[Mlir-commits] [mlir] [mlir][linalg] Add support for vectorizing dynamic elementwise named ops (PR #71454)
llvmlistbot at llvm.org
llvmlistbot at llvm.org
Mon Nov 6 14:44:37 PST 2023
llvmbot wrote:
<!--LLVM PR SUMMARY COMMENT-->
@llvm/pr-subscribers-mlir-linalg
Author: Han-Chung Wang (hanhanW)
<details>
<summary>Changes</summary>
We are able to vectorize them in linalg.generic form. We just need to relax the condition, so it can also vectorize named ops.
---
Full diff: https://github.com/llvm/llvm-project/pull/71454.diff
2 Files Affected:
- (modified) mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp (+2-1)
- (modified) mlir/test/Dialect/Linalg/vectorization.mlir (+28)
``````````diff
diff --git a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
index b427af33e3c4400..8b8eb5131669e13 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
@@ -1466,7 +1466,8 @@ static LogicalResult reductionPreconditions(LinalgOp op) {
static LogicalResult vectorizeDynamicLinalgOpPrecondition(linalg::LinalgOp op) {
// TODO: Masking only supports dynamic generic ops for now.
- if (!isa<linalg::GenericOp, linalg::FillOp, linalg::CopyOp,
+ if (!isElementwise(op) &&
+ !isa<linalg::GenericOp, linalg::FillOp, linalg::CopyOp,
linalg::ContractionOpInterface>(op.getOperation()))
return failure();
diff --git a/mlir/test/Dialect/Linalg/vectorization.mlir b/mlir/test/Dialect/Linalg/vectorization.mlir
index 7f4af344886f498..610339405d1c2c9 100644
--- a/mlir/test/Dialect/Linalg/vectorization.mlir
+++ b/mlir/test/Dialect/Linalg/vectorization.mlir
@@ -368,6 +368,34 @@ module attributes {transform.with_named_sequence} {
// -----
+// CHECK: #[[MAP:.*]] = affine_map<(d0, d1) -> (d1, d0)>
+// CHECK: func @test_masked_vectorize_linalg_transpose
+func.func @test_masked_vectorize_linalg_transpose(%arg0: tensor<?x?xf32>, %arg1: tensor<?x?xf32>) -> tensor<?x?xf32> {
+ // CHECK: %[[C0:.*]] = arith.constant 0 : index
+ // CHECK: %[[D0:.*]] = tensor.dim %arg0, %[[C0]]
+ // CHECK: %[[C1:.*]] = arith.constant 1 : index
+ // CHECK: %[[D1:.*]] = tensor.dim %arg0, %[[C1]]
+ // CHECK: %[[MASK0:.*]] = vector.create_mask %[[D0]], %[[D1]]
+ // CHECK: %[[LOAD:.*]] = vector.mask %[[MASK0]] { vector.transfer_read %arg0{{.+}} }
+ // CHECK-SAME: vector<2x4xi1> -> vector<2x4xf32>
+ // CHECK: %[[MASK1:.*]] = vector.create_mask %[[D1]], %[[D0]]
+ // CHECK: %[[WRITE:.*]] = vector.mask %[[MASK1]] { vector.transfer_write %[[LOAD]], %arg1{{.+}} permutation_map = #[[MAP]]{{.+}} }
+ // CHECK-SAME: vector<4x2xi1> -> tensor<?x?xf32>
+ // CHECK: return %[[WRITE]]
+ %0 = linalg.transpose ins(%arg0 : tensor<?x?xf32>) outs(%arg1 : tensor<?x?xf32>) permutation = [1, 0]
+ return %0 : tensor<?x?xf32>
+}
+
+module attributes {transform.with_named_sequence} {
+ transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
+ %0 = transform.structured.match ops{["linalg.transpose"]} in %arg1 : (!transform.any_op) -> !transform.any_op
+ transform.structured.vectorize %0 vector_sizes [2, 4] : !transform.any_op
+ transform.yield
+ }
+}
+
+// -----
+
// CHECK-LABEL: func @test_masked_vectorize_linalg_copy
func.func @test_masked_vectorize_linalg_copy(%A : memref<?x?xf32>, %B : memref<?x?xf32>) {
// CHECK: %[[c0:.*]] = arith.constant 0 : index
``````````
</details>
https://github.com/llvm/llvm-project/pull/71454
More information about the Mlir-commits
mailing list