>
+  }
+
+  func.func @foo2(%fileName : !Filename) {
+    %b = sparse_tensor.new %fileName : !Filename to tensor<2x3x4xf64, #S2>
+    %0 = call @linalg2(%b) : (tensor<2x3x4xf64, #S2>) -> tensor<2x3x4xf64>
+    call @dump(%0) : (tensor<2x3x4xf64>) -> ()
+    %2 = call @convert2(%b) : (tensor<2x3x4xf64, #S2>) -> tensor<2x3x4xf64>
+    call @dump(%2) : (tensor<2x3x4xf64>) -> ()
+    bufferization.dealloc_tensor %b : tensor<2x3x4xf64, #S2>
+    return
+  }
+
+  //// S3
+
+  func.func @linalg3(%b: tensor<2x3x4xf64, #S3>)-> tensor<2x3x4xf64> {
+    %0 = arith.constant dense<0.000000e+00> : tensor<2x3x4xf64>
+    %a = linalg.generic #trait_3d
+      ins(%b: tensor<2x3x4xf64, #S3>)
+      outs(%0: tensor<2x3x4xf64>) {
+       ^bb(%x: f64, %y: f64):
+        linalg.yield %x : f64
+    } -> tensor<2x3x4xf64>
+    return %a : tensor<2x3x4xf64>
+  }
+
+  func.func @convert3(%b: tensor<2x3x4xf64, #S3>) -> tensor<2x3x4xf64> {
+    %a = sparse_tensor.convert %b : tensor<2x3x4xf64, #S3> to tensor<2x3x4xf64>
+    return %a : tensor<2x3x4xf64>
+  }
+
+  func.func @foo3(%fileName : !Filename) {
+    %b = sparse_tensor.new %fileName : !Filename to tensor<2x3x4xf64, #S3>
+    %0 = call @linalg3(%b) : (tensor<2x3x4xf64, #S3>) -> tensor<2x3x4xf64>
+    call @dump(%0) : (tensor<2x3x4xf64>) -> ()
+    %3 = call @convert3(%b) : (tensor<2x3x4xf64, #S3>) -> tensor<2x3x4xf64>
+    call @dump(%3) : (tensor<2x3x4xf64>) -> ()
+    bufferization.dealloc_tensor %b : tensor<2x3x4xf64, #S3>
+    return
+  }
+
+  //// S4
+
+  func.func @linalg4(%b: tensor<2x3x4xf64, #S4>)-> tensor<2x3x4xf64> {
+    %0 = arith.constant dense<0.000000e+00> : tensor<2x3x4xf64>
+    %a = linalg.generic #trait_3d
+      ins(%b: tensor<2x3x4xf64, #S4>)
+      outs(%0: tensor<2x3x4xf64>) {
+       ^bb(%x: f64, %y: f64):
+        linalg.yield %x : f64
+    } -> tensor<2x3x4xf64>
+    return %a : tensor<2x3x4xf64>
+  }
+
+  func.func @convert4(%b: tensor<2x3x4xf64, #S4>) -> tensor<2x3x4xf64> {
+    %a = sparse_tensor.convert %b : tensor<2x3x4xf64, #S4> to tensor<2x3x4xf64>
+    return %a : tensor<2x3x4xf64>
+  }
+
+  func.func @foo4(%fileName : !Filename) {
+    %b = sparse_tensor.new %fileName : !Filename to tensor<2x3x4xf64, #S4>
+    %0 = call @linalg4(%b) : (tensor<2x3x4xf64, #S4>) -> tensor<2x3x4xf64>
+    call @dump(%0) : (tensor<2x3x4xf64>) -> ()
+    %4 = call @convert4(%b) : (tensor<2x3x4xf64, #S4>) -> tensor<2x3x4xf64>
+    call @dump(%4) : (tensor<2x3x4xf64>) -> ()
+    bufferization.dealloc_tensor %b : tensor<2x3x4xf64, #S4>
+    return
+  }
+
+  //// S5
+
+  func.func @linalg5(%b: tensor<2x3x4xf64, #S5>)-> tensor<2x3x4xf64> {
+    %0 = arith.constant dense<0.000000e+00> : tensor<2x3x4xf64>
+    %a = linalg.generic #trait_3d
+      ins(%b: tensor<2x3x4xf64, #S5>)
+      outs(%0: tensor<2x3x4xf64>) {
+       ^bb(%x: f64, %y: f64):
+        linalg.yield %x : f64
+    } -> tensor<2x3x4xf64>
+    return %a : tensor<2x3x4xf64>
+  }
+
+  func.func @convert5(%b: tensor<2x3x4xf64, #S5>) -> tensor<2x3x4xf64> {
+    %a = sparse_tensor.convert %b : tensor<2x3x4xf64, #S5> to tensor<2x3x4xf64>
+    return %a : tensor<2x3x4xf64>
+  }
+
+  func.func @foo5(%fileName : !Filename) {
+    %b = sparse_tensor.new %fileName : !Filename to tensor<2x3x4xf64, #S5>
+    %0 = call @linalg5(%b) : (tensor<2x3x4xf64, #S5>) -> tensor<2x3x4xf64>
+    call @dump(%0) : (tensor<2x3x4xf64>) -> ()
+    %5 = call @convert5(%b) : (tensor<2x3x4xf64, #S5>) -> tensor<2x3x4xf64>
+    call @dump(%5) : (tensor<2x3x4xf64>) -> ()
+    bufferization.dealloc_tensor %b : tensor<2x3x4xf64, #S5>
+    return
+  }
+
+  //// S6
+
+  func.func @linalg6(%b: tensor<2x3x4xf64, #S6>)-> tensor<2x3x4xf64> {
+    %0 = arith.constant dense<0.000000e+00> : tensor<2x3x4xf64>
+    %a = linalg.generic #trait_3d
+      ins(%b: tensor<2x3x4xf64, #S6>)
+      outs(%0: tensor<2x3x4xf64>) {
+       ^bb(%x: f64, %y: f64):
+        linalg.yield %x : f64
+    } -> tensor<2x3x4xf64>
+    return %a : tensor<2x3x4xf64>
+  }
+
+  func.func @convert6(%b: tensor<2x3x4xf64, #S6>) -> tensor<2x3x4xf64> {
+    %a = sparse_tensor.convert %b : tensor<2x3x4xf64, #S6> to tensor<2x3x4xf64>
+    return %a : tensor<2x3x4xf64>
+  }
+
+  func.func @foo6(%fileName : !Filename) {
+    %b = sparse_tensor.new %fileName : !Filename to tensor<2x3x4xf64, #S6>
+    %0 = call @linalg6(%b) : (tensor<2x3x4xf64, #S6>) -> tensor<2x3x4xf64>
+    call @dump(%0) : (tensor<2x3x4xf64>) -> ()
+    %6 = call @convert6(%b) : (tensor<2x3x4xf64, #S6>) -> tensor<2x3x4xf64>
+    call @dump(%6) : (tensor<2x3x4xf64>) -> ()
+    bufferization.dealloc_tensor %b : tensor<2x3x4xf64, #S6>
+    return
+  }
+
+  //
+  // Main driver.
+  //
+  // CHECK-COUNT-12: ( ( ( 0, 0, 3, 63 ), ( 0, 11, 100, 0 ), ( 66, 61, 13, 43 ) ), ( ( 77, 0, 10, 46 ), ( 61, 53, 3, 75 ), ( 0, 22, 18, 0 ) ) )
+  //
+  func.func @main() {
+    %c0 = arith.constant 0 : index
+    %fileName = call @getTensorFilename(%c0) : (index) -> (!Filename)
+    call @foo1(%fileName) : (!Filename) -> ()
+    call @foo2(%fileName) : (!Filename) -> ()
+    call @foo3(%fileName) : (!Filename) -> ()
+    call @foo4(%fileName) : (!Filename) -> ()
+    call @foo5(%fileName) : (!Filename) -> ()
+    call @foo6(%fileName) : (!Filename) -> ()
+    return
+  }
+}



More information about the Mlir-commits mailing list