[Mlir-commits] [mlir] [mlir][python] add type wrappers (PR #71218)

Maksim Levental llvmlistbot at llvm.org
Mon Nov 13 10:33:49 PST 2023


https://github.com/makslevental updated https://github.com/llvm/llvm-project/pull/71218

>From 3237d3a173e8dd01814c2bc8ff0ecaf3972f4790 Mon Sep 17 00:00:00 2001
From: max <maksim.levental at gmail.com>
Date: Thu, 2 Nov 2023 11:15:45 -0500
Subject: [PATCH] [mlir][python] add type wrappers

---
 mlir/lib/Bindings/Python/IRTypes.cpp |  24 ++--
 mlir/python/CMakeLists.txt           |   1 +
 mlir/python/mlir/types.py            | 207 +++++++++++++++++++++++++++
 mlir/test/python/ir/builtin_types.py |  92 ++++++++++++
 4 files changed, 308 insertions(+), 16 deletions(-)
 create mode 100644 mlir/python/mlir/types.py

diff --git a/mlir/lib/Bindings/Python/IRTypes.cpp b/mlir/lib/Bindings/Python/IRTypes.cpp
index 483db673f989e6b..56e895d3053796e 100644
--- a/mlir/lib/Bindings/Python/IRTypes.cpp
+++ b/mlir/lib/Bindings/Python/IRTypes.cpp
@@ -463,7 +463,7 @@ class PyVectorType : public PyConcreteType<PyVectorType, PyShapedType> {
 
   static void bindDerived(ClassTy &c) {
     c.def_static("get", &PyVectorType::get, py::arg("shape"),
-                 py::arg("elementType"), py::kw_only(),
+                 py::arg("element_type"), py::kw_only(),
                  py::arg("scalable") = py::none(),
                  py::arg("scalable_dims") = py::none(),
                  py::arg("loc") = py::none(), "Create a vector type")
@@ -689,13 +689,9 @@ class PyTupleType : public PyConcreteType<PyTupleType> {
   static void bindDerived(ClassTy &c) {
     c.def_static(
         "get_tuple",
-        [](py::list elementList, DefaultingPyMlirContext context) {
-          intptr_t num = py::len(elementList);
-          // Mapping py::list to SmallVector.
-          SmallVector<MlirType, 4> elements;
-          for (auto element : elementList)
-            elements.push_back(element.cast<PyType>());
-          MlirType t = mlirTupleTypeGet(context->get(), num, elements.data());
+        [](std::vector<MlirType> elements, DefaultingPyMlirContext context) {
+          MlirType t = mlirTupleTypeGet(context->get(), elements.size(),
+                                        elements.data());
           return PyTupleType(context->getRef(), t);
         },
         py::arg("elements"), py::arg("context") = py::none(),
@@ -727,13 +723,11 @@ class PyFunctionType : public PyConcreteType<PyFunctionType> {
   static void bindDerived(ClassTy &c) {
     c.def_static(
         "get",
-        [](std::vector<PyType> inputs, std::vector<PyType> results,
+        [](std::vector<MlirType> inputs, std::vector<MlirType> results,
            DefaultingPyMlirContext context) {
-          SmallVector<MlirType, 4> inputsRaw(inputs.begin(), inputs.end());
-          SmallVector<MlirType, 4> resultsRaw(results.begin(), results.end());
-          MlirType t = mlirFunctionTypeGet(context->get(), inputsRaw.size(),
-                                           inputsRaw.data(), resultsRaw.size(),
-                                           resultsRaw.data());
+          MlirType t =
+              mlirFunctionTypeGet(context->get(), inputs.size(), inputs.data(),
+                                  results.size(), results.data());
           return PyFunctionType(context->getRef(), t);
         },
         py::arg("inputs"), py::arg("results"), py::arg("context") = py::none(),
@@ -742,7 +736,6 @@ class PyFunctionType : public PyConcreteType<PyFunctionType> {
         "inputs",
         [](PyFunctionType &self) {
           MlirType t = self;
-          auto contextRef = self.getContext();
           py::list types;
           for (intptr_t i = 0, e = mlirFunctionTypeGetNumInputs(self); i < e;
                ++i) {
@@ -754,7 +747,6 @@ class PyFunctionType : public PyConcreteType<PyFunctionType> {
     c.def_property_readonly(
         "results",
         [](PyFunctionType &self) {
-          auto contextRef = self.getContext();
           py::list types;
           for (intptr_t i = 0, e = mlirFunctionTypeGetNumResults(self); i < e;
                ++i) {
diff --git a/mlir/python/CMakeLists.txt b/mlir/python/CMakeLists.txt
index 971ad2dd214a15f..12e2dab60f3011b 100644
--- a/mlir/python/CMakeLists.txt
+++ b/mlir/python/CMakeLists.txt
@@ -21,6 +21,7 @@ declare_mlir_python_sources(MLIRPythonSources.Core.Python
     _mlir_libs/__init__.py
     ir.py
     passmanager.py
+    types.py
     dialects/_ods_common.py
 
     # The main _mlir module has submodules: include stubs from each.
diff --git a/mlir/python/mlir/types.py b/mlir/python/mlir/types.py
new file mode 100644
index 000000000000000..ce8d826b40a6b1d
--- /dev/null
+++ b/mlir/python/mlir/types.py
@@ -0,0 +1,207 @@
+from functools import partial
+from typing import Optional
+
+from .ir import (
+    Attribute,
+    BF16Type,
+    ComplexType,
+    F16Type,
+    F32Type,
+    F64Type,
+    Float8E4M3B11FNUZType,
+    Float8E4M3FNType,
+    Float8E5M2Type,
+    FunctionType,
+    IndexType,
+    IntegerType,
+    MemRefType,
+    NoneType,
+    OpaqueType,
+    RankedTensorType,
+    StridedLayoutAttr,
+    StringAttr,
+    TupleType,
+    Type,
+    UnrankedMemRefType,
+    UnrankedTensorType,
+    VectorType,
+)
+
+from .dialects import transform
+from .dialects import pdl
+
+
+_index = lambda: IndexType.get()
+_bool = lambda: IntegerType.get_signless(1)
+
+_i8 = lambda: IntegerType.get_signless(8)
+_i16 = lambda: IntegerType.get_signless(16)
+_i32 = lambda: IntegerType.get_signless(32)
+_i64 = lambda: IntegerType.get_signless(64)
+
+_si8 = lambda: IntegerType.get_signed(8)
+_si16 = lambda: IntegerType.get_signed(16)
+_si32 = lambda: IntegerType.get_signed(32)
+_si64 = lambda: IntegerType.get_signed(64)
+
+_ui8 = lambda: IntegerType.get_unsigned(8)
+_ui16 = lambda: IntegerType.get_unsigned(16)
+_ui32 = lambda: IntegerType.get_unsigned(32)
+_ui64 = lambda: IntegerType.get_unsigned(64)
+
+_f16 = lambda: F16Type.get()
+_f32 = lambda: F32Type.get()
+_f64 = lambda: F64Type.get()
+_bf16 = lambda: BF16Type.get()
+
+_f8e5m2 = lambda: Float8E5M2Type.get()
+_f8e4m3 = lambda: Float8E4M3FNType.get()
+_f8e4m3b11fnuz = lambda: Float8E4M3B11FNUZType.get()
+
+_cmp16 = lambda: ComplexType.get(_f16())
+_cmp32 = lambda: ComplexType.get(_f32())
+_cmp64 = lambda: ComplexType.get(_f64())
+
+_none = lambda: NoneType.get()
+
+_pdl_operation = lambda: pdl.OperationType.get()
+
+
+def _transform_any_op():
+    return transform.AnyOpType.get()
+
+
+_name_to_type = {
+    "index": _index,
+    "bool": _bool,
+    "i8": _i8,
+    "i16": _i16,
+    "i32": _i32,
+    "i64": _i64,
+    "si8": _si8,
+    "si16": _si16,
+    "si32": _si32,
+    "si64": _si64,
+    "ui8": _ui8,
+    "ui16": _ui16,
+    "ui32": _ui32,
+    "ui64": _ui64,
+    "f16": _f16,
+    "f32": _f32,
+    "f64": _f64,
+    "bf16": _bf16,
+    "f8e5m2": _f8e5m2,
+    "f8e4m3": _f8e4m3,
+    "f8e4m3b11fnuz": _f8e4m3b11fnuz,
+    "cmp16": _cmp16,
+    "cmp32": _cmp32,
+    "cmp64": _cmp64,
+    "none": _none,
+    "pdl_operation": _pdl_operation,
+    "transform_any_op": _transform_any_op,
+}
+
+
+def __getattr__(name):
+    if name in _name_to_type:
+        return _name_to_type[name]()
+    # This delegates the lookup to default module attribute lookup
+    # (i.e., functions defined below and such).
+    return None
+
+
+def transform_op(name):
+    return transform.OperationType.get(name)
+
+
+def opaque(dialect_namespace, type_data):
+    return OpaqueType.get(dialect_namespace, type_data)
+
+
+def _shaped(*args, element_type: Type = None, type_constructor=None):
+    if type_constructor is None:
+        raise ValueError("shaped is an abstract base class - cannot be constructed.")
+    if (element_type is None and args and not isinstance(args[-1], Type)) or (
+        args and isinstance(args[-1], Type) and element_type is not None
+    ):
+        raise ValueError(
+            f"Either element_type must be provided explicitly XOR last arg to tensor type constructor must be the element type."
+        )
+    if element_type is not None:
+        type = element_type
+        sizes = args
+    else:
+        type = args[-1]
+        sizes = args[:-1]
+    if sizes:
+        return type_constructor(sizes, type)
+    else:
+        return type_constructor(type)
+
+
+def vector(
+    *args,
+    element_type: Type = None,
+    scalable: Optional[list[bool]] = None,
+    scalable_dims: Optional[list[int]] = None,
+):
+    return _shaped(
+        *args,
+        element_type=element_type,
+        type_constructor=partial(
+            VectorType.get, scalable=scalable, scalable_dims=scalable_dims
+        ),
+    )
+
+
+def tensor(*args, element_type: Type = None, encoding: Optional[str] = None):
+    if encoding is not None:
+        encoding = StringAttr.get(encoding)
+    if not len(args) or len(args) == 1 and isinstance(args[-1], Type):
+        if encoding is not None:
+            raise ValueError("UnrankedTensorType does not support encoding.")
+        return _shaped(
+            *args, element_type=element_type, type_constructor=UnrankedTensorType.get
+        )
+    else:
+        return _shaped(
+            *args,
+            element_type=element_type,
+            type_constructor=partial(RankedTensorType.get, encoding=encoding),
+        )
+
+
+def stride(strides, offset: Optional[int] = 0):
+    return StridedLayoutAttr.get(offset, strides)
+
+
+def memref(
+    *args,
+    element_type: Type = None,
+    memory_space: Optional[int] = None,
+    layout: Optional[tuple[tuple[int, ...], int]] = None,
+):
+    if memory_space is not None:
+        memory_space = Attribute.parse(str(memory_space))
+    if not len(args) or len(args) == 1 and isinstance(args[-1], Type):
+        return _shaped(
+            *args,
+            element_type=element_type,
+            type_constructor=partial(UnrankedMemRefType.get, memory_space=memory_space),
+        )
+    else:
+        return _shaped(
+            *args,
+            element_type=element_type,
+            type_constructor=partial(
+                MemRefType.get, memory_space=memory_space, layout=layout
+            ),
+        )
+
+
+def tuple(*elements):
+    return TupleType.get_tuple(elements)
+
+
+def function(inputs, results):
+    return FunctionType.get(inputs, results)
diff --git a/mlir/test/python/ir/builtin_types.py b/mlir/test/python/ir/builtin_types.py
index d4fed86b4f135ee..203dcee263b958b 100644
--- a/mlir/test/python/ir/builtin_types.py
+++ b/mlir/test/python/ir/builtin_types.py
@@ -772,3 +772,95 @@ def testCustomTypeTypeCaster():
         print(t)
         # CHECK: OperationType(!transform.op<"foo.bar">)
         print(repr(t))
+
+
+# CHECK-LABEL: TEST: testTypeWrappers
+ at run
+def testTypeWrappers():
+    try:
+        from mlir.types import i32
+    except RuntimeError as e:
+        assert e.args[0].startswith(
+            "An MLIR function requires a Context but none was provided"
+        )
+
+    import mlir.types as T
+    from mlir.types import vector, tensor
+
+    with Context(), Location.unknown():
+        c1 = T.cmp16
+        c2 = T.cmp32
+        assert repr(c1) == "ComplexType(complex<f16>)"
+        assert repr(c2) == "ComplexType(complex<f32>)"
+
+        vec_1 = vector(2, 3, T.f32)
+        vec_2 = vector(2, 3, 4, T.f32)
+        assert repr(vec_1) == "VectorType(vector<2x3xf32>)"
+        assert repr(vec_2) == "VectorType(vector<2x3x4xf32>)"
+
+        m1 = T.memref(2, 3, 4, T.f64)
+        assert repr(m1) == "MemRefType(memref<2x3x4xf64>)"
+
+        m2 = T.memref(2, 3, 4, T.f64, memory_space=1)
+        assert repr(m2) == "MemRefType(memref<2x3x4xf64, 1>)"
+
+        m3 = T.memref(2, 3, 4, T.f64, memory_space=1, layout=T.stride([5, 7, 13]))
+        assert repr(m3) == "MemRefType(memref<2x3x4xf64, strided<[5, 7, 13]>, 1>)"
+
+        m4 = T.memref(2, 3, 4, T.f64, memory_space=1, layout=T.stride([5, 7, 13], 42))
+        assert (
+            repr(m4)
+            == "MemRefType(memref<2x3x4xf64, strided<[5, 7, 13], offset: 42>, 1>)"
+        )
+
+        S = ShapedType.get_dynamic_size()
+
+        t = T.tensor(S, 3, S, T.f64)
+        assert repr(t) == "RankedTensorType(tensor<?x3x?xf64>)"
+        ut = tensor(T.f64)
+        assert repr(ut) == "UnrankedTensorType(tensor<*xf64>)"
+        t = tensor(S, 3, S, element_type=T.f64)
+        assert repr(t) == "RankedTensorType(tensor<?x3x?xf64>)"
+        ut = tensor(element_type=T.f64)
+        assert repr(ut) == "UnrankedTensorType(tensor<*xf64>)"
+
+        v = vector(3, 3, 3, T.f64)
+        assert repr(v) == "VectorType(vector<3x3x3xf64>)"
+
+        m = T.memref(S, 3, S, T.f64)
+        assert repr(m) == "MemRefType(memref<?x3x?xf64>)"
+        um = T.memref(T.f64)
+        assert repr(um) == "UnrankedMemRefType(memref<*xf64>)"
+        m = T.memref(S, 3, S, element_type=T.f64)
+        assert repr(m) == "MemRefType(memref<?x3x?xf64>)"
+        um = T.memref(element_type=T.f64)
+        assert repr(um) == "UnrankedMemRefType(memref<*xf64>)"
+
+        m = T.memref(S, 3, S, T.f64)
+        assert repr(m) == "MemRefType(memref<?x3x?xf64>)"
+        um = T.memref(T.f64)
+        assert repr(um) == "UnrankedMemRefType(memref<*xf64>)"
+
+        scalable_1 = vector(2, 3, T.f32, scalable=[False, True])
+        scalable_2 = vector(2, 3, 4, T.f32, scalable=[True, False, True])
+        assert repr(scalable_1) == "VectorType(vector<2x[3]xf32>)"
+        assert repr(scalable_2) == "VectorType(vector<[2]x3x[4]xf32>)"
+
+        scalable_3 = vector(2, 3, T.f32, scalable_dims=[1])
+        scalable_4 = vector(2, 3, 4, T.f32, scalable_dims=[0, 2])
+        assert scalable_3 == scalable_1
+        assert scalable_4 == scalable_2
+
+        opaq = T.opaque("scf", "placeholder")
+        assert repr(opaq) == "OpaqueType(!scf.placeholder)"
+
+        transfor_op = T.transform_op("foo.bar")
+        assert repr(transfor_op) == 'OperationType(!transform.op<"foo.bar">)'
+
+        tup1 = T.tuple(T.i16, T.i32, T.i64)
+        tup2 = T.tuple(T.f16, T.f32, T.f64)
+        assert repr(tup1) == "TupleType(tuple<i16, i32, i64>)"
+        assert repr(tup2) == "TupleType(tuple<f16, f32, f64>)"
+
+        func = T.function((T.i16, T.i32, T.i64), (T.f16, T.f32, T.f64))
+        assert repr(func) == "FunctionType((i16, i32, i64) -> (f16, f32, f64))"



More information about the Mlir-commits mailing list