[Mlir-commits] [mlir] [mlir][tensor] Add a tensor.concat operation (PR #72779)
Nicolas Vasilache
llvmlistbot at llvm.org
Mon Nov 20 04:50:29 PST 2023
================
@@ -471,6 +471,202 @@ void CastOp::getCanonicalizationPatterns(RewritePatternSet &results,
results.add<ChainedTensorCast, TensorCastExtractSlice>(context);
}
+//===----------------------------------------------------------------------===//
+// ConcatOp
+//===----------------------------------------------------------------------===//
+
+FailureOr<RankedTensorType> ConcatOp::inferResultType(int64_t dim,
+ TypeRange inputTypes) {
+ if (dim < 0)
+ return failure();
+
+ if (inputTypes.empty())
+ return failure();
+
+ RankedTensorType init = dyn_cast<RankedTensorType>(inputTypes[0]);
+ if (!init)
+ return failure();
+
+ // The tensor rank must be greater than the concatenation dim.
+ int64_t concatRank = init.getRank();
+ if (concatRank <= dim)
+ return failure();
+
+ SmallVector<int64_t> sizes(init.getShape());
+ Type elementType = init.getElementType();
+ for (Type type : inputTypes.drop_front()) {
----------------
nicolasvasilache wrote:
If it were me, I would probably structure this differently:
1. for all `ranks != dim`, if `llvm::any_of tensor.shape()[rank]` mismatches return failure with a proper emitOpError msg.
2. for `dim`, expose/evolve and reuse "saturated_arith" helpers from here: https://github.com/llvm/llvm-project/blob/cfee7152d4eb673976b51b831295dcf5b1811634/mlir/lib/Dialect/MemRef/IR/MemRefOps.cpp#L32
It seems people routinely rewrite logic around isDynamic etc that we would be better off commonalizing.
https://github.com/llvm/llvm-project/pull/72779
More information about the Mlir-commits
mailing list