[Mlir-commits] [mlir] [mlir][python] add type wrappers (PR #71218)

Maksim Levental llvmlistbot at llvm.org
Tue Nov 14 10:55:44 PST 2023


https://github.com/makslevental updated https://github.com/llvm/llvm-project/pull/71218

>From e383d52f01ece75b66b8ddab3151ca121ff5a6b4 Mon Sep 17 00:00:00 2001
From: max <maksim.levental at gmail.com>
Date: Thu, 2 Nov 2023 11:15:45 -0500
Subject: [PATCH] [mlir][python] add type wrappers

---
 mlir/lib/Bindings/Python/IRTypes.cpp |  24 ++--
 mlir/python/CMakeLists.txt           |   1 +
 mlir/python/mlir/types.py            | 190 +++++++++++++++++++++++++++
 mlir/test/python/ir/builtin_types.py | 112 ++++++++++++++++
 4 files changed, 311 insertions(+), 16 deletions(-)
 create mode 100644 mlir/python/mlir/types.py

diff --git a/mlir/lib/Bindings/Python/IRTypes.cpp b/mlir/lib/Bindings/Python/IRTypes.cpp
index 483db673f989e6b..56e895d3053796e 100644
--- a/mlir/lib/Bindings/Python/IRTypes.cpp
+++ b/mlir/lib/Bindings/Python/IRTypes.cpp
@@ -463,7 +463,7 @@ class PyVectorType : public PyConcreteType<PyVectorType, PyShapedType> {
 
   static void bindDerived(ClassTy &c) {
     c.def_static("get", &PyVectorType::get, py::arg("shape"),
-                 py::arg("elementType"), py::kw_only(),
+                 py::arg("element_type"), py::kw_only(),
                  py::arg("scalable") = py::none(),
                  py::arg("scalable_dims") = py::none(),
                  py::arg("loc") = py::none(), "Create a vector type")
@@ -689,13 +689,9 @@ class PyTupleType : public PyConcreteType<PyTupleType> {
   static void bindDerived(ClassTy &c) {
     c.def_static(
         "get_tuple",
-        [](py::list elementList, DefaultingPyMlirContext context) {
-          intptr_t num = py::len(elementList);
-          // Mapping py::list to SmallVector.
-          SmallVector<MlirType, 4> elements;
-          for (auto element : elementList)
-            elements.push_back(element.cast<PyType>());
-          MlirType t = mlirTupleTypeGet(context->get(), num, elements.data());
+        [](std::vector<MlirType> elements, DefaultingPyMlirContext context) {
+          MlirType t = mlirTupleTypeGet(context->get(), elements.size(),
+                                        elements.data());
           return PyTupleType(context->getRef(), t);
         },
         py::arg("elements"), py::arg("context") = py::none(),
@@ -727,13 +723,11 @@ class PyFunctionType : public PyConcreteType<PyFunctionType> {
   static void bindDerived(ClassTy &c) {
     c.def_static(
         "get",
-        [](std::vector<PyType> inputs, std::vector<PyType> results,
+        [](std::vector<MlirType> inputs, std::vector<MlirType> results,
            DefaultingPyMlirContext context) {
-          SmallVector<MlirType, 4> inputsRaw(inputs.begin(), inputs.end());
-          SmallVector<MlirType, 4> resultsRaw(results.begin(), results.end());
-          MlirType t = mlirFunctionTypeGet(context->get(), inputsRaw.size(),
-                                           inputsRaw.data(), resultsRaw.size(),
-                                           resultsRaw.data());
+          MlirType t =
+              mlirFunctionTypeGet(context->get(), inputs.size(), inputs.data(),
+                                  results.size(), results.data());
           return PyFunctionType(context->getRef(), t);
         },
         py::arg("inputs"), py::arg("results"), py::arg("context") = py::none(),
@@ -742,7 +736,6 @@ class PyFunctionType : public PyConcreteType<PyFunctionType> {
         "inputs",
         [](PyFunctionType &self) {
           MlirType t = self;
-          auto contextRef = self.getContext();
           py::list types;
           for (intptr_t i = 0, e = mlirFunctionTypeGetNumInputs(self); i < e;
                ++i) {
@@ -754,7 +747,6 @@ class PyFunctionType : public PyConcreteType<PyFunctionType> {
     c.def_property_readonly(
         "results",
         [](PyFunctionType &self) {
-          auto contextRef = self.getContext();
           py::list types;
           for (intptr_t i = 0, e = mlirFunctionTypeGetNumResults(self); i < e;
                ++i) {
diff --git a/mlir/python/CMakeLists.txt b/mlir/python/CMakeLists.txt
index 971ad2dd214a15f..12e2dab60f3011b 100644
--- a/mlir/python/CMakeLists.txt
+++ b/mlir/python/CMakeLists.txt
@@ -21,6 +21,7 @@ declare_mlir_python_sources(MLIRPythonSources.Core.Python
     _mlir_libs/__init__.py
     ir.py
     passmanager.py
+    types.py
     dialects/_ods_common.py
 
     # The main _mlir module has submodules: include stubs from each.
diff --git a/mlir/python/mlir/types.py b/mlir/python/mlir/types.py
new file mode 100644
index 000000000000000..ea18495eb8cc585
--- /dev/null
+++ b/mlir/python/mlir/types.py
@@ -0,0 +1,190 @@
+#  Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+#  See https://llvm.org/LICENSE.txt for license information.
+#  SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+
+from functools import partial
+from typing import Optional, List
+
+from .ir import (
+    Attribute,
+    BF16Type,
+    ComplexType,
+    Context,
+    F16Type,
+    F32Type,
+    F64Type,
+    Float8E4M3B11FNUZType,
+    Float8E4M3FNType,
+    Float8E5M2Type,
+    FunctionType,
+    IndexType,
+    IntegerType,
+    MemRefType,
+    NoneType,
+    OpaqueType,
+    RankedTensorType,
+    StridedLayoutAttr,
+    StringAttr,
+    TupleType,
+    Type,
+    UnrankedMemRefType,
+    UnrankedTensorType,
+    VectorType,
+)
+
+__all__ = []
+
+_index = lambda: IndexType.get()
+_bool = lambda: IntegerType.get_signless(1)
+
+_i8 = lambda: IntegerType.get_signless(8)
+_i16 = lambda: IntegerType.get_signless(16)
+_i32 = lambda: IntegerType.get_signless(32)
+_i64 = lambda: IntegerType.get_signless(64)
+
+_si8 = lambda: IntegerType.get_signed(8)
+_si16 = lambda: IntegerType.get_signed(16)
+_si32 = lambda: IntegerType.get_signed(32)
+_si64 = lambda: IntegerType.get_signed(64)
+
+_ui8 = lambda: IntegerType.get_unsigned(8)
+_ui16 = lambda: IntegerType.get_unsigned(16)
+_ui32 = lambda: IntegerType.get_unsigned(32)
+_ui64 = lambda: IntegerType.get_unsigned(64)
+
+_f16 = lambda: F16Type.get()
+_f32 = lambda: F32Type.get()
+_f64 = lambda: F64Type.get()
+_bf16 = lambda: BF16Type.get()
+
+_f8e5m2 = lambda: Float8E5M2Type.get()
+_f8e4m3 = lambda: Float8E4M3FNType.get()
+_f8e4m3b11fnuz = lambda: Float8E4M3B11FNUZType.get()
+
+_none = lambda: NoneType.get()
+
+
+def _i(width):
+    return IntegerType.get_signless(width)
+
+
+def _si(width):
+    return IntegerType.get_signed(width)
+
+
+def _ui(width):
+    return IntegerType.get_unsigned(width)
+
+
+def _complex(type):
+    return ComplexType.get(type)
+
+
+def _opaque(dialect_namespace, type_data):
+    return OpaqueType.get(dialect_namespace, type_data)
+
+
+def _shaped(*shape, element_type: Type = None, type_constructor=None):
+    if type_constructor is None:
+        raise ValueError("shaped is an abstract base class - cannot be constructed.")
+    if (element_type is None and shape and not isinstance(shape[-1], Type)) or (
+        shape and isinstance(shape[-1], Type) and element_type is not None
+    ):
+        raise ValueError(
+            f"Either element_type must be provided explicitly XOR last arg to tensor type constructor must be the element type."
+        )
+    if element_type is not None:
+        type = element_type
+        sizes = shape
+    else:
+        type = shape[-1]
+        sizes = shape[:-1]
+    if sizes:
+        return type_constructor(sizes, type)
+    else:
+        return type_constructor(type)
+
+
+def _vector(
+    *shape,
+    element_type: Type = None,
+    scalable: Optional[List[bool]] = None,
+    scalable_dims: Optional[List[int]] = None,
+):
+    return _shaped(
+        *shape,
+        element_type=element_type,
+        type_constructor=partial(
+            VectorType.get, scalable=scalable, scalable_dims=scalable_dims
+        ),
+    )
+
+
+def _tensor(*shape, element_type: Type = None, encoding: Optional[str] = None):
+    if encoding is not None:
+        encoding = StringAttr.get(encoding)
+    if not shape or (len(shape) == 1 and isinstance(shape[-1], Type)):
+        if encoding is not None:
+            raise ValueError("UnrankedTensorType does not support encoding.")
+        return _shaped(
+            *shape, element_type=element_type, type_constructor=UnrankedTensorType.get
+        )
+    else:
+        return _shaped(
+            *shape,
+            element_type=element_type,
+            type_constructor=partial(RankedTensorType.get, encoding=encoding),
+        )
+
+
+def _memref(
+    *shape,
+    element_type: Type = None,
+    memory_space: Optional[int] = None,
+    layout: Optional[StridedLayoutAttr] = None,
+):
+    if memory_space is not None:
+        memory_space = Attribute.parse(str(memory_space))
+    if not shape or (len(shape) == 1 and isinstance(shape[-1], Type)):
+        return _shaped(
+            *shape,
+            element_type=element_type,
+            type_constructor=partial(UnrankedMemRefType.get, memory_space=memory_space),
+        )
+    return _shaped(
+        *shape,
+        element_type=element_type,
+        type_constructor=partial(
+            MemRefType.get, memory_space=memory_space, layout=layout
+        ),
+    )
+
+
+def _tuple(*elements):
+    return TupleType.get_tuple(elements)
+
+
+def _function(*, inputs, results):
+    return FunctionType.get(inputs, results)
+
+
+def __getattr__(name):
+    if name == "__path__":
+        # https://docs.python.org/3/reference/import.html#path__
+        # If a module is a package (either regular or namespace), the module object’s __path__ attribute must be set.
+        # This module is NOT a package and so this must be None (rather than throw the RuntimeError below).
+        return None
+    try:
+        Context.current
+    except ValueError:
+        raise RuntimeError("Types can only be instantiated under an active context.")
+
+    if f"_{name}" in globals():
+        builder = globals()[f"_{name}"]
+        if (
+            isinstance(builder, type(lambda: None))
+            and builder.__name__ == (lambda: None).__name__
+        ):
+            return builder()
+        return builder
+    raise RuntimeError(f"{name} is not a legal type.")
diff --git a/mlir/test/python/ir/builtin_types.py b/mlir/test/python/ir/builtin_types.py
index d4fed86b4f135ee..6dbb35d10aad48a 100644
--- a/mlir/test/python/ir/builtin_types.py
+++ b/mlir/test/python/ir/builtin_types.py
@@ -3,6 +3,7 @@
 import gc
 from mlir.ir import *
 from mlir.dialects import arith, tensor, func, memref
+import mlir.types as T
 
 
 def run(f):
@@ -772,3 +773,114 @@ def testCustomTypeTypeCaster():
         print(t)
         # CHECK: OperationType(!transform.op<"foo.bar">)
         print(repr(t))
+
+
+# CHECK-LABEL: TEST: testTypeWrappers
+ at run
+def testTypeWrappers():
+    try:
+        from mlir.types import i32
+    except RuntimeError as e:
+        assert e.args[0] == "Types can only be instantiated under an active context."
+
+    try:
+        from mlir.types import tensor
+    except RuntimeError as e:
+        assert e.args[0] == "Types can only be instantiated under an active context."
+
+    def stride(strides, offset=0):
+        return StridedLayoutAttr.get(offset, strides)
+
+    with Context(), Location.unknown():
+        try:
+            from mlir.types import non_existent_type
+        except RuntimeError as e:
+            assert e.args[0] == "non_existent_type is not a legal type."
+
+        ia = T.i(5)
+        sia = T.si(6)
+        uia = T.ui(7)
+        assert repr(ia) == "IntegerType(i5)"
+        assert repr(sia) == "IntegerType(si6)"
+        assert repr(uia) == "IntegerType(ui7)"
+
+        assert T.i(16) == T.i16
+        assert T.si(16) == T.si16
+        assert T.ui(16) == T.ui16
+
+        c1 = T.complex(T.f16)
+        c2 = T.complex(T.i32)
+        assert repr(c1) == "ComplexType(complex<f16>)"
+        assert repr(c2) == "ComplexType(complex<i32>)"
+
+        vec_1 = T.vector(2, 3, T.f32)
+        vec_2 = T.vector(2, 3, 4, T.f32)
+        assert repr(vec_1) == "VectorType(vector<2x3xf32>)"
+        assert repr(vec_2) == "VectorType(vector<2x3x4xf32>)"
+
+        m1 = T.memref(2, 3, 4, T.f64)
+        assert repr(m1) == "MemRefType(memref<2x3x4xf64>)"
+
+        m2 = T.memref(2, 3, 4, T.f64, memory_space=1)
+        assert repr(m2) == "MemRefType(memref<2x3x4xf64, 1>)"
+
+        m3 = T.memref(2, 3, 4, T.f64, memory_space=1, layout=stride([5, 7, 13]))
+        assert repr(m3) == "MemRefType(memref<2x3x4xf64, strided<[5, 7, 13]>, 1>)"
+
+        m4 = T.memref(2, 3, 4, T.f64, memory_space=1, layout=stride([5, 7, 13], 42))
+        assert (
+            repr(m4)
+            == "MemRefType(memref<2x3x4xf64, strided<[5, 7, 13], offset: 42>, 1>)"
+        )
+
+        S = ShapedType.get_dynamic_size()
+
+        t1 = T.tensor(S, 3, S, T.f64)
+        assert repr(t1) == "RankedTensorType(tensor<?x3x?xf64>)"
+        ut1 = T.tensor(T.f64)
+        assert repr(ut1) == "UnrankedTensorType(tensor<*xf64>)"
+        t2 = T.tensor(S, 3, S, element_type=T.f64)
+        assert repr(t2) == "RankedTensorType(tensor<?x3x?xf64>)"
+        ut2 = T.tensor(element_type=T.f64)
+        assert repr(ut2) == "UnrankedTensorType(tensor<*xf64>)"
+
+        t3 = T.tensor(S, 3, S, T.f64, encoding="encoding")
+        assert repr(t3) == 'RankedTensorType(tensor<?x3x?xf64, "encoding">)'
+
+        v = T.vector(3, 3, 3, T.f64)
+        assert repr(v) == "VectorType(vector<3x3x3xf64>)"
+
+        m5 = T.memref(S, 3, S, T.f64)
+        assert repr(m5) == "MemRefType(memref<?x3x?xf64>)"
+        um1 = T.memref(T.f64)
+        assert repr(um1) == "UnrankedMemRefType(memref<*xf64>)"
+        m6 = T.memref(S, 3, S, element_type=T.f64)
+        assert repr(m6) == "MemRefType(memref<?x3x?xf64>)"
+        um2 = T.memref(element_type=T.f64)
+        assert repr(um2) == "UnrankedMemRefType(memref<*xf64>)"
+
+        m7 = T.memref(S, 3, S, T.f64)
+        assert repr(m7) == "MemRefType(memref<?x3x?xf64>)"
+        um3 = T.memref(T.f64)
+        assert repr(um3) == "UnrankedMemRefType(memref<*xf64>)"
+
+        scalable_1 = T.vector(2, 3, T.f32, scalable=[False, True])
+        scalable_2 = T.vector(2, 3, 4, T.f32, scalable=[True, False, True])
+        assert repr(scalable_1) == "VectorType(vector<2x[3]xf32>)"
+        assert repr(scalable_2) == "VectorType(vector<[2]x3x[4]xf32>)"
+
+        scalable_3 = T.vector(2, 3, T.f32, scalable_dims=[1])
+        scalable_4 = T.vector(2, 3, 4, T.f32, scalable_dims=[0, 2])
+        assert scalable_3 == scalable_1
+        assert scalable_4 == scalable_2
+
+        opaq = T.opaque("scf", "placeholder")
+        assert repr(opaq) == "OpaqueType(!scf.placeholder)"
+
+        tup1 = T.tuple(T.i16, T.i32, T.i64)
+        tup2 = T.tuple(T.f16, T.f32, T.f64)
+        assert repr(tup1) == "TupleType(tuple<i16, i32, i64>)"
+        assert repr(tup2) == "TupleType(tuple<f16, f32, f64>)"
+
+        func = T.function(inputs=(T.i16, T.i32, T.i64), results=(T.f16, T.f32, T.f64))
+        assert repr(func) == "FunctionType((i16, i32, i64) -> (f16, f32, f64))"



More information about the Mlir-commits mailing list