[Mlir-commits] [mlir] c8e0560 - [mlir][linalg] Add channel-first variants of convolution

Alex Zinenko llvmlistbot at llvm.org
Fri May 12 07:42:54 PDT 2023


Author: kon72
Date: 2023-05-12T16:42:47+02:00
New Revision: c8e056065898bba2d51fb655da40bd4ee7beedcf

URL: https://github.com/llvm/llvm-project/commit/c8e056065898bba2d51fb655da40bd4ee7beedcf
DIFF: https://github.com/llvm/llvm-project/commit/c8e056065898bba2d51fb655da40bd4ee7beedcf.diff

LOG: [mlir][linalg] Add channel-first variants of convolution

This change adds the following three operations and unit tests for them:

- conv_3d_ncdhw_fcdhw
- depthwise_conv_1d_ncw_cw
- depthwise_conv_3d_ncdhw_cdhw

Reviewed By: nicolasvasilache

Differential Revision: https://reviews.llvm.org/D150054

Added: 
    

Modified: 
    mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
    mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py
    mlir/test/Dialect/Linalg/named-ops.mlir

Removed: 
    


################################################################################
diff  --git a/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml b/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
index cbe40fcec5e04..52ab6c7b7fdda 100644
--- a/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
+++ b/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
@@ -2282,6 +2282,106 @@ structured_op: !LinalgStructuredOpConfig
                     - !ScalarExpression
                       scalar_arg: KZp
 --- !LinalgOpConfig
+metadata: !LinalgOpMetadata
+  name: conv_3d_ncdhw_fcdhw
+  cpp_class_name: Conv3DNcdhwFcdhwOp
+  doc: |-
+    Performs 3-D convolution.
+
+    Numeric casting is performed on the operands to the inner multiply, promoting
+    them to the same data type as the accumulator/output.
+  implements:
+  - LinalgConvolutionOpInterface
+structured_op: !LinalgStructuredOpConfig
+  args:
+  - !LinalgOperandDefConfig
+    name: I
+    kind: input_tensor
+    type_var: T1
+    shape_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12,
+      s13, s14] -> (s0, s1, s2 * s3 + s4 * s5, s6 * s7 + s8 * s9, s10 * s11 + s12
+      * s13)>
+  - !LinalgOperandDefConfig
+    name: K
+    kind: input_tensor
+    type_var: T2
+    shape_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12,
+      s13, s14] -> (s14, s1, s4, s8, s12)>
+  - !LinalgOperandDefConfig
+    name: O
+    kind: output_tensor
+    type_var: U
+    shape_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12,
+      s13, s14] -> (s0, s14, s2, s6, s10)>
+  - !LinalgOperandDefConfig
+    name: strides
+    kind: index_attr
+    index_attr_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11,
+      s12, s13, s14] -> (s3, s7, s11)>
+    default_indices:
+    - 1
+    - 1
+    - 1
+  - !LinalgOperandDefConfig
+    name: dilations
+    kind: index_attr
+    index_attr_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11,
+      s12, s13, s14] -> (s5, s9, s13)>
+    default_indices:
+    - 1
+    - 1
+    - 1
+  indexing_maps: !LinalgIndexingMapsConfig
+    static_indexing_maps:
+    - affine_map<(d0, d1, d2, d3, d4, d5, d6, d7, d8)[s0, s1, s2, s3, s4, s5, s6,
+      s7, s8, s9, s10, s11, s12, s13, s14] -> (d0, d8, d1 * s3 + d5 * s5, d2 * s7
+      + d6 * s9, d3 * s11 + d7 * s13)>
+    - affine_map<(d0, d1, d2, d3, d4, d5, d6, d7, d8)[s0, s1, s2, s3, s4, s5, s6,
+      s7, s8, s9, s10, s11, s12, s13, s14] -> (d4, d8, d5, d6, d7)>
+    - affine_map<(d0, d1, d2, d3, d4, d5, d6, d7, d8)[s0, s1, s2, s3, s4, s5, s6,
+      s7, s8, s9, s10, s11, s12, s13, s14] -> (d0, d4, d1, d2, d3)>
+  iterator_types:
+  - parallel
+  - parallel
+  - parallel
+  - parallel
+  - parallel
+  - reduction
+  - reduction
+  - reduction
+  - reduction
+  assignments:
+  - !ScalarAssign
+    arg: O
+    value: !ScalarExpression
+      scalar_fn:
+        kind: binary
+        fn_name: add
+        operands:
+        - !ScalarExpression
+          scalar_arg: O
+        - !ScalarExpression
+          scalar_fn:
+            kind: binary
+            fn_name: mul
+            operands:
+            - !ScalarExpression
+              scalar_fn:
+                kind: type
+                fn_name: cast_signed
+                type_var: U
+                operands:
+                - !ScalarExpression
+                  scalar_arg: I
+            - !ScalarExpression
+              scalar_fn:
+                kind: type
+                fn_name: cast_signed
+                type_var: U
+                operands:
+                - !ScalarExpression
+                  scalar_arg: K
+--- !LinalgOpConfig
 metadata: !LinalgOpMetadata
   name: depthwise_conv_1d_nwc_wc
   cpp_class_name: DepthwiseConv1DNwcWcOp
@@ -2365,6 +2465,89 @@ structured_op: !LinalgStructuredOpConfig
                 - !ScalarExpression
                   scalar_arg: K
 --- !LinalgOpConfig
+metadata: !LinalgOpMetadata
+  name: depthwise_conv_1d_ncw_cw
+  cpp_class_name: DepthwiseConv1DNcwCwOp
+  doc: |-
+    Performs depth-wise 1-D convolution.
+
+    Numeric casting is performed on the operands to the inner multiply, promoting
+    them to the same data type as the accumulator/output. Multiplier is set to 1
+    which is a special case for most depthwise convolutions.
+  implements:
+  - LinalgConvolutionOpInterface
+structured_op: !LinalgStructuredOpConfig
+  args:
+  - !LinalgOperandDefConfig
+    name: I
+    kind: input_tensor
+    type_var: T1
+    shape_map: affine_map<()[s0, s1, s2, s3, s4, s5] -> (s0, s1, s2 * s3 + s4 * s5)>
+  - !LinalgOperandDefConfig
+    name: K
+    kind: input_tensor
+    type_var: T2
+    shape_map: affine_map<()[s0, s1, s2, s3, s4, s5] -> (s1, s4)>
+  - !LinalgOperandDefConfig
+    name: O
+    kind: output_tensor
+    type_var: U
+    shape_map: affine_map<()[s0, s1, s2, s3, s4, s5] -> (s0, s1, s2)>
+  - !LinalgOperandDefConfig
+    name: strides
+    kind: index_attr
+    index_attr_map: affine_map<()[s0, s1, s2, s3, s4, s5] -> (s3)>
+    default_indices:
+    - 1
+  - !LinalgOperandDefConfig
+    name: dilations
+    kind: index_attr
+    index_attr_map: affine_map<()[s0, s1, s2, s3, s4, s5] -> (s5)>
+    default_indices:
+    - 1
+  indexing_maps: !LinalgIndexingMapsConfig
+    static_indexing_maps:
+    - affine_map<(d0, d1, d2, d3)[s0, s1, s2, s3, s4, s5] -> (d0, d2, d1 * s3 + d3
+      * s5)>
+    - affine_map<(d0, d1, d2, d3)[s0, s1, s2, s3, s4, s5] -> (d2, d3)>
+    - affine_map<(d0, d1, d2, d3)[s0, s1, s2, s3, s4, s5] -> (d0, d2, d1)>
+  iterator_types:
+  - parallel
+  - parallel
+  - parallel
+  - reduction
+  assignments:
+  - !ScalarAssign
+    arg: O
+    value: !ScalarExpression
+      scalar_fn:
+        kind: binary
+        fn_name: add
+        operands:
+        - !ScalarExpression
+          scalar_arg: O
+        - !ScalarExpression
+          scalar_fn:
+            kind: binary
+            fn_name: mul
+            operands:
+            - !ScalarExpression
+              scalar_fn:
+                kind: type
+                fn_name: cast_signed
+                type_var: U
+                operands:
+                - !ScalarExpression
+                  scalar_arg: I
+            - !ScalarExpression
+              scalar_fn:
+                kind: type
+                fn_name: cast_signed
+                type_var: U
+                operands:
+                - !ScalarExpression
+                  scalar_arg: K
+--- !LinalgOpConfig
 metadata: !LinalgOpMetadata
   name: depthwise_conv_1d_nwc_wcm
   cpp_class_name: DepthwiseConv1DNwcWcmOp
@@ -3091,6 +3274,105 @@ structured_op: !LinalgStructuredOpConfig
                 - !ScalarExpression
                   scalar_arg: K
 --- !LinalgOpConfig
+metadata: !LinalgOpMetadata
+  name: depthwise_conv_3d_ncdhw_cdhw
+  cpp_class_name: DepthwiseConv3DNcdhwCdhwOp
+  doc: |-
+    Performs depth-wise 3-D convolution.
+
+    Numeric casting is performed on the operands to the inner multiply, promoting
+    them to the same data type as the accumulator/output. Multiplier is set to 1
+    which is a special case for most depthwise convolutions.
+  implements:
+  - LinalgConvolutionOpInterface
+structured_op: !LinalgStructuredOpConfig
+  args:
+  - !LinalgOperandDefConfig
+    name: I
+    kind: input_tensor
+    type_var: T1
+    shape_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12,
+      s13] -> (s0, s1, s2 * s3 + s4 * s5, s6 * s7 + s8 * s9, s10 * s11 + s12 * s13)>
+  - !LinalgOperandDefConfig
+    name: K
+    kind: input_tensor
+    type_var: T2
+    shape_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12,
+      s13] -> (s1, s4, s8, s12)>
+  - !LinalgOperandDefConfig
+    name: O
+    kind: output_tensor
+    type_var: U
+    shape_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12,
+      s13] -> (s0, s1, s2, s6, s10)>
+  - !LinalgOperandDefConfig
+    name: strides
+    kind: index_attr
+    index_attr_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11,
+      s12, s13] -> (s3, s7, s11)>
+    default_indices:
+    - 1
+    - 1
+    - 1
+  - !LinalgOperandDefConfig
+    name: dilations
+    kind: index_attr
+    index_attr_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11,
+      s12, s13] -> (s5, s9, s13)>
+    default_indices:
+    - 1
+    - 1
+    - 1
+  indexing_maps: !LinalgIndexingMapsConfig
+    static_indexing_maps:
+    - affine_map<(d0, d1, d2, d3, d4, d5, d6, d7)[s0, s1, s2, s3, s4, s5, s6, s7,
+      s8, s9, s10, s11, s12, s13] -> (d0, d7, d1 * s3 + d4 * s5, d2 * s7 + d5 * s9,
+      d3 * s11 + d6 * s13)>
+    - affine_map<(d0, d1, d2, d3, d4, d5, d6, d7)[s0, s1, s2, s3, s4, s5, s6, s7,
+      s8, s9, s10, s11, s12, s13] -> (d7, d4, d5, d6)>
+    - affine_map<(d0, d1, d2, d3, d4, d5, d6, d7)[s0, s1, s2, s3, s4, s5, s6, s7,
+      s8, s9, s10, s11, s12, s13] -> (d0, d7, d1, d2, d3)>
+  iterator_types:
+  - parallel
+  - parallel
+  - parallel
+  - parallel
+  - reduction
+  - reduction
+  - reduction
+  - parallel
+  assignments:
+  - !ScalarAssign
+    arg: O
+    value: !ScalarExpression
+      scalar_fn:
+        kind: binary
+        fn_name: add
+        operands:
+        - !ScalarExpression
+          scalar_arg: O
+        - !ScalarExpression
+          scalar_fn:
+            kind: binary
+            fn_name: mul
+            operands:
+            - !ScalarExpression
+              scalar_fn:
+                kind: type
+                fn_name: cast_signed
+                type_var: U
+                operands:
+                - !ScalarExpression
+                  scalar_arg: I
+            - !ScalarExpression
+              scalar_fn:
+                kind: type
+                fn_name: cast_signed
+                type_var: U
+                operands:
+                - !ScalarExpression
+                  scalar_arg: K
+--- !LinalgOpConfig
 metadata: !LinalgOpMetadata
   name: depthwise_conv_3d_ndhwc_dhwcm
   cpp_class_name: DepthwiseConv3DNdhwcDhwcmOp
@@ -4722,4 +5004,3 @@ structured_op: !LinalgStructuredOpConfig
                           scalar_const: '2.3283063999999999E-10 : f64'
             - !ScalarExpression
               scalar_arg: min
-

diff  --git a/mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py b/mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py
index 4402624c174b2..9c96868c10f1a 100644
--- a/mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py
+++ b/mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py
@@ -493,6 +493,33 @@ def conv_3d_ndhwc_dhwcf_q(I=TensorDef(T1, S.N, S.OD * S.SD + S.KD * S.DD,
                TypeFn.cast_signed(U, KZp))
 
 
+ at linalg_structured_op
+def conv_3d_ncdhw_fcdhw(I=TensorDef(T1, S.N, S.C, S.OD * S.SD + S.KD * S.DD,
+                                    S.OH * S.SH + S.KH * S.DH,
+                                    S.OW * S.SW + S.KW * S.DW),
+                        K=TensorDef(T2, S.F, S.C, S.KD, S.KH, S.KW),
+                        O=TensorDef(U, S.N, S.F, S.OD, S.OH, S.OW, output=True),
+                        strides=IndexAttrDef(S.SD,
+                                             S.SH,
+                                             S.SW,
+                                             default=[1, 1, 1]),
+                        dilations=IndexAttrDef(S.DD,
+                                               S.DH,
+                                               S.DW,
+                                               default=[1, 1, 1])):
+  """Performs 3-D convolution.
+
+  Numeric casting is performed on the operands to the inner multiply, promoting
+  them to the same data type as the accumulator/output.
+  """
+  implements(ConvolutionOpInterface)
+  domain(D.n, D.od, D.oh, D.ow, D.f, D.kd, D.kh, D.kw, D.c)
+  O[D.n, D.f, D.od, D.oh, D.ow] += TypeFn.cast_signed(
+      U, I[D.n, D.c, D.od * S.SD + D.kd * S.DD, D.oh * S.SH + D.kh * S.DH,
+           D.ow * S.SW + D.kw * S.DW]) * TypeFn.cast_signed(
+               U, K[D.f, D.c, D.kd, D.kh, D.kw])
+
+
 @linalg_structured_op
 def depthwise_conv_1d_nwc_wc(I=TensorDef(T1, S.N, S.OW * S.SW + S.KW * S.DW,
                                          S.IC),
@@ -513,6 +540,26 @@ def depthwise_conv_1d_nwc_wc(I=TensorDef(T1, S.N, S.OW * S.SW + S.KW * S.DW,
       TypeFn.cast_signed(U, K[D.kw, D.ic])
 
 
+ at linalg_structured_op
+def depthwise_conv_1d_ncw_cw(I=TensorDef(T1, S.N, S.IC,
+                                         S.OW * S.SW + S.KW * S.DW),
+                             K=TensorDef(T2, S.IC, S.KW),
+                             O=TensorDef(U, S.N, S.IC, S.OW, output=True),
+                             strides=IndexAttrDef(S.SW, default=[1]),
+                             dilations=IndexAttrDef(S.DW, default=[1])):
+  """Performs depth-wise 1-D convolution.
+
+  Numeric casting is performed on the operands to the inner multiply, promoting
+  them to the same data type as the accumulator/output. Multiplier is set to 1
+  which is a special case for most depthwise convolutions.
+  """
+  implements(ConvolutionOpInterface)
+  domain(D.n, D.ow, D.ic, D.kw)
+  O[D.n, D.ic, D.ow] += \
+      TypeFn.cast_signed(U, I[D.n, D.ic, D.ow * S.SW + D.kw * S.DW]) * \
+      TypeFn.cast_signed(U, K[D.ic, D.kw])
+
+
 @linalg_structured_op
 def depthwise_conv_1d_nwc_wcm(I=TensorDef(T1, S.N, S.OW * S.SW + S.KW * S.DW,
                                           S.IC),
@@ -716,6 +763,41 @@ def depthwise_conv_3d_ndhwc_dhwc(I=TensorDef(T1, S.N, S.OD * S.SD + S.KD * S.DD,
                U, K[D.kd, D.kh, D.kw, D.ic])
 
 
+ at linalg_structured_op
+def depthwise_conv_3d_ncdhw_cdhw(I=TensorDef(T1, S.N, S.IC,
+                                             S.OD * S.SD + S.KD * S.DD,
+                                             S.OH * S.SH + S.KH * S.DH,
+                                             S.OW * S.SW + S.KW * S.DW),
+                                 K=TensorDef(T2, S.IC, S.KD, S.KH, S.KW),
+                                 O=TensorDef(U,
+                                             S.N,
+                                             S.IC,
+                                             S.OD,
+                                             S.OH,
+                                             S.OW,
+                                             output=True),
+                                 strides=IndexAttrDef(S.SD,
+                                                      S.SH,
+                                                      S.SW,
+                                                      default=[1, 1, 1]),
+                                 dilations=IndexAttrDef(S.DD,
+                                                        S.DH,
+                                                        S.DW,
+                                                        default=[1, 1, 1])):
+  """Performs depth-wise 3-D convolution.
+
+  Numeric casting is performed on the operands to the inner multiply, promoting
+  them to the same data type as the accumulator/output. Multiplier is set to 1
+  which is a special case for most depthwise convolutions.
+  """
+  implements(ConvolutionOpInterface)
+  domain(D.n, D.od, D.oh, D.ow, D.kd, D.kh, D.kw, D.ic)
+  O[D.n, D.ic, D.od, D.oh, D.ow] += TypeFn.cast_signed(
+      U, I[D.n, D.ic, D.od * S.SD + D.kd * S.DD, D.oh * S.SH + D.kh * S.DH,
+           D.ow * S.SW + D.kw * S.DW]) * TypeFn.cast_signed(
+               U, K[D.ic, D.kd, D.kh, D.kw])
+
+
 @linalg_structured_op
 def depthwise_conv_3d_ndhwc_dhwcm(I=TensorDef(T1, S.N,
                                               S.OD * S.SD + S.KD * S.DD,
@@ -749,6 +831,7 @@ def depthwise_conv_3d_ndhwc_dhwcm(I=TensorDef(T1, S.N,
            D.ow * S.SW + D.kw * S.DW, D.ic]) * TypeFn.cast_signed(
                U, K[D.kd, D.kh, D.kw, D.ic, D.cm])
 
+
 @linalg_structured_op
 def pooling_nhwc_sum(I=TensorDef(T1, S.N, S.OH * S.SH + S.KH * S.DH,
                                  S.OW * S.SW + S.KW * S.DW, S.C),

diff  --git a/mlir/test/Dialect/Linalg/named-ops.mlir b/mlir/test/Dialect/Linalg/named-ops.mlir
index f5e266ea7f6c2..e89fb8d682e22 100644
--- a/mlir/test/Dialect/Linalg/named-ops.mlir
+++ b/mlir/test/Dialect/Linalg/named-ops.mlir
@@ -28,6 +28,20 @@ func.func @depthwise_conv_1d_nwc_wc(%input: tensor<1x12x8xf32>, %filter: tensor<
 
 // -----
 
+// CHECK-LABEL: func @depthwise_conv_1d_ncw_cw
+func.func @depthwise_conv_1d_ncw_cw(%input: tensor<1x8x12xf32>, %filter: tensor<8x3xf32>) -> tensor<1x8x10xf32> {
+  %zero = arith.constant 0.000000e+00 : f32
+  %init = tensor.empty() : tensor<1x8x10xf32>
+  %fill = linalg.fill ins(%zero : f32) outs(%init : tensor<1x8x10xf32>) -> tensor<1x8x10xf32>
+  // CHECK: depthwise_conv_1d_ncw_cw
+  %0 = linalg.depthwise_conv_1d_ncw_cw {dilations = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>}
+    ins(%input, %filter : tensor<1x8x12xf32>, tensor<8x3xf32>)
+    outs(%fill : tensor<1x8x10xf32>) -> tensor<1x8x10xf32>
+  return %0 : tensor<1x8x10xf32>
+}
+
+// -----
+
 // CHECK-LABEL: func @depthwise_conv_2d_nhwc_hwcm_tensor
 func.func @depthwise_conv_2d_nhwc_hwcm_tensor(%input: tensor<2x4x5x2xf32>, %filter: tensor<2x2x2x3xf32>) -> tensor<2x3x4x2x3xf32> {
   %zero = arith.constant 0.000000e+00 : f32
@@ -221,6 +235,20 @@ func.func @depthwise_conv_3d_ndhwc_dhwc(%input: tensor<2x6x13x12x6xf32>, %filter
 
 // -----
 
+// CHECK-LABEL: func @depthwise_conv_3d_ncdhw_cdhw
+func.func @depthwise_conv_3d_ncdhw_cdhw(%input: tensor<2x6x6x13x12xf32>, %filter: tensor<6x2x1x3xf32>) -> tensor<2x6x3x13x4xf32> {
+  %zero = arith.constant 0.000000e+00 : f32
+  %init = tensor.empty() : tensor<2x6x3x13x4xf32>
+  %fill = linalg.fill ins(%zero : f32) outs(%init : tensor<2x6x3x13x4xf32>) -> tensor<2x6x3x13x4xf32>
+  // CHECK: depthwise_conv_3d_ncdhw_cdhw
+  %0 = linalg.depthwise_conv_3d_ncdhw_cdhw {dilations = dense<1> : tensor<3xi64>, strides = dense<[2, 1, 3]> : tensor<3xi64>}
+    ins(%input, %filter : tensor<2x6x6x13x12xf32>, tensor<6x2x1x3xf32>)
+    outs(%fill : tensor<2x6x3x13x4xf32>) -> tensor<2x6x3x13x4xf32>
+  return %0 : tensor<2x6x3x13x4xf32>
+}
+
+// -----
+
 // CHECK-LABEL: func @conv_1d_nwc_wcf
 func.func @conv_1d_nwc_wcf(%input: tensor<?x?x?xf32>, %filter: tensor<?x?x?xf32>, %init: tensor<?x?x?xf32>) -> tensor<?x?x?xf32> {
   // CHECK:      %{{.+}} = linalg.conv_1d_nwc_wcf
@@ -413,6 +441,38 @@ func.func @conv_3d_ndhwc_dhwcf(%input: memref<?x?x?x?x?xf32>, %filter: memref<?x
 
 // -----
 
+// CHECK-LABEL: func @conv_3d_ncdhw_fcdhw
+func.func @conv_3d_ncdhw_fcdhw(%input: tensor<?x?x?x?x?xf32>, %filter: tensor<?x?x?x?x?xf32>, %init: tensor<?x?x?x?x?xf32>) -> tensor<?x?x?x?x?xf32> {
+  // CHECK:      %{{.+}} = linalg.conv_3d_ncdhw_fcdhw
+  // CHECK-SAME:   dilations = dense<1> : tensor<3xi64>
+  // CHECK-SAME:   strides = dense<1> : tensor<3xi64>
+  // CHECK-SAME:   ins(%{{.+}}, %{{.+}} : tensor<?x?x?x?x?xf32>, tensor<?x?x?x?x?xf32>)
+  // CHECK-SAME:   outs(%{{.+}} : tensor<?x?x?x?x?xf32>) -> tensor<?x?x?x?x?xf32>
+  %0 = linalg.conv_3d_ncdhw_fcdhw {dilations = dense<1> : tensor<3xi64>,
+                                                strides = dense<1> : tensor<3xi64>}
+     ins (%input, %filter: tensor<?x?x?x?x?xf32>, tensor<?x?x?x?x?xf32>)
+    outs (%init: tensor<?x?x?x?x?xf32>) -> tensor<?x?x?x?x?xf32>
+  return %0 : tensor<?x?x?x?x?xf32>
+}
+
+// -----
+
+// CHECK-LABEL: func @conv_3d_ncdhw_fcdhw
+func.func @conv_3d_ncdhw_fcdhw(%input: memref<?x?x?x?x?xf32>, %filter: memref<?x?x?x?x?xf32>, %output: memref<?x?x?x?x?xf32>) {
+  // CHECK:      linalg.conv_3d_ncdhw_fcdhw
+  // CHECK-SAME:   dilations = dense<1> : tensor<3xi64>
+  // CHECK-SAME:   strides = dense<1> : tensor<3xi64>
+  // CHECK-SAME:   ins(%{{.+}}, %{{.+}} : memref<?x?x?x?x?xf32>, memref<?x?x?x?x?xf32>)
+  // CHECK-SAME:   outs(%{{.+}} : memref<?x?x?x?x?xf32>)
+  linalg.conv_3d_ncdhw_fcdhw {dilations = dense<1> : tensor<3xi64>,
+                                           strides = dense<1> : tensor<3xi64>}
+     ins (%input, %filter: memref<?x?x?x?x?xf32>, memref<?x?x?x?x?xf32>)
+    outs (%output: memref<?x?x?x?x?xf32>)
+  return
+}
+
+// -----
+
 // CHECK-LABEL: func @pooling_nhwc_sum_tensor
 // CHECK:         %{{.+}} = linalg.pooling_nhwc_sum
 // CHECK-SAME:      dilations = dense<1> : tensor<2xi64>


        


More information about the Mlir-commits mailing list