[Mlir-commits] [mlir] a2c63d7 - [mlir][sparse][gpu] end-to-end test for 2:4 sparsity on NVidia GPUs
Aart Bik
llvmlistbot at llvm.org
Tue Mar 21 13:32:53 PDT 2023
Author: Aart Bik
Date: 2023-03-21T13:32:43-07:00
New Revision: a2c63d7f0b77ae92c97974d0630625d83a0745ce
URL: https://github.com/llvm/llvm-project/commit/a2c63d7f0b77ae92c97974d0630625d83a0745ce
DIFF: https://github.com/llvm/llvm-project/commit/a2c63d7f0b77ae92c97974d0630625d83a0745ce.diff
LOG: [mlir][sparse][gpu] end-to-end test for 2:4 sparsity on NVidia GPUs
Example of using 2:4 sparsity on NVidia GPU
Reviewed By: ThomasRaoux
Differential Revision: https://reviews.llvm.org/D145447
Added:
mlir/test/Integration/Dialect/SparseTensor/GPU/CUDA/lit.local.cfg
mlir/test/Integration/Dialect/SparseTensor/GPU/CUDA/sparse-mma-2-4-f16.mlir
Modified:
Removed:
################################################################################
diff --git a/mlir/test/Integration/Dialect/SparseTensor/GPU/CUDA/lit.local.cfg b/mlir/test/Integration/Dialect/SparseTensor/GPU/CUDA/lit.local.cfg
new file mode 100644
index 0000000000000..0bdebfedeee36
--- /dev/null
+++ b/mlir/test/Integration/Dialect/SparseTensor/GPU/CUDA/lit.local.cfg
@@ -0,0 +1,2 @@
+if not config.enable_cuda_runner:
+ config.unsupported = True
diff --git a/mlir/test/Integration/Dialect/SparseTensor/GPU/CUDA/sparse-mma-2-4-f16.mlir b/mlir/test/Integration/Dialect/SparseTensor/GPU/CUDA/sparse-mma-2-4-f16.mlir
new file mode 100644
index 0000000000000..51ad9a4792281
--- /dev/null
+++ b/mlir/test/Integration/Dialect/SparseTensor/GPU/CUDA/sparse-mma-2-4-f16.mlir
@@ -0,0 +1,395 @@
+// RUN: mlir-opt \
+// RUN: --pass-pipeline="builtin.module(gpu.module(strip-debuginfo,convert-gpu-to-nvvm,convert-nvgpu-to-nvvm,affine-expand-index-ops,lower-affine,convert-arith-to-llvm),convert-vector-to-llvm,canonicalize,cse,gpu.module(gpu-to-cubin{chip=sm_80 features=+ptx71}))" \
+// RUN: %s \
+// RUN: | mlir-opt --convert-scf-to-cf -convert-cf-to-llvm --convert-vector-to-llvm \
+// RUN: --convert-arith-to-llvm --gpu-to-llvm --reconcile-unrealized-casts \
+// RUN: | mlir-cpu-runner \
+// RUN: --shared-libs=%mlir_cuda_runtime \
+// RUN: --shared-libs=%mlir_runner_utils \
+// RUN: --e main --entry-point-result=void \
+// RUN: | FileCheck %s
+
+module attributes {gpu.container_module} {
+
+ // Kernels that run on the device.
+
+ gpu.module @kernels {
+
+ //
+ // An NVidia GPU kernel to compute
+ // C = A x B
+ // (or, technically, D = A x B + C)
+ // using 2:4 structured sparsity for A.
+ //
+ // This kernel provides building block for sparse compilation of a larger
+ // enveloping matrix multiplication computation on a GPU.
+ //
+ // Operand A values (2:4 sparse): row major format, logically "16x32xf16"
+ // but "16x16xf16" after compression
+ //
+ // Operand A metadata:
+ // - The metadata is logically "16x16xi2". Each 2-bit value indicates
+ // the position of a non-zero value within the respective group of 4 elements.
+ // - However, we represent it as "16x2xi16".
+ // - Each sparse instruction type specifies how the metadata should be distributed
+ // among threads. In this case, within each quad (group of 4 consecutive threads
+ // starting with a thread ID which is a multiple of 4), thread 4i and 4i+1
+ // will require to hold the metadata
diff erent metadata. For uniformity below,
+ // we just have all threads load metadata, and the way they determine which metadata
+ // to load is given below.
+ // - Thread map for the 16x32x16 instruction is:
+ // 2i -> col 0
+ // 2i + 1 -> col 1
+ //
+ // Operand B (dense): column major format.
+ //
+ // Operand C (accum): assumed zero on entry, used as output.
+ //
+ gpu.func @mma_sp_sync_f16_16832(
+ %argA: memref<16x16xf16>,
+ %argA_meta: memref<16x2xi16>,
+ %argB: memref<8x32xf16>,
+ %argC: memref<16x8xf16>) kernel {
+ %f0 = arith.constant 0.0 : f16
+ %c4 = arith.constant 4 : index
+ %c8 = arith.constant 8 : index
+
+ // Assume we have a linear thread id and the kernel launches 32 threads (1 warp).
+ // So CUDA launch would be threadblock = (32, 1, 1), grid = (1, 1, 1)
+ %lane_id = gpu.thread_id x
+ // Which group of 4 threads do we belong to?
+ %quad_id = affine.apply affine_map<()[s0]->(s0 floordiv 4)>()[%lane_id]
+ // Are we even group or odd group?
+ %pair_id = affine.apply affine_map<()[s0]->(s0 mod 2)>()[%lane_id]
+
+ // Now we have
+ // MMA lane=0 quad=0 pair=0
+ // MMA lane=1 quad=0 pair=1
+ // MMA lane=2 quad=0 pair=0
+ // MMA lane=3 quad=0 pair=1
+ // MMA lane=4 quad=1 pair=0
+ // MMA lane=5 quad=1 pair=1
+ // ...
+ // MMA lane=30 quad=7 pair=2
+ // MMA lane=31 quad=7 pair=1
+ //
+ // gpu.printf "MMA lane=%lld quad=%lld pair=%lld\n" %lane_id, %quad_id, %pair_id : index, index, index
+
+ //===----------------------------------------------------------------------===//
+ // Load the operandA metadata
+ // (https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#sparse-mma-metadata-16832-f16bf16)
+ //===----------------------------------------------------------------------===//
+
+ // For the 16x2xi16 metadata, all threads that load metadata will load one
+ // i16 value from the first 8 rows, and one i16 value from the second 8 rows.
+ // The i16 values are then put into a i32 with the value from the first 8 rows
+ // going in the lower bits.
+ //
+ // The below IR loads and combines the two pieces of i16 metadata required.
+ // Obviously, it's possible to re-pack the metadata before launching the kernel in
+ // order to eliminate this cost and load a single i32 operand. This just shows
+ // how to put them together if you do the naive load per the diagram in
+ // the PTX docs. Technically only the first two threads in each quad need
+ // to do this, but for simplicity we just have all threads participate since
+ // it can't hurt.
+ //
+ // The mapping is
+ // Lower i16 bits <- (thread_id) -> load A_meta[ quad_id , pair_id]
+ // Lower i16 bits <- (thread_id) -> load A_meta[ quad_id + 8, pair_id]
+
+ %quad_id_plus_8 = affine.apply affine_map<()[s0]->(s0 + 8)>()[%quad_id]
+ %meta_A_per_thread0 = memref.load %argA_meta[%quad_id , %pair_id] : memref<16x2xi16>
+ %meta_A_per_thread1 = memref.load %argA_meta[%quad_id_plus_8, %pair_id] : memref<16x2xi16>
+
+ %low_i32 = arith.extui %meta_A_per_thread0 : i16 to i32
+ %high_i32 = arith.extui %meta_A_per_thread1 : i16 to i32
+
+ %meta_init = arith.constant dense<0> : vector<2xi16>
+ %meta_low = vector.insert %meta_A_per_thread0, %meta_init[0] : i16 into vector<2xi16>
+ %meta = vector.insert %meta_A_per_thread1, %meta_low[1] : i16 into vector<2xi16>
+
+ //===----------------------------------------------------------------------===//
+ // Load operandA
+ //===----------------------------------------------------------------------===//
+
+ // Load the actual fragments for the sparse values. This can be done using ldmatrix,
+ // but here we just do naive individual loads, which would also be required for
+ // a layout/element type that is not compatible with ldmatrix (e.g. i8 transpose load).
+ //
+ // The thread map here is
diff erent that operandA metadata. Each thread will
+ // load one 2xf16 vector from each of the four (8x8xf16) quadrants fo the 16x16xf16
+ // operand.
+ //
+ // The (thread_id)->(row, col) map within each 8x4x(2xf16) quadrant is (t)->(t/4, t%4). We
+ // can use "affine.delinearize_index" which means the same thing.
+
+ %quad_row, %col_8x4 = affine.delinearize_index %lane_id into (%c8, %c4) : index, index
+ %quad_col = affine.apply affine_map<()[s0]->(s0 * 2)>()[%col_8x4] // account for 2xf16/col
+
+ // Load quad (0, 0)
+ %A_quad00 = vector.transfer_read %argA[%quad_row, %quad_col], %f0 {in_bounds = [true]} : memref<16x16xf16>, vector<2xf16>
+
+ // Load quad (1, 0). Just shift row down 8.
+ %quad_row_plus_8 = affine.apply affine_map<(d0)[]->(d0+8)>(%quad_row)[]
+ %A_quad10 = vector.transfer_read %argA[%quad_row_plus_8, %quad_col], %f0 {in_bounds = [true]} : memref<16x16xf16>, vector<2xf16>
+
+ // Load quad (0, 1). Just shift col right 8 (4 2xf16 values)
+ %quad_col_plus_8 = affine.apply affine_map<(d0)[]->(d0+8)>(%quad_col)[]
+ %A_quad01 = vector.transfer_read %argA[%quad_row, %quad_col_plus_8], %f0 {in_bounds = [true]} : memref<16x16xf16>, vector<2xf16>
+
+ // Load quad (1, 1)
+ %A_quad11 = vector.transfer_read %argA[%quad_row_plus_8, %quad_col_plus_8], %f0 {in_bounds = [true]} : memref<16x16xf16>, vector<2xf16>
+
+ // Assemble the elements into a vector
+ %A_init0 = arith.constant dense<0.0> : vector<4x2xf16>
+ %A_data0 = vector.insert %A_quad00, %A_init0[0] : vector<2xf16> into vector<4x2xf16>
+ %A_data1 = vector.insert %A_quad10, %A_data0[1] : vector<2xf16> into vector<4x2xf16>
+ %A_data2 = vector.insert %A_quad01, %A_data1[2] : vector<2xf16> into vector<4x2xf16>
+ %A_data = vector.insert %A_quad11, %A_data2[3] : vector<2xf16> into vector<4x2xf16>
+
+ //===----------------------------------------------------------------------===//
+ // Load operand B
+ //===----------------------------------------------------------------------===//
+
+ // Load the actual fragments for the dense values. This can be done using ldmatrix,
+ // but here we just do naive individual loads, as would be required if we could
+ // not use ldmatrix.
+ //
+ // The thread map here is
diff erent from operandA. This operand is in the form
+ // memref<8x32xf16> (col major). Each thread load a 2xf16 vector from a
+ // 8x8xf16 quadrant.
+ //
+ // The (thread_id)->(col, row) map within each 8x4x(2xf16) quadrant is
+ // (t) -> (t/4, t % 4). So we can re-use some of the calculation from A.
+
+ // Load quad (0, 0)
+ %B_quad0 = vector.transfer_read %argB[%quad_row, %quad_col], %f0 {in_bounds = [true]} : memref<8x32xf16>, vector<2xf16>
+
+ // Load quad (0, 1)
+ %B_quad1 = vector.transfer_read %argB[%quad_row, %quad_col_plus_8], %f0 {in_bounds = [true]} : memref<8x32xf16>, vector<2xf16>
+
+ // Load quad (0, 2)
+ %quad_col_plus_16 = affine.apply affine_map<()[s0]->(s0 + 16)>()[%quad_col]
+ %B_quad2 = vector.transfer_read %argB[%quad_row, %quad_col_plus_16], %f0 {in_bounds = [true]} : memref<8x32xf16>, vector<2xf16>
+
+ // Load quad (0, 3)
+ %quad_col_plus_24 = affine.apply affine_map<()[s0]->(s0 + 24)>()[%quad_col]
+ %B_quad3 = vector.transfer_read %argB[%quad_row, %quad_col_plus_24], %f0 {in_bounds = [true]} : memref<8x32xf16>, vector<2xf16>
+
+ // Assemble into vector
+ %B_init0 = arith.constant dense<0.0> : vector<4x2xf16>
+ %B_data0 = vector.insert %B_quad0, %B_init0[0] : vector<2xf16> into vector<4x2xf16>
+ %B_data1 = vector.insert %B_quad1, %B_data0[1] : vector<2xf16> into vector<4x2xf16>
+ %B_data2 = vector.insert %B_quad2, %B_data1[2] : vector<2xf16> into vector<4x2xf16>
+ %B_data = vector.insert %B_quad3, %B_data2[3] : vector<2xf16> into vector<4x2xf16>
+
+ // For now just say accum is a zero-d register
+ %accum = arith.constant dense<0.0> : vector<2x2xf16>
+
+ gpu.barrier
+
+ // Sparsity selector. For 16x8x32, the default "0" means threads T0/T1
+ // within each group of four threads contribute metadata.
+ %d = nvgpu.mma.sp.sync(%A_data, %B_data, %accum)
+ metadata(%meta)
+ {mmaShape = [16, 8, 32]} : (vector<4x2xf16>, vector<4x2xf16>, vector<2x2xf16>) -> vector<2x2xf16>
+
+ //===----------------------------------------------------------------------===//
+ // Write back results to gpu global memory
+ //===----------------------------------------------------------------------===//
+
+ // The mma instruction gave us two 2xf16 vectors per thread. These values
+ // correspond to
diff erent positions in the 16x8xf16 result matrix. Each value belongs
+ // to one of the 8x4x(2xf16) halves. The halves are indexed as follows (as you might guess):
+ // vector0: (tid) -> (tid / 4 , tid %4)
+ // vector1: (tid) -> (tid / 4 + 8, tid %4)
+ %C_0 = vector.extract %d[0] : vector<2x2xf16>
+ %C_1 = vector.extract %d[1] : vector<2x2xf16>
+ vector.transfer_write %C_0, %argC[%quad_row, %quad_col] {in_bounds = [true]} : vector<2xf16>, memref<16x8xf16>
+ vector.transfer_write %C_1, %argC[%quad_row_plus_8, %quad_col] {in_bounds = [true]} : vector<2xf16>, memref<16x8xf16>
+
+ gpu.return
+ }
+ }
+
+ // Code than runs on the host.
+
+ //
+ // This test performs a matrix multiplication
+ // C = A x B
+ // using NVidia 2:4 structured sparsity for A.
+ //
+ func.func @main() {
+ %f0 = arith.constant 0.0 : f16
+ %c0 = arith.constant 0 : index
+ %c1 = arith.constant 1 : index
+ %c2 = arith.constant 2 : index
+ %c8 = arith.constant 8 : index
+ %c16 = arith.constant 16 : index
+ %c32 = arith.constant 32 : index
+ %c64 = arith.constant 64 : index
+
+ // Matrices A, B, C (16x32, 32x8, 16x8).
+ %a = memref.alloc() : memref<16x16xf16> // 16x32 but 2:4, row-major
+ %b = memref.alloc() : memref<8x32xf16> // regular dense column-major
+ %c = memref.alloc() : memref<16x8xf16> // accumulator row-major
+
+ // Metadata for A.
+ %m = memref.alloc() : memref<16x2xi16>
+
+ //
+ // Setup matrix A.
+ //
+ scf.for %ai = %c0 to %c16 step %c1 {
+ scf.for %aj = %c0 to %c16 step %c1 {
+ %a0 = arith.addi %ai, %aj : index
+ %a1 = arith.addi %a0, %c1 : index
+ %a2 = arith.index_cast %a1 : index to i32
+ %a3 = arith.sitofp %a2 : i32 to f16
+ memref.store %a3, %a[%ai, %aj] : memref<16x16xf16>
+ }
+ }
+
+ //
+ // Setup metadata for matrix A.
+ //
+ // Here we assume that all 2:4 elements are in pos 0 and 2,
+ // viz. in matrix
+ // | A 0 B 0 |
+ // { 0 2 }
+ //
+ // Note that within each i16, we need little-endian
+ // storage of the indices, as follows:
+ //
+ // 10 00 10 00 10 00 10 00 10 00 10 00 = 0x8888
+ //
+ %bits = arith.constant 0x8888 : i16
+ scf.for %mi = %c0 to %c16 step %c1 {
+ memref.store %bits, %m[%mi, %c0] : memref<16x2xi16>
+ memref.store %bits, %m[%mi, %c1] : memref<16x2xi16>
+ }
+
+ //
+ // Setup matrix B.
+ //
+ scf.for %bi = %c0 to %c8 step %c1 {
+ scf.for %bj = %c0 to %c32 step %c1 {
+ %b0 = arith.subi %bi, %bj : index
+ %b1 = arith.index_cast %b0 : index to i32
+ %b2 = arith.sitofp %b1 : i32 to f16
+ memref.store %b2, %b[%bi, %bj] : memref<8x32xf16>
+ }
+ }
+
+ //
+ // Reset matrix C.
+ //
+ scf.for %ci = %c0 to %c16 step %c1 {
+ scf.for %cj = %c0 to %c8 step %c1 {
+ memref.store %f0, %c[%ci, %cj] : memref<16x8xf16>
+ }
+ }
+
+ //
+ // Sanity check on **compressed** input matrix A.
+ //
+ // Note that it really is a 16x32 matrix:
+ // | 1 0 2 0 3 0 ...
+ // | 2 0 3 0 4 0 ...
+ // etc.
+ //
+ // CHECK: ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 )
+ // CHECK-NEXT: ( 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 )
+ // CHECK-NEXT: ( 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 )
+ // CHECK-NEXT: ( 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 )
+ // CHECK-NEXT: ( 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 )
+ // CHECK-NEXT: ( 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 )
+ // CHECK-NEXT: ( 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 )
+ // CHECK-NEXT: ( 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 )
+ // CHECK-NEXT: ( 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 )
+ // CHECK-NEXT: ( 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 )
+ // CHECK-NEXT: ( 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 )
+ // CHECK-NEXT: ( 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 )
+ // CHECK-NEXT: ( 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 )
+ // CHECK-NEXT: ( 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 )
+ // CHECK-NEXT: ( 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 )
+ // CHECK-NEXT: ( 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 )
+ //
+ scf.for %pai = %c0 to %c16 step %c1 {
+ %pa0 = vector.transfer_read %a[%pai, %c0], %f0 : memref<16x16xf16>, vector<16xf16>
+ vector.print %pa0 : vector<16xf16>
+ }
+
+ //
+ // Sanity check on input matrix 32x8 B.
+ // Note that this is really shown as B^T
+ //
+ // CHECK-NEXT: ( 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -20, -21, -22, -23, -24, -25, -26, -27, -28, -29, -30, -31 )
+ // CHECK-NEXT: ( 1, 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -20, -21, -22, -23, -24, -25, -26, -27, -28, -29, -30 )
+ // CHECK-NEXT: ( 2, 1, 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -20, -21, -22, -23, -24, -25, -26, -27, -28, -29 )
+ // CHECK-NEXT: ( 3, 2, 1, 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -20, -21, -22, -23, -24, -25, -26, -27, -28 )
+ // CHECK-NEXT: ( 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -20, -21, -22, -23, -24, -25, -26, -27 )
+ // CHECK-NEXT: ( 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -20, -21, -22, -23, -24, -25, -26 )
+ // CHECK-NEXT: ( 6, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -20, -21, -22, -23, -24, -25 )
+ // CHECK-NEXT: ( 7, 6, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -20, -21, -22, -23, -24 )
+ //
+ //
+ scf.for %pbi = %c0 to %c8 step %c1 {
+ %pb0 = vector.transfer_read %b[%pbi, %c0], %f0 : memref<8x32xf16>, vector<32xf16>
+ vector.print %pb0 : vector<32xf16>
+ }
+
+ // Maps the provided host buffer into the device address space.
+ // Writes from the host are guaranteed to be visible to device
+ // kernels that are launched afterwards. Writes from the device
+ // are guaranteed to be visible on the host after synchronizing
+ // with the device kernel completion.
+ %cast_a = memref.cast %a : memref<16x16xf16> to memref<*xf16>
+ gpu.host_register %cast_a : memref<*xf16>
+ %cast_m = memref.cast %m : memref<16x2xi16> to memref<*xi16>
+ gpu.host_register %cast_m : memref<*xi16>
+ %cast_b = memref.cast %b : memref<8x32xf16> to memref<*xf16>
+ gpu.host_register %cast_b : memref<*xf16>
+ %cast_c = memref.cast %c : memref<16x8xf16> to memref<*xf16>
+ gpu.host_register %cast_c : memref<*xf16>
+
+ // Call the kernel, using a single warp of 32 threads.
+ %t1 = arith.constant 1 : index
+ %t32 = arith.constant 32 : index
+ gpu.launch_func
+ @kernels::@mma_sp_sync_f16_16832
+ blocks in (%t1, %t1, %t1) // gridSizeX,Y,Z
+ threads in (%t32, %t1, %t1) // blockSizeX,Y,Z
+ args(%a : memref<16x16xf16>,
+ %m : memref<16x2xi16>,
+ %b : memref<8x32xf16>,
+ %c : memref<16x8xf16>)
+
+ //
+ // Verify computed matrix C.
+ //
+ // CHECK-NEXT: ( -2720, -2584, -2448, -2312, -2176, -2040, -1904, -1768 )
+ // CHECK-NEXT: ( -2960, -2808, -2656, -2504, -2352, -2200, -2048, -1896 )
+ // CHECK-NEXT: ( -3200, -3032, -2864, -2696, -2528, -2360, -2192, -2024 )
+ // CHECK-NEXT: ( -3440, -3256, -3072, -2888, -2704, -2520, -2336, -2152 )
+ // CHECK-NEXT: ( -3680, -3480, -3280, -3080, -2880, -2680, -2480, -2280 )
+ // CHECK-NEXT: ( -3920, -3704, -3488, -3272, -3056, -2840, -2624, -2408 )
+ // CHECK-NEXT: ( -4160, -3928, -3696, -3464, -3232, -3000, -2768, -2536 )
+ // CHECK-NEXT: ( -4400, -4152, -3904, -3656, -3408, -3160, -2912, -2664 )
+ // CHECK-NEXT: ( -4640, -4376, -4112, -3848, -3584, -3320, -3056, -2792 )
+ // CHECK-NEXT: ( -4880, -4600, -4320, -4040, -3760, -3480, -3200, -2920 )
+ // CHECK-NEXT: ( -5120, -4824, -4528, -4232, -3936, -3640, -3344, -3048 )
+ // CHECK-NEXT: ( -5360, -5048, -4736, -4424, -4112, -3800, -3488, -3176 )
+ // CHECK-NEXT: ( -5600, -5272, -4944, -4616, -4288, -3960, -3632, -3304 )
+ // CHECK-NEXT: ( -5840, -5496, -5152, -4808, -4464, -4120, -3776, -3432 )
+ // CHECK-NEXT: ( -6080, -5720, -5360, -5000, -4640, -4280, -3920, -3560 )
+ // CHECK-NEXT: ( -6320, -5944, -5568, -5192, -4816, -4440, -4064, -3688 )
+ //
+ scf.for %pci = %c0 to %c16 step %c1 {
+ %pc0 = vector.transfer_read %c[%pci, %c0], %f0 : memref<16x8xf16>, vector<8xf16>
+ vector.print %pc0 : vector<8xf16>
+ }
+
+ return
+ }
+}
More information about the Mlir-commits
mailing list