[Mlir-commits] [mlir] Add a polynomial dialect shell, attributes, and types (PR #72081)
Mehdi Amini
llvmlistbot at llvm.org
Mon Nov 13 11:19:52 PST 2023
================
@@ -0,0 +1,81 @@
+//===- PolynomialAttributes.td - Attribute definitions for the polynomial dialect ------*- tablegen -*-==//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+#ifndef POLYNOMIAL_ATTRIBUTES
+#define POLYNOMIAL_ATTRIBUTES
+
+include "PolynomialDialect.td"
+include "mlir/IR/BuiltinAttributes.td"
+include "mlir/IR/OpBase.td"
+
+class Polynomial_Attr<string name, string attrMnemonic, list<Trait> traits = []>
+ : AttrDef<Polynomial_Dialect, name, traits> {
+ let mnemonic = attrMnemonic;
+}
+
+def Polynomial_PolynomialAttr : Polynomial_Attr<"Polynomial", "polynomial"> {
+ let summary = "An attribute containing a single-variable polynomial.";
+ let description = [{
+ #poly = #polynomial.poly<x**1024 + 1>
+ }];
+
+ let parameters = (ins "Polynomial":$polynomial);
+
+ let builders = [
+ AttrBuilderWithInferredContext<(ins "Polynomial":$polynomial), [{
+ return $_get(polynomial.getContext(), polynomial);
+ }]>
+ ];
+
+ let skipDefaultBuilders = 1;
+ let hasCustomAssemblyFormat = 1;
+}
+
+def Polynomial_RingAttr : Polynomial_Attr<"Ring", "ring"> {
+ let summary = "An attribute specifying a polynomial ring.";
+ let description = [{
+ A ring describes the domain in which polynomial arithmetic occurs. The ring
+ attribute in `polynomial` represents the more specific case of polynomials
+ with a single indeterminate; whose coefficients can be represented by
+ another MLIR type (`ctype`); and, if the coefficient type is integral,
+ whose coefficients are taken modulo some statically known modulus (`cmod`).
+
+ Additionally, a polynomial ring can specify an _ideal_, which converts
+ polynomial arithmetic to the analogue of modular integer arithmetic, where
+ each polynomial is represented as its remainder when dividing by the
+ modulus. For single-variable polynomials, an "ideal" is always specificed
+ via a single polynomial, which we call `polynomialModulus`.
+
+ An expressive example is polynomials with i32 coefficients, whose
+ coefficients are taken modulo `2**32 - 5`, with a polynomial modulus of
+ `x**1024 - 1`.
+
+ ```
+ #poly_mod = #polynomial.polynomial<-1 + x**1024>
+ #ring = #polynomial.ring<ctype=i32, cmod=4294967291, ideal=#poly_mod>
+
+ %0 = ... : polynomial.polynomial<#ring>
+ ```
+
+ In this case, the value of a polynomial is always ``converted'' to a
+ canonical form by applying repeated reductions by setting `x**1024 = 1`
+ and simplifying.
+
+ The coefficient and polynomial modulus parameters are optional, and the
+ coefficient modulus is only allowed if the coefficient type is integral.
+ }];
+
+ let parameters = (ins
+ Builtin_TypeAttr: $coefficientType,
+ OptionalParameter<"std::optional<IntegerAttr>">: $coefficientModulus,
+ OptionalParameter<"std::optional<PolynomialAttr>">: $polynomialModulus
----------------
joker-eph wrote:
I'm just looking at what's the current usage, there are 23 uses with `std::optional` and none are in combination with Attributes (only `std::optional<int>` actually). There are 131 instances without `std::optional` (89 with Attribute).
How do the accessors look like?
https://github.com/llvm/llvm-project/pull/72081
More information about the Mlir-commits
mailing list