[Mlir-commits] [mlir] [mlir][sparse] implement direct IR alloc/empty/new for non-permutations (PR #72585)
Aart Bik
llvmlistbot at llvm.org
Thu Nov 16 15:39:33 PST 2023
https://github.com/aartbik created https://github.com/llvm/llvm-project/pull/72585
This change implements the correct *level* sizes set up for the direct IR codegen fields in the sparse storage scheme. This brings libgen and codegen together again.
This is step 3 out of 3 to make sparse_tensor.new work for BSR
>From 1eca364de9ad2c1b1790d266e32f9c9c57461b36 Mon Sep 17 00:00:00 2001
From: Aart Bik <ajcbik at google.com>
Date: Thu, 16 Nov 2023 15:36:49 -0800
Subject: [PATCH] [mlir][sparse] implement direct IR alloc/empty/new for
non-permutations
This change implements the correct *level* sizes set up
for the direct IR codegen fields in the sparse storage
scheme. This brings libgen and codegen together again.
This is step 3 out of 3 to make sparse_tensor.new work for BSR
---
.../mlir/ExecutionEngine/SparseTensor/File.h | 2 +-
.../Transforms/SparseTensorCodegen.cpp | 135 +++++++++---------
mlir/test/Dialect/SparseTensor/codegen.mlir | 94 ++++++------
.../codegen_buffer_initialization.mlir | 6 +-
.../Dialect/SparseTensor/CPU/block.mlir | 9 +-
.../GPU/CUDA/sparse-sddmm-lib.mlir | 3 +-
6 files changed, 128 insertions(+), 121 deletions(-)
diff --git a/mlir/include/mlir/ExecutionEngine/SparseTensor/File.h b/mlir/include/mlir/ExecutionEngine/SparseTensor/File.h
index 85bbfe06a86a020..6b4a174596ffef6 100644
--- a/mlir/include/mlir/ExecutionEngine/SparseTensor/File.h
+++ b/mlir/include/mlir/ExecutionEngine/SparseTensor/File.h
@@ -1,4 +1,4 @@
-//===- File.h - Reading sparse tensors from files --------------*- C++ -*-===//
+//===- File.h - Reading sparse tensors from files ---------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
diff --git a/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorCodegen.cpp b/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorCodegen.cpp
index cfc8eb19918b77e..9f41db73a509112 100644
--- a/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorCodegen.cpp
+++ b/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorCodegen.cpp
@@ -159,41 +159,46 @@ static Value createAllocation(OpBuilder &builder, Location loc,
return buffer;
}
+/// Creates the dim sizes array, filling in from dynamic sizes.
+static void createDimSizes(OpBuilder &builder, Location loc,
+ SparseTensorType stt, ValueRange dynSizes,
+ /*out*/ SmallVectorImpl<Value> &dimSizesValues) {
+ const Dimension dimRank = stt.getDimRank();
+ dimSizesValues.clear();
+ dimSizesValues.reserve(dimRank);
+ unsigned i = 0;
+ for (const Size sz : stt.getDimShape())
+ dimSizesValues.push_back(ShapedType::isDynamic(sz)
+ ? dynSizes[i++]
+ : constantIndex(builder, loc, sz));
+}
+
/// Creates allocation for each field in sparse tensor type. Note that
/// for all dynamic memrefs in the sparse tensor stroage layout, the
/// memory size is really the capacity of the "vector", while the actual
/// size resides in the sizes array.
static void createAllocFields(OpBuilder &builder, Location loc,
- SparseTensorType stt, ValueRange dynSizes,
- bool enableInit, SmallVectorImpl<Value> &fields,
- Value sizeHint) {
- // Build original sizes.
- assert((dynSizes.size() == static_cast<size_t>(stt.getNumDynamicDims())) &&
- "Got wrong number of dynamic sizes");
- const Dimension dimRank = stt.getDimRank();
- SmallVector<Value> dimSizes;
- dimSizes.reserve(dimRank);
- unsigned i = 0; // cumulative index into `dynSizes`.
- for (const Size sh : stt.getDimShape())
- dimSizes.push_back(ShapedType::isDynamic(sh)
- ? dynSizes[i++]
- : constantIndex(builder, loc, sh));
-
+ SparseTensorType stt, bool enableInit,
+ Value sizeHint,
+ SmallVectorImpl<Value> &lvlSizesValues,
+ /*out*/ SmallVectorImpl<Value> &fields) {
+ Level lvlRank = stt.getLvlRank();
// Set up some heuristic sizes. We try to set the initial
// size based on available information. Otherwise we just
// initialize a few elements to start the reallocation chain.
// TODO: refine this
Value posHeuristic, crdHeuristic, valHeuristic;
if (stt.isAllDense()) {
- valHeuristic = dimSizes[0];
- for (const Value sz : ArrayRef<Value>{dimSizes}.drop_front())
- valHeuristic = builder.create<arith::MulIOp>(loc, valHeuristic, sz);
+ valHeuristic = lvlSizesValues[0];
+ for (Level lvl = 1; lvl < lvlRank; lvl++)
+ valHeuristic =
+ builder.create<arith::MulIOp>(loc, valHeuristic, lvlSizesValues[lvl]);
} else if (sizeHint) {
if (getCOOStart(stt.getEncoding()) == 0) {
posHeuristic = constantIndex(builder, loc, 2);
crdHeuristic = builder.create<arith::MulIOp>(
- loc, constantIndex(builder, loc, dimRank), sizeHint); // AOS
- } else if (dimRank == 2 && stt.isDenseLvl(0) && stt.isCompressedLvl(1)) {
+ loc, constantIndex(builder, loc, lvlRank), sizeHint); // AOS
+ } else if (lvlRank == 2 && stt.isDenseLvl(0) && stt.isCompressedLvl(1)) {
posHeuristic = builder.create<arith::AddIOp>(
loc, sizeHint, constantIndex(builder, loc, 1));
crdHeuristic = sizeHint;
@@ -205,7 +210,6 @@ static void createAllocFields(OpBuilder &builder, Location loc,
posHeuristic = crdHeuristic = valHeuristic =
constantIndex(builder, loc, 16);
}
-
// Initializes all fields. An initial storage specifier and allocated
// positions/coordinates/values memrefs (with heuristic capacity).
foreachFieldAndTypeInSparseTensor(
@@ -237,16 +241,13 @@ static void createAllocFields(OpBuilder &builder, Location loc,
// Returns true to continue the iteration.
return true;
});
-
// Initialize the storage scheme to an empty tensor. Sets the lvlSizes
// and gives all position fields an initial zero entry, so that it is
// easier to maintain the "linear + 1" length property.
MutSparseTensorDescriptor desc(stt, fields);
Value posZero = constantZero(builder, loc, stt.getPosType());
for (Level lvl = 0, lvlRank = stt.getLvlRank(); lvl < lvlRank; lvl++) {
- // FIXME: `toOrigDim` is deprecated.
- desc.setLvlSize(builder, loc, lvl,
- dimSizes[toOrigDim(stt.getEncoding(), lvl)]);
+ desc.setLvlSize(builder, loc, lvl, lvlSizesValues[lvl]);
const auto dlt = stt.getLvlType(lvl);
if (isCompressedDLT(dlt) || isLooseCompressedDLT(dlt))
createPushback(builder, loc, desc, SparseTensorFieldKind::PosMemRef, lvl,
@@ -371,8 +372,8 @@ static void genEndInsert(OpBuilder &builder, Location loc,
SparseTensorDescriptor desc) {
const SparseTensorType stt(desc.getRankedTensorType());
const Level lvlRank = stt.getLvlRank();
- for (Level l = 0; l < lvlRank; l++) {
- const auto dlt = stt.getLvlType(l);
+ for (Level lvl = 0; lvl < lvlRank; lvl++) {
+ const auto dlt = stt.getLvlType(lvl);
if (isCompressedDLT(dlt)) {
// Compressed dimensions need a position cleanup for all entries
// that were not visited during the insertion pass.
@@ -380,10 +381,10 @@ static void genEndInsert(OpBuilder &builder, Location loc,
// TODO: avoid cleanup and keep compressed scheme consistent at all
// times?
//
- if (l > 0) {
+ if (lvl > 0) {
Type posType = stt.getPosType();
- Value posMemRef = desc.getPosMemRef(l);
- Value hi = desc.getPosMemSize(builder, loc, l);
+ Value posMemRef = desc.getPosMemRef(lvl);
+ Value hi = desc.getPosMemSize(builder, loc, lvl);
Value zero = constantIndex(builder, loc, 0);
Value one = constantIndex(builder, loc, 1);
// Vector of only one, but needed by createFor's prototype.
@@ -729,7 +730,6 @@ class SparseReMapConverter : public OpConversionPattern<ReinterpretMapOp> {
};
/// Sparse codegen rule for the alloc operator.
-/// TODO(springerm): remove when bufferization.alloc_tensor is gone
class SparseTensorAllocConverter
: public OpConversionPattern<bufferization::AllocTensorOp> {
public:
@@ -746,6 +746,8 @@ class SparseTensorAllocConverter
if (!resType.hasEncoding())
return failure();
Location loc = op.getLoc();
+
+ // Deal with copy.
if (op.getCopy()) {
auto desc = getDescriptorFromTensorTuple(adaptor.getCopy());
SmallVector<Value> fields;
@@ -766,17 +768,22 @@ class SparseTensorAllocConverter
return success();
}
+ // Construct the dim/lvl sizes and the (unused) dim2lvl/lvl2dim buffers.
+ SmallVector<Value> dimSizesValues;
+ SmallVector<Value> lvlSizesValues;
+ Value dimSizesBuffer;
+ Value dim2lvlBuffer;
+ Value lvl2dimBuffer;
+ createDimSizes(rewriter, loc, resType, adaptor.getDynamicSizes(),
+ dimSizesValues);
+ genMapBuffers(rewriter, loc, resType, dimSizesValues, dimSizesBuffer,
+ lvlSizesValues, dim2lvlBuffer, lvl2dimBuffer);
+
// Construct allocation for each field.
Value sizeHint = op.getSizeHint();
- ValueRange dynSizes = adaptor.getDynamicSizes();
- const size_t found = dynSizes.size();
- const int64_t expected = resType.getNumDynamicDims();
- if (found != static_cast<size_t>(expected))
- return rewriter.notifyMatchFailure(op,
- "Got wrong number of dynamic sizes");
SmallVector<Value> fields;
- createAllocFields(rewriter, loc, resType, dynSizes,
- enableBufferInitialization, fields, sizeHint);
+ createAllocFields(rewriter, loc, resType, enableBufferInitialization,
+ sizeHint, lvlSizesValues, fields);
// Replace operation with resulting memrefs.
rewriter.replaceOp(op, genTuple(rewriter, loc, resType, fields));
@@ -788,7 +795,6 @@ class SparseTensorAllocConverter
};
/// Sparse codegen rule for the empty tensor operator.
-/// TODO(springerm): remove when bufferization.alloc_tensor is gone
class SparseTensorEmptyConverter : public OpConversionPattern<tensor::EmptyOp> {
public:
using OpConversionPattern::OpConversionPattern;
@@ -803,19 +809,24 @@ class SparseTensorEmptyConverter : public OpConversionPattern<tensor::EmptyOp> {
const auto resType = getSparseTensorType(op);
if (!resType.hasEncoding())
return failure();
+ Location loc = op.getLoc();
+
+ // Construct the dim/lvl sizes and the (unused) dim2lvl/lvl2dim buffers.
+ SmallVector<Value> dimSizesValues;
+ SmallVector<Value> lvlSizesValues;
+ Value dimSizesBuffer;
+ Value dim2lvlBuffer;
+ Value lvl2dimBuffer;
+ createDimSizes(rewriter, loc, resType, adaptor.getDynamicSizes(),
+ dimSizesValues);
+ genMapBuffers(rewriter, loc, resType, dimSizesValues, dimSizesBuffer,
+ lvlSizesValues, dim2lvlBuffer, lvl2dimBuffer);
// Construct allocation for each field.
- Location loc = op.getLoc();
Value sizeHint; // none
- const ValueRange dynSizes = adaptor.getDynamicSizes();
- const size_t found = dynSizes.size();
- const int64_t expected = resType.getNumDynamicDims();
- if (found != static_cast<size_t>(expected))
- return rewriter.notifyMatchFailure(op,
- "Got wrong number of dynamic sizes");
SmallVector<Value> fields;
- createAllocFields(rewriter, loc, resType, dynSizes,
- enableBufferInitialization, fields, sizeHint);
+ createAllocFields(rewriter, loc, resType, enableBufferInitialization,
+ sizeHint, lvlSizesValues, fields);
// Replace operation with resulting memrefs.
rewriter.replaceOp(op, genTuple(rewriter, loc, resType, fields));
@@ -1461,10 +1472,10 @@ struct SparseNewConverter : public OpConversionPattern<NewOp> {
// if (! %isSorted) sparse_tensor.sort_coo(%nse, %coordinates, %values)
// update storage specifier
// @delSparseTensorReader(%reader)
- SmallVector<Value> dimShapesValues;
+ SmallVector<Value> dimSizesValues;
Value dimSizesBuffer;
Value reader = genReader(rewriter, loc, dstTp, adaptor.getOperands()[0],
- dimShapesValues, dimSizesBuffer);
+ dimSizesValues, dimSizesBuffer);
// Get the number of stored entries.
const Type indexTp = rewriter.getIndexType();
@@ -1472,25 +1483,19 @@ struct SparseNewConverter : public OpConversionPattern<NewOp> {
{indexTp}, {reader}, EmitCInterface::Off)
.getResult(0);
- // Construct allocation for each field.
- SmallVector<Value> dynSizes;
- if (dstTp.hasDynamicDimShape()) {
- for (const auto &d : llvm::enumerate(dstTp.getDimShape()))
- if (ShapedType::isDynamic(d.value()))
- dynSizes.push_back(rewriter.create<memref::LoadOp>(
- loc, dimSizesBuffer, constantIndex(rewriter, loc, d.index())));
- }
- SmallVector<Value> fields;
- createAllocFields(rewriter, loc, dstTp, dynSizes, /*enableInit=*/false,
- fields, nse);
-
- // Now construct the lvl sizes and the dim2lvl/lvl2dim buffers.
+ // Construct the lvl sizes and the dim2lvl/lvl2dim buffers.
SmallVector<Value> lvlSizesValues;
Value dim2lvlBuffer;
Value lvl2dimBuffer;
- genMapBuffers(rewriter, loc, dstTp, dimShapesValues, dimSizesBuffer,
+ genMapBuffers(rewriter, loc, dstTp, dimSizesValues, dimSizesBuffer,
lvlSizesValues, dim2lvlBuffer, lvl2dimBuffer);
+ // Construct allocation for each field.
+ Value sizeHint = nse;
+ SmallVector<Value> fields;
+ createAllocFields(rewriter, loc, dstTp, /*enableInit=*/false, sizeHint,
+ lvlSizesValues, fields);
+
// Read the COO tensor data.
MutSparseTensorDescriptor desc(dstTp, fields);
Value xs = desc.getAOSMemRef();
diff --git a/mlir/test/Dialect/SparseTensor/codegen.mlir b/mlir/test/Dialect/SparseTensor/codegen.mlir
index 5876eef6f193272..7e7a6e74e703a48 100644
--- a/mlir/test/Dialect/SparseTensor/codegen.mlir
+++ b/mlir/test/Dialect/SparseTensor/codegen.mlir
@@ -252,7 +252,7 @@ func.func @sparse_values_coo(%arg0: tensor<?x?x?xf64, #ccoo>) -> memref<?xf64> {
}
-// CHECK-LABEL: func.func @sparse_indices_coo(
+// CHECK-LABEL: func.func @sparse_indices_coo(
// CHECK-SAME: %[[A0:.*0]]: memref<?xindex>,
// CHECK-SAME: %[[A1:.*1]]: memref<?xindex>,
// CHECK-SAME: %[[A2:.*2]]: memref<?xindex>,
@@ -270,7 +270,7 @@ func.func @sparse_indices_coo(%arg0: tensor<?x?x?xf64, #ccoo>) -> memref<?xindex
return %0 : memref<?xindex, strided<[?], offset: ?>>
}
-// CHECK-LABEL: func.func @sparse_indices_buffer_coo(
+// CHECK-LABEL: func.func @sparse_indices_buffer_coo(
// CHECK-SAME: %[[A0:.*0]]: memref<?xindex>,
// CHECK-SAME: %[[A1:.*1]]: memref<?xindex>,
// CHECK-SAME: %[[A2:.*2]]: memref<?xindex>,
@@ -676,26 +676,26 @@ func.func @sparse_convert_element_type(%arg0: tensor<32xf32, #SparseVector>) ->
// CHECK: memref.store %[[VAL_4]], %[[VAL_6]]{{\[}}%[[VAL_3]]] : memref<2xindex>
// CHECK: %[[VAL_8:.*]] = call @createCheckedSparseTensorReader(%[[A0]], %[[VAL_7]], %[[VAL_2]]) : (!llvm.ptr, memref<?xindex>, i32) -> !llvm.ptr
// CHECK: %[[VAL_9:.*]] = call @getSparseTensorReaderDimSizes(%[[VAL_8]]) : (!llvm.ptr) -> memref<?xindex>
-// CHECK: %[[VAL_10:.*]] = call @getSparseTensorReaderNSE(%[[VAL_8]]) : (!llvm.ptr) -> index
-// CHECK: %[[VAL_11:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_4]]] : memref<?xindex>
-// CHECK: %[[VAL_12:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_3]]] : memref<?xindex>
-// CHECK: %[[VAL_13:.*]] = arith.muli %[[VAL_10]], %[[VAL_5]] : index
-// CHECK: %[[VAL_14:.*]] = memref.alloc() : memref<2xindex>
-// CHECK: %[[VAL_15:.*]] = memref.cast %[[VAL_14]] : memref<2xindex> to memref<?xindex>
-// CHECK: %[[VAL_16:.*]] = memref.alloc(%[[VAL_13]]) : memref<?xindex>
-// CHECK: %[[VAL_17:.*]] = memref.alloc(%[[VAL_10]]) : memref<?xf32>
-// CHECK: %[[VAL_18:.*]] = sparse_tensor.storage_specifier.init
-// CHECK: %[[VAL_19:.*]] = sparse_tensor.storage_specifier.set %[[VAL_18]] lvl_sz at 0 with %[[VAL_11]]
-// CHECK: %[[VAL_20:.*]] = sparse_tensor.storage_specifier.get %[[VAL_19]] pos_mem_sz at 0
-// CHECK: %[[VAL_21:.*]], %[[VAL_22:.*]] = sparse_tensor.push_back %[[VAL_20]], %[[VAL_15]], %[[VAL_4]]
-// CHECK: %[[VAL_23:.*]] = sparse_tensor.storage_specifier.set %[[VAL_19]] pos_mem_sz at 0 with %[[VAL_22]]
-// CHECK: %[[VAL_24:.*]] = sparse_tensor.storage_specifier.set %[[VAL_23]] lvl_sz at 1 with %[[VAL_12]]
-// CHECK: %[[VAL_25:.*]], %[[VAL_26:.*]] = sparse_tensor.push_back %[[VAL_22]], %[[VAL_21]], %[[VAL_4]], %[[VAL_3]]
-// CHECK: %[[VAL_27:.*]] = sparse_tensor.storage_specifier.set %[[VAL_24]] pos_mem_sz at 0 with %[[VAL_26]]
-// CHECK: %[[VAL_28:.*]] = memref.alloca() : memref<2xindex>
-// CHECK: %[[VAL_29:.*]] = memref.cast %[[VAL_28]] : memref<2xindex> to memref<?xindex>
-// CHECK: memref.store %[[VAL_4]], %[[VAL_28]]{{\[}}%[[VAL_4]]] : memref<2xindex>
-// CHECK: memref.store %[[VAL_3]], %[[VAL_28]]{{\[}}%[[VAL_3]]] : memref<2xindex>
+// CHECK-DAG: %[[VAL_10:.*]] = call @getSparseTensorReaderNSE(%[[VAL_8]]) : (!llvm.ptr) -> index
+// CHECK-DAG: %[[VAL_11:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_4]]] : memref<?xindex>
+// CHECK-DAG: %[[VAL_12:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_3]]] : memref<?xindex>
+// CHECK-DAG: %[[VAL_13:.*]] = arith.muli %[[VAL_10]], %[[VAL_5]] : index
+// CHECK-DAG: %[[VAL_14:.*]] = memref.alloc() : memref<2xindex>
+// CHECK-DAG: %[[VAL_15:.*]] = memref.cast %[[VAL_14]] : memref<2xindex> to memref<?xindex>
+// CHECK-DAG: %[[VAL_16:.*]] = memref.alloc(%[[VAL_13]]) : memref<?xindex>
+// CHECK-DAG: %[[VAL_17:.*]] = memref.alloc(%[[VAL_10]]) : memref<?xf32>
+// CHECK-DAG: %[[VAL_18:.*]] = sparse_tensor.storage_specifier.init
+// CHECK-DAG: %[[VAL_19:.*]] = sparse_tensor.storage_specifier.set %[[VAL_18]] lvl_sz at 0 with %[[VAL_11]]
+// CHECK-DAG: %[[VAL_20:.*]] = sparse_tensor.storage_specifier.get %[[VAL_19]] pos_mem_sz at 0
+// CHECK-DAG: %[[VAL_21:.*]], %[[VAL_22:.*]] = sparse_tensor.push_back %[[VAL_20]], %[[VAL_15]], %[[VAL_4]]
+// CHECK-DAG: %[[VAL_23:.*]] = sparse_tensor.storage_specifier.set %[[VAL_19]] pos_mem_sz at 0 with %[[VAL_22]]
+// CHECK-DAG: %[[VAL_24:.*]] = sparse_tensor.storage_specifier.set %[[VAL_23]] lvl_sz at 1 with %[[VAL_12]]
+// CHECK-DAG: %[[VAL_25:.*]], %[[VAL_26:.*]] = sparse_tensor.push_back %[[VAL_22]], %[[VAL_21]], %[[VAL_4]], %[[VAL_3]]
+// CHECK-DAG: %[[VAL_27:.*]] = sparse_tensor.storage_specifier.set %[[VAL_24]] pos_mem_sz at 0 with %[[VAL_26]]
+// CHECK-DAG: %[[VAL_28:.*]] = memref.alloca() : memref<2xindex>
+// CHECK-DAG: %[[VAL_29:.*]] = memref.cast %[[VAL_28]] : memref<2xindex> to memref<?xindex>
+// CHECK-DAG: memref.store %[[VAL_4]], %[[VAL_28]]{{\[}}%[[VAL_4]]] : memref<2xindex>
+// CHECK-DAG: memref.store %[[VAL_3]], %[[VAL_28]]{{\[}}%[[VAL_3]]] : memref<2xindex>
// CHECK: %[[VAL_30:.*]] = call @getSparseTensorReaderReadToBuffers0F32(%[[VAL_8]], %[[VAL_29]], %[[VAL_29]], %[[VAL_16]], %[[VAL_17]]) : (!llvm.ptr, memref<?xindex>, memref<?xindex>, memref<?xindex>, memref<?xf32>) -> i1
// CHECK: %[[VAL_31:.*]] = arith.cmpi eq, %[[VAL_30]], %[[VAL_1]] : i1
// CHECK: scf.if %[[VAL_31]] {
@@ -722,31 +722,31 @@ func.func @sparse_new_coo(%arg0: !llvm.ptr) -> tensor<?x?xf32, #Coo> {
// CHECK: memref.store %[[VAL_3]], %[[VAL_5]]{{\[}}%[[VAL_3]]] : memref<2xindex>
// CHECK: memref.store %[[VAL_3]], %[[VAL_5]]{{\[}}%[[VAL_2]]] : memref<2xindex>
// CHECK: %[[VAL_7:.*]] = call @createCheckedSparseTensorReader(%[[A0]], %[[VAL_6]], %[[VAL_1]]) : (!llvm.ptr, memref<?xindex>, i32) -> !llvm.ptr
-// CHECK: %[[VAL_8:.*]] = call @getSparseTensorReaderDimSizes(%[[VAL_7]]) : (!llvm.ptr) -> memref<?xindex>
-// CHECK: %[[VAL_9:.*]] = call @getSparseTensorReaderNSE(%[[VAL_7]]) : (!llvm.ptr) -> index
-// CHECK: %[[VAL_10:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_3]]] : memref<?xindex>
-// CHECK: %[[VAL_11:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_2]]] : memref<?xindex>
-// CHECK: %[[VAL_12:.*]] = arith.muli %[[VAL_9]], %[[VAL_4]] : index
-// CHECK: %[[VAL_13:.*]] = memref.alloc() : memref<2xindex>
-// CHECK: %[[VAL_14:.*]] = memref.cast %[[VAL_13]] : memref<2xindex> to memref<?xindex>
-// CHECK: %[[VAL_15:.*]] = memref.alloc(%[[VAL_12]]) : memref<?xindex>
-// CHECK: %[[VAL_16:.*]] = memref.alloc(%[[VAL_9]]) : memref<?xf32>
-// CHECK: %[[VAL_17:.*]] = sparse_tensor.storage_specifier.init
-// CHECK: %[[VAL_18:.*]] = sparse_tensor.storage_specifier.set %[[VAL_17]] lvl_sz at 0 with %[[VAL_11]]
-// CHECK: %[[VAL_19:.*]] = sparse_tensor.storage_specifier.get %[[VAL_18]] pos_mem_sz at 0
-// CHECK: %[[VAL_20:.*]], %[[VAL_21:.*]] = sparse_tensor.push_back %[[VAL_19]], %[[VAL_14]], %[[VAL_3]]
-// CHECK: %[[VAL_22:.*]] = sparse_tensor.storage_specifier.set %[[VAL_18]] pos_mem_sz at 0 with %[[VAL_21]]
-// CHECK: %[[VAL_23:.*]] = sparse_tensor.storage_specifier.set %[[VAL_22]] lvl_sz at 1 with %[[VAL_10]]
-// CHECK: %[[VAL_24:.*]], %[[VAL_25:.*]] = sparse_tensor.push_back %[[VAL_21]], %[[VAL_20]], %[[VAL_3]], %[[VAL_2]]
-// CHECK: %[[VAL_26:.*]] = sparse_tensor.storage_specifier.set %[[VAL_23]] pos_mem_sz at 0 with %[[VAL_25]]
-// CHECK: %[[VAL_27:.*]] = memref.alloca() : memref<2xindex>
-// CHECK: %[[VAL_28:.*]] = memref.cast %[[VAL_27]] : memref<2xindex> to memref<?xindex>
-// CHECK: memref.store %[[VAL_2]], %[[VAL_27]]{{\[}}%[[VAL_3]]] : memref<2xindex>
-// CHECK: memref.store %[[VAL_3]], %[[VAL_27]]{{\[}}%[[VAL_2]]] : memref<2xindex>
-// CHECK: %[[VAL_29:.*]] = memref.alloca() : memref<2xindex>
-// CHECK: %[[VAL_30:.*]] = memref.cast %[[VAL_29]] : memref<2xindex> to memref<?xindex>
-// CHECK: memref.store %[[VAL_2]], %[[VAL_29]]{{\[}}%[[VAL_3]]] : memref<2xindex>
-// CHECK: memref.store %[[VAL_3]], %[[VAL_29]]{{\[}}%[[VAL_2]]] : memref<2xindex>
+// CHECK-DAG: %[[VAL_8:.*]] = call @getSparseTensorReaderDimSizes(%[[VAL_7]]) : (!llvm.ptr) -> memref<?xindex>
+// CHECK-DAG: %[[VAL_9:.*]] = call @getSparseTensorReaderNSE(%[[VAL_7]]) : (!llvm.ptr) -> index
+// CHECK-DAG: %[[VAL_10:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_3]]] : memref<?xindex>
+// CHECK-DAG: %[[VAL_11:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_2]]] : memref<?xindex>
+// CHECK-DAG: %[[VAL_12:.*]] = arith.muli %[[VAL_9]], %[[VAL_4]] : index
+// CHECK-DAG: %[[VAL_13:.*]] = memref.alloc() : memref<2xindex>
+// CHECK-DAG: %[[VAL_14:.*]] = memref.cast %[[VAL_13]] : memref<2xindex> to memref<?xindex>
+// CHECK-DAG: %[[VAL_15:.*]] = memref.alloc(%[[VAL_12]]) : memref<?xindex>
+// CHECK-DAG: %[[VAL_16:.*]] = memref.alloc(%[[VAL_9]]) : memref<?xf32>
+// CHECK-DAG: %[[VAL_17:.*]] = sparse_tensor.storage_specifier.init
+// CHECK-DAG: %[[VAL_18:.*]] = sparse_tensor.storage_specifier.set %[[VAL_17]] lvl_sz at 0 with %[[VAL_11]]
+// CHECK-DAG: %[[VAL_19:.*]] = sparse_tensor.storage_specifier.get %[[VAL_18]] pos_mem_sz at 0
+// CHECK-DAG: %[[VAL_20:.*]], %[[VAL_21:.*]] = sparse_tensor.push_back %[[VAL_19]], %[[VAL_14]], %[[VAL_3]]
+// CHECK-DAG: %[[VAL_22:.*]] = sparse_tensor.storage_specifier.set %[[VAL_18]] pos_mem_sz at 0 with %[[VAL_21]]
+// CHECK-DAG: %[[VAL_23:.*]] = sparse_tensor.storage_specifier.set %[[VAL_22]] lvl_sz at 1 with %[[VAL_10]]
+// CHECK-DAG: %[[VAL_24:.*]], %[[VAL_25:.*]] = sparse_tensor.push_back %[[VAL_21]], %[[VAL_20]], %[[VAL_3]], %[[VAL_2]]
+// CHECK-DAG: %[[VAL_26:.*]] = sparse_tensor.storage_specifier.set %[[VAL_23]] pos_mem_sz at 0 with %[[VAL_25]]
+// CHECK-DAG: %[[VAL_27:.*]] = memref.alloca() : memref<2xindex>
+// CHECK-DAG: %[[VAL_28:.*]] = memref.cast %[[VAL_27]] : memref<2xindex> to memref<?xindex>
+// CHECK-DAG: memref.store %[[VAL_2]], %[[VAL_27]]{{\[}}%[[VAL_3]]] : memref<2xindex>
+// CHECK-DAG: memref.store %[[VAL_3]], %[[VAL_27]]{{\[}}%[[VAL_2]]] : memref<2xindex>
+// CHECK-DAG: %[[VAL_29:.*]] = memref.alloca() : memref<2xindex>
+// CHECK-DAG: %[[VAL_30:.*]] = memref.cast %[[VAL_29]] : memref<2xindex> to memref<?xindex>
+// CHECK-DAG: memref.store %[[VAL_2]], %[[VAL_29]]{{\[}}%[[VAL_3]]] : memref<2xindex>
+// CHECK-DAG: memref.store %[[VAL_3]], %[[VAL_29]]{{\[}}%[[VAL_2]]] : memref<2xindex>
// CHECK: %[[VAL_31:.*]] = call @getSparseTensorReaderReadToBuffers0F32(%[[VAL_7]], %[[VAL_28]], %[[VAL_30]], %[[VAL_15]], %[[VAL_16]]) : (!llvm.ptr, memref<?xindex>, memref<?xindex>, memref<?xindex>, memref<?xf32>) -> i1
// CHECK: memref.store %[[VAL_9]], %[[VAL_24]]{{\[}}%[[VAL_2]]] : memref<?xindex>
// CHECK: %[[VAL_32:.*]] = sparse_tensor.storage_specifier.set %[[VAL_26]] crd_mem_sz at 0 with %[[VAL_12]]
diff --git a/mlir/test/Dialect/SparseTensor/codegen_buffer_initialization.mlir b/mlir/test/Dialect/SparseTensor/codegen_buffer_initialization.mlir
index 14a8f0e43d35aad..e6d9700ffe4f838 100644
--- a/mlir/test/Dialect/SparseTensor/codegen_buffer_initialization.mlir
+++ b/mlir/test/Dialect/SparseTensor/codegen_buffer_initialization.mlir
@@ -4,9 +4,9 @@
// CHECK-LABEL: func.func @empty_sparse_vector(
// CHECK-SAME: %[[VAL_0:.*]]: index) -> (memref<?xindex>, memref<?xindex>, memref<?xf64>, !sparse_tensor.storage_specifier
-// CHECK: %[[VAL_1:.*]] = arith.constant 1 : index
-// CHECK: %[[VAL_2:.*]] = arith.constant 0.000000e+00 : f64
-// CHECK: %[[VAL_3:.*]] = arith.constant 0 : index
+// CHECK-DAG: %[[VAL_1:.*]] = arith.constant 1 : index
+// CHECK-DAG: %[[VAL_2:.*]] = arith.constant 0.000000e+00 : f64
+// CHECK-DAG: %[[VAL_3:.*]] = arith.constant 0 : index
// CHECK: %[[VAL_4:.*]] = memref.alloc() : memref<16xindex>
// CHECK: %[[VAL_5:.*]] = memref.cast %[[VAL_4]] : memref<16xindex> to memref<?xindex>
// CHECK: linalg.fill ins(%[[VAL_3]] : index) outs(%[[VAL_4]] : memref<16xindex>)
diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/block.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/block.mlir
index d92165e98cea4a1..6468c4b45d2479d 100644
--- a/mlir/test/Integration/Dialect/SparseTensor/CPU/block.mlir
+++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/block.mlir
@@ -3,7 +3,7 @@
//
// Set-up that's shared across all tests in this directory. In principle, this
// config could be moved to lit.local.cfg. However, there are downstream users that
-// do not use these LIT config files. Hence why this is kept inline.
+// do not use these LIT config files. Hence why this is kept inline.
//
// DEFINE: %{sparsifier_opts} = enable-runtime-library=true
// DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts}
@@ -20,10 +20,13 @@
// REDEFINE: %{env} = TENSOR0="%mlir_src_dir/test/Integration/data/block.mtx"
// RUN: %{compile} | env %{env} %{run} | FileCheck %s
//
-// TODO: enable!
// Do the same run, but now with direct IR generation.
// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false
-// R_UN: %{compile} | env %{env} %{run} | FileCheck %s
+// RUN: %{compile} | env %{env} %{run} | FileCheck %s
+//
+// Do the same run, but now with direct IR generation and vectorization.
+// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true vl=2 reassociate-fp-reductions=true enable-index-optimizations=true
+// RUN: %{compile} | env %{env} %{run} | FileCheck %s
!Filename = !llvm.ptr
diff --git a/mlir/test/Integration/Dialect/SparseTensor/GPU/CUDA/sparse-sddmm-lib.mlir b/mlir/test/Integration/Dialect/SparseTensor/GPU/CUDA/sparse-sddmm-lib.mlir
index fb0da0c0e649e5c..db5c154e5e438da 100644
--- a/mlir/test/Integration/Dialect/SparseTensor/GPU/CUDA/sparse-sddmm-lib.mlir
+++ b/mlir/test/Integration/Dialect/SparseTensor/GPU/CUDA/sparse-sddmm-lib.mlir
@@ -16,8 +16,7 @@
//
// without RT lib:
//
-// TODO: make this work
-// R_U_N: %{compile} enable-runtime-library=false" | %{run}
+// RUN: %{compile} enable-runtime-library=false" | %{run}
!Filename = !llvm.ptr
More information about the Mlir-commits
mailing list