[Mlir-commits] [mlir] 5cebffc - [mlir][Vector] Update the lowering of `vector.transfer_write` to SCF

Andrzej Warzynski llvmlistbot at llvm.org
Fri Jun 30 12:15:10 PDT 2023


Author: Andrzej Warzynski
Date: 2023-06-30T20:14:47+01:00
New Revision: 5cebffc276e6fc34f754151bd0511bd59ca6f562

URL: https://github.com/llvm/llvm-project/commit/5cebffc276e6fc34f754151bd0511bd59ca6f562
DIFF: https://github.com/llvm/llvm-project/commit/5cebffc276e6fc34f754151bd0511bd59ca6f562.diff

LOG: [mlir][Vector] Update the lowering of `vector.transfer_write` to SCF

This change updates the lowering of `vector.transfer_write` to SCF when
scalable vectors are used. Specifically, when lowering
`vector.transfer_write` to a loop of `vector.extractelement` ops, make
sure that the upper bound of the generated loop is scaled by
`vector.vscale`:
```
    %10 = vector.vscale
    %11 = arith.muli %10, %c16 : index
    scf.for %arg2 = %c0 to %11 step %c1
```

For reference, this is the current version (i.e. before this change):
```
    scf.for %arg2 = %c0 to %c16 step %c1
```
Note that this only valid for fixed-width vectors.

Differential Revision: https://reviews.llvm.org/D154226

Added: 
    

Modified: 
    mlir/lib/Conversion/VectorToSCF/VectorToSCF.cpp
    mlir/test/Conversion/VectorToSCF/vector-to-scf.mlir

Removed: 
    


################################################################################
diff  --git a/mlir/lib/Conversion/VectorToSCF/VectorToSCF.cpp b/mlir/lib/Conversion/VectorToSCF/VectorToSCF.cpp
index 9456b892f3f2a1..69366139f8a82c 100644
--- a/mlir/lib/Conversion/VectorToSCF/VectorToSCF.cpp
+++ b/mlir/lib/Conversion/VectorToSCF/VectorToSCF.cpp
@@ -1247,8 +1247,13 @@ struct TransferOp1dConversion : public VectorToSCFPattern<OpTy> {
     Location loc = xferOp.getLoc();
     auto vecType = xferOp.getVectorType();
     auto lb = rewriter.create<arith::ConstantIndexOp>(loc, 0);
-    auto ub =
+    Value ub =
         rewriter.create<arith::ConstantIndexOp>(loc, vecType.getDimSize(0));
+    if (vecType.isScalable()) {
+      Value vscale =
+          rewriter.create<vector::VectorScaleOp>(loc, rewriter.getIndexType());
+      ub = rewriter.create<arith::MulIOp>(loc, ub, vscale);
+    }
     auto step = rewriter.create<arith::ConstantIndexOp>(loc, 1);
     auto loopState = Strategy1d<OpTy>::initialLoopState(rewriter, xferOp);
 

diff  --git a/mlir/test/Conversion/VectorToSCF/vector-to-scf.mlir b/mlir/test/Conversion/VectorToSCF/vector-to-scf.mlir
index dd7e52552f0df5..475b8aba42e935 100644
--- a/mlir/test/Conversion/VectorToSCF/vector-to-scf.mlir
+++ b/mlir/test/Conversion/VectorToSCF/vector-to-scf.mlir
@@ -511,3 +511,39 @@ func.func @transfer_read_with_tensor(%arg: tensor<f32>) -> vector<1xf32> {
       tensor<f32>, vector<1xf32>
     return %0: vector<1xf32>
 }
+
+// -----
+
+// CHECK-LABEL: transfer_write_scalable
+func.func @transfer_write_scalable(%arg0: memref<?xf32, strided<[?], offset: ?>>, %arg1: f32) {
+  %0 = llvm.mlir.constant(0 : i32) : i32
+  %c0 = arith.constant 0 : index
+  %dim = memref.dim %arg0, %c0 : memref<?xf32, strided<[?], offset: ?>>
+  %1 = llvm.intr.experimental.stepvector : vector<[16]xi32>
+  %2 = arith.index_cast %dim : index to i32
+  %3 = llvm.mlir.undef : vector<[16]xi32>
+  %4 = llvm.insertelement %2, %3[%0 : i32] : vector<[16]xi32>
+  %5 = llvm.shufflevector %4, %3 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] : vector<[16]xi32>
+  %6 = arith.cmpi slt, %1, %5 : vector<[16]xi32>
+  %7 = llvm.mlir.undef : vector<[16]xf32>
+  %8 = llvm.insertelement %arg1, %7[%0 : i32] : vector<[16]xf32>
+  %9 = llvm.shufflevector %8, %7 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] : vector<[16]xf32>
+  vector.transfer_write %9, %arg0[%c0], %6 {in_bounds = [true]} : vector<[16]xf32>, memref<?xf32, strided<[?], offset: ?>>
+  return
+}
+
+// CHECK-SAME:      %[[ARG_0:.*]]: memref<?xf32, strided<[?], offset: ?>>,
+// CHECK:           %[[C_0:.*]] = arith.constant 0 : index
+// CHECK:           %[[C_16:.*]] = arith.constant 16 : index
+// CHECK:           %[[STEP:.*]] = arith.constant 1 : index
+// CHECK:           %[[MASK_VEC:.*]] = arith.cmpi slt, %{{.*}}, %{{.*}} : vector<[16]xi32>
+// CHECK:           %[[VSCALE:.*]] = vector.vscale
+// CHECK:           %[[UB:.*]] = arith.muli %[[VSCALE]], %[[C_16]] : index
+// CHECK:           scf.for %[[IDX:.*]] = %[[C_0]] to %[[UB]] step %[[STEP]] {
+// CHECK:             %[[MASK_VAL:.*]] = vector.extractelement %[[MASK_VEC]][%[[IDX]] : index] : vector<[16]xi1>
+// CHECK:             scf.if %[[MASK_VAL]] {
+// CHECK:               %[[VAL_TO_STORE:.*]] = vector.extractelement %{{.*}}[%[[IDX]] : index] : vector<[16]xf32>
+// CHECK:               memref.store %[[VAL_TO_STORE]], %[[ARG_0]][%[[IDX]]] : memref<?xf32, strided<[?], offset: ?>>
+// CHECK:             } else {
+// CHECK:             }
+// CHECK:           }


        


More information about the Mlir-commits mailing list