[Mlir-commits] [mlir] 93d038a - Revert "[MLIR][Linalg] Add more arith named ops to linalg"

Renato Golin llvmlistbot at llvm.org
Wed Jul 5 14:02:50 PDT 2023


Author: Renato Golin
Date: 2023-07-05T22:02:23+01:00
New Revision: 93d038a0ea86ff1010bae0b27570d426d29978d5

URL: https://github.com/llvm/llvm-project/commit/93d038a0ea86ff1010bae0b27570d426d29978d5
DIFF: https://github.com/llvm/llvm-project/commit/93d038a0ea86ff1010bae0b27570d426d29978d5.diff

LOG: Revert "[MLIR][Linalg] Add more arith named ops to linalg"

This reverts commit eda47fdd258ca666815122a931b82699a0629b87.

It failed on NVidia, AMD and Windows bots. Investigating.

Added: 
    

Modified: 
    mlir/include/mlir/Dialect/Linalg/IR/LinalgEnums.td
    mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
    mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
    mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py
    mlir/test/Dialect/Linalg/generalize-named-ops.mlir
    mlir/test/Dialect/Linalg/named-ops-fail.mlir
    mlir/test/Dialect/Linalg/named-ops.mlir

Removed: 
    


################################################################################
diff  --git a/mlir/include/mlir/Dialect/Linalg/IR/LinalgEnums.td b/mlir/include/mlir/Dialect/Linalg/IR/LinalgEnums.td
index a778f305b6c1b0..6d50cda9718625 100644
--- a/mlir/include/mlir/Dialect/Linalg/IR/LinalgEnums.td
+++ b/mlir/include/mlir/Dialect/Linalg/IR/LinalgEnums.td
@@ -31,12 +31,10 @@ def BinaryFn : I32EnumAttr<"BinaryFn", "", [
   I32EnumAttrCase<"add", 0>,
   I32EnumAttrCase<"sub", 1>,
   I32EnumAttrCase<"mul", 2>,
-  I32EnumAttrCase<"div", 3>,
-  I32EnumAttrCase<"div_unsigned", 4>,
-  I32EnumAttrCase<"max_signed", 5>,
-  I32EnumAttrCase<"min_signed", 6>,
-  I32EnumAttrCase<"max_unsigned", 7>,
-  I32EnumAttrCase<"min_unsigned", 8>
+  I32EnumAttrCase<"max_signed", 3>,
+  I32EnumAttrCase<"min_signed", 4>,
+  I32EnumAttrCase<"max_unsigned", 5>,
+  I32EnumAttrCase<"min_unsigned", 6>
 ]> {
   let genSpecializedAttr = 0;
   let cppNamespace = "::mlir::linalg";

diff  --git a/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml b/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
index 74ee6227a8ba0f..86c4d2dd10711e 100644
--- a/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
+++ b/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
@@ -205,204 +205,6 @@ structured_op: !LinalgStructuredOpConfig
         - !ScalarExpression
           scalar_arg: rhs
 --- !LinalgOpConfig
-metadata: !LinalgOpMetadata
-  name: sub
-  cpp_class_name: SubOp
-  doc: |-
-    Subtracts two tensors elementwise.
-
-    The shapes and element types must be identical. The appropriate casts,
-    broadcasts and reductions should be done previously to calling this op.
-
-    This means reduction/broadcast/element cast semantics is explicit. Further
-    passes can take that into account when lowering this code. For example,
-    a `linalg.broadcast` + `linalg.sub` sequence can be lowered to a
-    `linalg.generic` with 
diff erent affine maps for the two operands.
-structured_op: !LinalgStructuredOpConfig
-  args:
-  - !LinalgOperandDefConfig
-    name: lhs
-    kind: input_tensor
-    type_var: T
-    shape_map: affine_map<() -> ()>
-  - !LinalgOperandDefConfig
-    name: rhs
-    kind: input_tensor
-    type_var: T
-    shape_map: affine_map<() -> ()>
-  - !LinalgOperandDefConfig
-    name: out
-    kind: output_tensor
-    type_var: T
-    shape_map: affine_map<() -> ()>
-  indexing_maps: !LinalgIndexingMapsConfig
-    static_indexing_maps:
-    - affine_map<() -> ()>
-    - affine_map<() -> ()>
-    - affine_map<() -> ()>
-  iterator_types: []
-  assignments:
-  - !ScalarAssign
-    arg: out
-    value: !ScalarExpression
-      scalar_fn:
-        kind: binary
-        fn_name: sub
-        operands:
-        - !ScalarExpression
-          scalar_arg: lhs
-        - !ScalarExpression
-          scalar_arg: rhs
---- !LinalgOpConfig
-metadata: !LinalgOpMetadata
-  name: mul
-  cpp_class_name: MulOp
-  doc: |-
-    Multiply two tensors elementwise.
-
-    The shapes and element types must be identical. The appropriate casts,
-    broadcasts and reductions should be done previously to calling this op.
-
-    This means reduction/broadcast/element cast semantics is explicit. Further
-    passes can take that into account when lowering this code. For example,
-    a `linalg.broadcast` + `linalg.mul` sequence can be lowered to a
-    `linalg.generic` with 
diff erent affine maps for the two operands.
-structured_op: !LinalgStructuredOpConfig
-  args:
-  - !LinalgOperandDefConfig
-    name: lhs
-    kind: input_tensor
-    type_var: T
-    shape_map: affine_map<() -> ()>
-  - !LinalgOperandDefConfig
-    name: rhs
-    kind: input_tensor
-    type_var: T
-    shape_map: affine_map<() -> ()>
-  - !LinalgOperandDefConfig
-    name: out
-    kind: output_tensor
-    type_var: T
-    shape_map: affine_map<() -> ()>
-  indexing_maps: !LinalgIndexingMapsConfig
-    static_indexing_maps:
-    - affine_map<() -> ()>
-    - affine_map<() -> ()>
-    - affine_map<() -> ()>
-  iterator_types: []
-  assignments:
-  - !ScalarAssign
-    arg: out
-    value: !ScalarExpression
-      scalar_fn:
-        kind: binary
-        fn_name: mul
-        operands:
-        - !ScalarExpression
-          scalar_arg: lhs
-        - !ScalarExpression
-          scalar_arg: rhs
---- !LinalgOpConfig
-metadata: !LinalgOpMetadata
-  name: div
-  cpp_class_name: DivOp
-  doc: |-
-    Divides the first tensor by the second tensor, elementwise. For integer
-    types, performs a signed division.
-
-    The shapes and element types must be identical. The appropriate casts,
-    broadcasts and reductions should be done previously to calling this op.
-
-    This means reduction/broadcast/element cast semantics is explicit. Further
-    passes can take that into account when lowering this code. For example,
-    a `linalg.broadcast` + `linalg.div` sequence can be lowered to a
-    `linalg.generic` with 
diff erent affine maps for the two operands.
-structured_op: !LinalgStructuredOpConfig
-  args:
-  - !LinalgOperandDefConfig
-    name: lhs
-    kind: input_tensor
-    type_var: T
-    shape_map: affine_map<() -> ()>
-  - !LinalgOperandDefConfig
-    name: rhs
-    kind: input_tensor
-    type_var: T
-    shape_map: affine_map<() -> ()>
-  - !LinalgOperandDefConfig
-    name: out
-    kind: output_tensor
-    type_var: T
-    shape_map: affine_map<() -> ()>
-  indexing_maps: !LinalgIndexingMapsConfig
-    static_indexing_maps:
-    - affine_map<() -> ()>
-    - affine_map<() -> ()>
-    - affine_map<() -> ()>
-  iterator_types: []
-  assignments:
-  - !ScalarAssign
-    arg: out
-    value: !ScalarExpression
-      scalar_fn:
-        kind: binary
-        fn_name: div
-        operands:
-        - !ScalarExpression
-          scalar_arg: lhs
-        - !ScalarExpression
-          scalar_arg: rhs
---- !LinalgOpConfig
-metadata: !LinalgOpMetadata
-  name: div_unsigned
-  cpp_class_name: DivUOp
-  doc: |-
-    Divides the first tensor by the second tensor, elementwise. For integer
-    types, performs an unsigned division.
-
-    The shapes and element types must be identical. The appropriate casts,
-    broadcasts and reductions should be done previously to calling this op.
-
-    This means reduction/broadcast/element cast semantics is explicit. Further
-    passes can take that into account when lowering this code. For example,
-    a `linalg.broadcast` + `linalg.div` sequence can be lowered to a
-    `linalg.generic` with 
diff erent affine maps for the two operands.
-structured_op: !LinalgStructuredOpConfig
-  args:
-  - !LinalgOperandDefConfig
-    name: lhs
-    kind: input_tensor
-    type_var: T
-    shape_map: affine_map<() -> ()>
-  - !LinalgOperandDefConfig
-    name: rhs
-    kind: input_tensor
-    type_var: T
-    shape_map: affine_map<() -> ()>
-  - !LinalgOperandDefConfig
-    name: out
-    kind: output_tensor
-    type_var: T
-    shape_map: affine_map<() -> ()>
-  indexing_maps: !LinalgIndexingMapsConfig
-    static_indexing_maps:
-    - affine_map<() -> ()>
-    - affine_map<() -> ()>
-    - affine_map<() -> ()>
-  iterator_types: []
-  assignments:
-  - !ScalarAssign
-    arg: out
-    value: !ScalarExpression
-      scalar_fn:
-        kind: binary
-        fn_name: div_unsigned
-        operands:
-        - !ScalarExpression
-          scalar_arg: lhs
-        - !ScalarExpression
-          scalar_arg: rhs
---- !LinalgOpConfig
 metadata: !LinalgOpMetadata
   name: matmul
   cpp_class_name: MatmulOp

diff  --git a/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp b/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
index 3f3d5afa32d246..77380edc2022e7 100644
--- a/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
+++ b/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
@@ -434,22 +434,6 @@ class RegionBuilderHelper {
       if (allBool)
         return builder.create<arith::AndIOp>(arg0.getLoc(), arg0, arg1);
       return builder.create<arith::MulIOp>(arg0.getLoc(), arg0, arg1);
-    case BinaryFn::div:
-      if (allComplex)
-        return builder.create<complex::DivOp>(arg0.getLoc(), arg0, arg1);
-      if (allFloatingPoint)
-        return builder.create<arith::DivFOp>(arg0.getLoc(), arg0, arg1);
-      if (allBool)
-        llvm_unreachable("unsupported operation: div with bools");
-      return builder.create<arith::DivSIOp>(arg0.getLoc(), arg0, arg1);
-    case BinaryFn::div_unsigned:
-      if (allComplex)
-        return builder.create<complex::DivOp>(arg0.getLoc(), arg0, arg1);
-      if (allFloatingPoint)
-        return builder.create<arith::DivFOp>(arg0.getLoc(), arg0, arg1);
-      if (allBool)
-        llvm_unreachable("unsupported operation: div with bools");
-      return builder.create<arith::DivUIOp>(arg0.getLoc(), arg0, arg1);
     case BinaryFn::max_signed:
       assert(!allComplex);
       if (allFloatingPoint)

diff  --git a/mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py b/mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py
index 5c591085e74e62..063165faf31dee 100644
--- a/mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py
+++ b/mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py
@@ -57,7 +57,7 @@ def add(
     rhs=TensorDef(T1),
     O=TensorDef(T1, output=True),
 ):
-    """Adds two tensors elementwise.
+    """ Adds two tensors elementwise.
 
     The shapes and element types must be identical. The appropriate casts,
     broadcasts and reductions should be done previously to calling this op.
@@ -70,63 +70,6 @@ def add(
     O[None] = lhs[None] + rhs[None]
 
 
- at linalg_structured_op
-def sub(
-    lhs=TensorDef(T1),
-    rhs=TensorDef(T1),
-    O=TensorDef(T1, output=True),
-):
-    """Subtracts two tensors elementwise.
-
-    The shapes and element types must be identical. The appropriate casts,
-    broadcasts and reductions should be done previously to calling this op.
-
-    This means reduction/broadcast/element cast semantics is explicit. Further
-    passes can take that into account when lowering this code. For example,
-    a `linalg.broadcast` + `linalg.sub` sequence can be lowered to a
-    `linalg.generic` with 
diff erent affine maps for the two operands.
-    """
-    O[None] = lhs[None] - rhs[None]
-
-
- at linalg_structured_op
-def mul(
-    lhs=TensorDef(T1),
-    rhs=TensorDef(T1),
-    O=TensorDef(T1, output=True),
-):
-    """Multiplies two tensors elementwise.
-
-    The shapes and element types must be identical. The appropriate casts,
-    broadcasts and reductions should be done previously to calling this op.
-
-    This means reduction/broadcast/element cast semantics is explicit. Further
-    passes can take that into account when lowering this code. For example,
-    a `linalg.broadcast` + `linalg.mul` sequence can be lowered to a
-    `linalg.generic` with 
diff erent affine maps for the two operands.
-    """
-    O[None] = lhs[None] * rhs[None]
-
-
- at linalg_structured_op
-def div(
-    lhs=TensorDef(T1),
-    rhs=TensorDef(T1),
-    O=TensorDef(T1, output=True),
-):
-    """Divides the first tensor by the second tensor, elementwise.
-
-    The shapes and element types must be identical. The appropriate casts,
-    broadcasts and reductions should be done previously to calling this op.
-
-    This means reduction/broadcast/element cast semantics is explicit. Further
-    passes can take that into account when lowering this code. For example,
-    a `linalg.broadcast` + `linalg.div` sequence can be lowered to a
-    `linalg.generic` with 
diff erent affine maps for the two operands.
-    """
-    O[None] = lhs[None] / rhs[None]
-
-
 @linalg_structured_op
 def matmul(
     A=TensorDef(T1, S.M, S.K),

diff  --git a/mlir/test/Dialect/Linalg/generalize-named-ops.mlir b/mlir/test/Dialect/Linalg/generalize-named-ops.mlir
index b6d6e11f455b36..204db8e1f0f9f9 100644
--- a/mlir/test/Dialect/Linalg/generalize-named-ops.mlir
+++ b/mlir/test/Dialect/Linalg/generalize-named-ops.mlir
@@ -311,103 +311,3 @@ func.func @generalize_add(%lhs: memref<7x14x21xf32>, %rhs: memref<7x14x21xf32>,
 // CHECK:         ^{{.+}}(%[[BBARG0:.+]]: f32, %[[BBARG1:.+]]: f32, %[[BBARG2:.+]]: f32)
 // CHECK-NEXT:      %[[SUM:.+]] = arith.addf %[[BBARG0]], %[[BBARG1]] : f32
 // CHECK-NEXT:      linalg.yield %[[SUM]] : f32
-
-// -----
-
-func.func @generalize_sub(%lhs: memref<7x14x21xf32>, %rhs: memref<7x14x21xf32>,
-                          %out: memref<7x14x21xf32>) {
-  linalg.sub ins(%lhs, %rhs : memref<7x14x21xf32>, memref<7x14x21xf32>)
-             outs(%out : memref<7x14x21xf32>)
-  return
-}
-
-// CHECK-DAG: #[[MAP:.+]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
-
-// CHECK: func @generalize_sub
-// CHECK-SAME: (%[[LHS:.+]]: memref<7x14x21xf32>, %[[RHS:.+]]: memref<7x14x21xf32>,
-// CHECK-SAME:  %[[OUT:.+]]: memref<7x14x21xf32>)
-
-// CHECK: linalg.generic
-// CHECK-SAME: indexing_maps = [#[[MAP]], #[[MAP]], #[[MAP]]]
-// CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel"]}
-// CHECK-SAME:  ins(%[[LHS]], %[[RHS]] : memref<7x14x21xf32>, memref<7x14x21xf32>)
-// CHECK-SAME: outs(%[[OUT]] : memref<7x14x21xf32>)
-
-// CHECK:         ^{{.+}}(%[[BBARG0:.+]]: f32, %[[BBARG1:.+]]: f32, %[[BBARG2:.+]]: f32)
-// CHECK-NEXT:      %[[SUM:.+]] = arith.subf %[[BBARG0]], %[[BBARG1]] : f32
-// CHECK-NEXT:      linalg.yield %[[SUM]] : f32
-
-// -----
-
-func.func @generalize_mul(%lhs: memref<7x14x21xf32>, %rhs: memref<7x14x21xf32>,
-                          %out: memref<7x14x21xf32>) {
-  linalg.mul ins(%lhs, %rhs : memref<7x14x21xf32>, memref<7x14x21xf32>)
-             outs(%out : memref<7x14x21xf32>)
-  return
-}
-
-// CHECK-DAG: #[[MAP:.+]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
-
-// CHECK: func @generalize_mul
-// CHECK-SAME: (%[[LHS:.+]]: memref<7x14x21xf32>, %[[RHS:.+]]: memref<7x14x21xf32>,
-// CHECK-SAME:  %[[OUT:.+]]: memref<7x14x21xf32>)
-
-// CHECK: linalg.generic
-// CHECK-SAME: indexing_maps = [#[[MAP]], #[[MAP]], #[[MAP]]]
-// CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel"]}
-// CHECK-SAME:  ins(%[[LHS]], %[[RHS]] : memref<7x14x21xf32>, memref<7x14x21xf32>)
-// CHECK-SAME: outs(%[[OUT]] : memref<7x14x21xf32>)
-
-// CHECK:         ^{{.+}}(%[[BBARG0:.+]]: f32, %[[BBARG1:.+]]: f32, %[[BBARG2:.+]]: f32)
-// CHECK-NEXT:      %[[SUM:.+]] = arith.mulf %[[BBARG0]], %[[BBARG1]] : f32
-// CHECK-NEXT:      linalg.yield %[[SUM]] : f32
-
-// -----
-
-func.func @generalize_div(%lhs: memref<7x14x21xf32>, %rhs: memref<7x14x21xf32>,
-                          %out: memref<7x14x21xf32>) {
-  linalg.div ins(%lhs, %rhs : memref<7x14x21xf32>, memref<7x14x21xf32>)
-             outs(%out : memref<7x14x21xf32>)
-  return
-}
-
-// CHECK-DAG: #[[MAP:.+]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
-
-// CHECK: func @generalize_div
-// CHECK-SAME: (%[[LHS:.+]]: memref<7x14x21xf32>, %[[RHS:.+]]: memref<7x14x21xf32>,
-// CHECK-SAME:  %[[OUT:.+]]: memref<7x14x21xf32>)
-
-// CHECK: linalg.generic
-// CHECK-SAME: indexing_maps = [#[[MAP]], #[[MAP]], #[[MAP]]]
-// CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel"]}
-// CHECK-SAME:  ins(%[[LHS]], %[[RHS]] : memref<7x14x21xf32>, memref<7x14x21xf32>)
-// CHECK-SAME: outs(%[[OUT]] : memref<7x14x21xf32>)
-
-// CHECK:         ^{{.+}}(%[[BBARG0:.+]]: f32, %[[BBARG1:.+]]: f32, %[[BBARG2:.+]]: f32)
-// CHECK-NEXT:      %[[SUM:.+]] = arith.divf %[[BBARG0]], %[[BBARG1]] : f32
-// CHECK-NEXT:      linalg.yield %[[SUM]] : f32
-
-// -----
-
-func.func @generalize_divu(%lhs: memref<7x14x21xi32>, %rhs: memref<7x14x21xi32>,
-                          %out: memref<7x14x21xi32>) {
-  linalg.div_unsigned ins(%lhs, %rhs : memref<7x14x21xi32>, memref<7x14x21xi32>)
-             outs(%out : memref<7x14x21xi32>)
-  return
-}
-
-// CHECK-DAG: #[[MAP:.+]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
-
-// CHECK: func @generalize_divu
-// CHECK-SAME: (%[[LHS:.+]]: memref<7x14x21xi32>, %[[RHS:.+]]: memref<7x14x21xi32>,
-// CHECK-SAME:  %[[OUT:.+]]: memref<7x14x21xi32>)
-
-// CHECK: linalg.generic
-// CHECK-SAME: indexing_maps = [#[[MAP]], #[[MAP]], #[[MAP]]]
-// CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel"]}
-// CHECK-SAME:  ins(%[[LHS]], %[[RHS]] : memref<7x14x21xi32>, memref<7x14x21xi32>)
-// CHECK-SAME: outs(%[[OUT]] : memref<7x14x21xi32>)
-
-// CHECK:         ^{{.+}}(%[[BBARG0:.+]]: i32, %[[BBARG1:.+]]: i32, %[[BBARG2:.+]]: i32)
-// CHECK-NEXT:      %[[SUM:.+]] = arith.divui %[[BBARG0]], %[[BBARG1]] : i32
-// CHECK-NEXT:      linalg.yield %[[SUM]] : i32

diff  --git a/mlir/test/Dialect/Linalg/named-ops-fail.mlir b/mlir/test/Dialect/Linalg/named-ops-fail.mlir
index f4682a588ed21f..2e3b752371ab76 100644
--- a/mlir/test/Dialect/Linalg/named-ops-fail.mlir
+++ b/mlir/test/Dialect/Linalg/named-ops-fail.mlir
@@ -14,66 +14,3 @@ func.func @add_broadcast(%arg0: memref<8x16xf32>, %arg1: memref<4x8x16xf32>, %ar
   return
 }
 
-// -----
-
-func.func @sub_type_cast(%arg0: memref<4x8x16xf32>, %arg1: memref<4x8x16xf16>, %arg2: memref<4x8x16xf32>) {
-  // CHECK: op requires the same type for all operands and results
-  linalg.sub ins(%arg0, %arg1 : memref<4x8x16xf32>, memref<4x8x16xf16>) outs(%arg2: memref<4x8x16xf32>)
-  return
-}
-
-// -----
-
-func.func @sub_broadcast(%arg0: memref<8x16xf32>, %arg1: memref<4x8x16xf32>, %arg2: memref<4x8x16xf32>) {
-  // CHECK: op expected operand rank (2) to match the result rank of indexing_map #0 (3)
-  linalg.sub ins(%arg0, %arg1 : memref<8x16xf32>, memref<4x8x16xf32>) outs(%arg2: memref<4x8x16xf32>)
-  return
-}
-
-// -----
-
-func.func @mul_type_cast(%arg0: memref<4x8x16xf32>, %arg1: memref<4x8x16xf16>, %arg2: memref<4x8x16xf32>) {
-  // CHECK: op requires the same type for all operands and results
-  linalg.mul ins(%arg0, %arg1 : memref<4x8x16xf32>, memref<4x8x16xf16>) outs(%arg2: memref<4x8x16xf32>)
-  return
-}
-
-// -----
-
-func.func @mul_broadcast(%arg0: memref<8x16xf32>, %arg1: memref<4x8x16xf32>, %arg2: memref<4x8x16xf32>) {
-  // CHECK: op expected operand rank (2) to match the result rank of indexing_map #0 (3)
-  linalg.mul ins(%arg0, %arg1 : memref<8x16xf32>, memref<4x8x16xf32>) outs(%arg2: memref<4x8x16xf32>)
-  return
-}
-
-// -----
-
-func.func @div_type_cast(%arg0: memref<4x8x16xf32>, %arg1: memref<4x8x16xf16>, %arg2: memref<4x8x16xf32>) {
-  // CHECK: op requires the same type for all operands and results
-  linalg.div ins(%arg0, %arg1 : memref<4x8x16xf32>, memref<4x8x16xf16>) outs(%arg2: memref<4x8x16xf32>)
-  return
-}
-
-// -----
-
-func.func @div_broadcast(%arg0: memref<8x16xf32>, %arg1: memref<4x8x16xf32>, %arg2: memref<4x8x16xf32>) {
-  // CHECK: op expected operand rank (2) to match the result rank of indexing_map #0 (3)
-  linalg.div ins(%arg0, %arg1 : memref<8x16xf32>, memref<4x8x16xf32>) outs(%arg2: memref<4x8x16xf32>)
-  return
-}
-
-// -----
-
-func.func @divu_type_cast(%arg0: memref<4x8x16xf32>, %arg1: memref<4x8x16xf16>, %arg2: memref<4x8x16xf32>) {
-  // CHECK: op requires the same type for all operands and results
-  linalg.div_unsigned ins(%arg0, %arg1 : memref<4x8x16xf32>, memref<4x8x16xf16>) outs(%arg2: memref<4x8x16xf32>)
-  return
-}
-
-// -----
-
-func.func @divu_broadcast(%arg0: memref<8x16xf32>, %arg1: memref<4x8x16xf32>, %arg2: memref<4x8x16xf32>) {
-  // CHECK: op expected operand rank (2) to match the result rank of indexing_map #0 (3)
-  linalg.div_unsigned ins(%arg0, %arg1 : memref<8x16xf32>, memref<4x8x16xf32>) outs(%arg2: memref<4x8x16xf32>)
-  return
-}

diff  --git a/mlir/test/Dialect/Linalg/named-ops.mlir b/mlir/test/Dialect/Linalg/named-ops.mlir
index 13256f97c5aba4..466d0cf0bb0e9f 100644
--- a/mlir/test/Dialect/Linalg/named-ops.mlir
+++ b/mlir/test/Dialect/Linalg/named-ops.mlir
@@ -1218,139 +1218,3 @@ func.func @add_tensor(%arg0: tensor<4x8x16xf32>, %arg1: tensor<4x8x16xf32>) -> t
   %1 = linalg.add ins(%arg0, %arg1 : tensor<4x8x16xf32>, tensor<4x8x16xf32>) outs(%0: tensor<4x8x16xf32>) -> tensor<4x8x16xf32>
   return %1 : tensor<4x8x16xf32>
 }
-
-// -----
-
-// CHECK-LABEL: func @sub_dynamic
-func.func @sub_dynamic(%arg0: memref<?x?x?xf32>, %arg1: memref<?x?x?xf32>, %arg2: memref<?x?x?xf32>) {
-  // CHECK: linalg.sub
-  // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref<?x?x?xf32>, memref<?x?x?xf32>)
-  // CHECK-SAME: outs(%{{.+}} : memref<?x?x?xf32>)
-  linalg.sub ins(%arg0, %arg1 : memref<?x?x?xf32>, memref<?x?x?xf32>) outs(%arg2: memref<?x?x?xf32>)
-  return
-}
-
-// -----
-
-// CHECK-LABEL: func @sub_static
-func.func @sub_static(%arg0: memref<4x8x16xf32>, %arg1: memref<4x8x16xf32>, %arg2: memref<4x8x16xf32>) {
-  // CHECK: linalg.sub
-  // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref<4x8x16xf32>, memref<4x8x16xf32>)
-  // CHECK-SAME: outs(%{{.+}} : memref<4x8x16xf32>)
-  linalg.sub ins(%arg0, %arg1 : memref<4x8x16xf32>, memref<4x8x16xf32>) outs(%arg2: memref<4x8x16xf32>)
-  return
-}
-
-// -----
-
-// CHECK-LABEL: func @sub_tensor
-func.func @sub_tensor(%arg0: tensor<4x8x16xf32>, %arg1: tensor<4x8x16xf32>) -> tensor<4x8x16xf32> {
-  %0 = tensor.empty() : tensor<4x8x16xf32>
-  // CHECK: linalg.sub
-  // CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor<4x8x16xf32>, tensor<4x8x16xf32>)
-  // CHECK-SAME: outs(%{{.+}} : tensor<4x8x16xf32>)
-  %1 = linalg.sub ins(%arg0, %arg1 : tensor<4x8x16xf32>, tensor<4x8x16xf32>) outs(%0: tensor<4x8x16xf32>) -> tensor<4x8x16xf32>
-  return %1 : tensor<4x8x16xf32>
-}
-
-// -----
-
-// CHECK-LABEL: func @mul_dynamic
-func.func @mul_dynamic(%arg0: memref<?x?x?xf32>, %arg1: memref<?x?x?xf32>, %arg2: memref<?x?x?xf32>) {
-  // CHECK: linalg.mul
-  // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref<?x?x?xf32>, memref<?x?x?xf32>)
-  // CHECK-SAME: outs(%{{.+}} : memref<?x?x?xf32>)
-  linalg.mul ins(%arg0, %arg1 : memref<?x?x?xf32>, memref<?x?x?xf32>) outs(%arg2: memref<?x?x?xf32>)
-  return
-}
-
-// -----
-
-// CHECK-LABEL: func @mul_static
-func.func @mul_static(%arg0: memref<4x8x16xf32>, %arg1: memref<4x8x16xf32>, %arg2: memref<4x8x16xf32>) {
-  // CHECK: linalg.mul
-  // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref<4x8x16xf32>, memref<4x8x16xf32>)
-  // CHECK-SAME: outs(%{{.+}} : memref<4x8x16xf32>)
-  linalg.mul ins(%arg0, %arg1 : memref<4x8x16xf32>, memref<4x8x16xf32>) outs(%arg2: memref<4x8x16xf32>)
-  return
-}
-
-// -----
-
-// CHECK-LABEL: func @mul_tensor
-func.func @mul_tensor(%arg0: tensor<4x8x16xf32>, %arg1: tensor<4x8x16xf32>) -> tensor<4x8x16xf32> {
-  %0 = tensor.empty() : tensor<4x8x16xf32>
-  // CHECK: linalg.mul
-  // CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor<4x8x16xf32>, tensor<4x8x16xf32>)
-  // CHECK-SAME: outs(%{{.+}} : tensor<4x8x16xf32>)
-  %1 = linalg.mul ins(%arg0, %arg1 : tensor<4x8x16xf32>, tensor<4x8x16xf32>) outs(%0: tensor<4x8x16xf32>) -> tensor<4x8x16xf32>
-  return %1 : tensor<4x8x16xf32>
-}
-
-// -----
-
-// CHECK-LABEL: func @div_dynamic
-func.func @div_dynamic(%arg0: memref<?x?x?xf32>, %arg1: memref<?x?x?xf32>, %arg2: memref<?x?x?xf32>) {
-  // CHECK: linalg.div
-  // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref<?x?x?xf32>, memref<?x?x?xf32>)
-  // CHECK-SAME: outs(%{{.+}} : memref<?x?x?xf32>)
-  linalg.div ins(%arg0, %arg1 : memref<?x?x?xf32>, memref<?x?x?xf32>) outs(%arg2: memref<?x?x?xf32>)
-  return
-}
-
-// -----
-
-// CHECK-LABEL: func @div_static
-func.func @div_static(%arg0: memref<4x8x16xf32>, %arg1: memref<4x8x16xf32>, %arg2: memref<4x8x16xf32>) {
-  // CHECK: linalg.div
-  // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref<4x8x16xf32>, memref<4x8x16xf32>)
-  // CHECK-SAME: outs(%{{.+}} : memref<4x8x16xf32>)
-  linalg.div ins(%arg0, %arg1 : memref<4x8x16xf32>, memref<4x8x16xf32>) outs(%arg2: memref<4x8x16xf32>)
-  return
-}
-
-// -----
-
-// CHECK-LABEL: func @div_tensor
-func.func @div_tensor(%arg0: tensor<4x8x16xf32>, %arg1: tensor<4x8x16xf32>) -> tensor<4x8x16xf32> {
-  %0 = tensor.empty() : tensor<4x8x16xf32>
-  // CHECK: linalg.div
-  // CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor<4x8x16xf32>, tensor<4x8x16xf32>)
-  // CHECK-SAME: outs(%{{.+}} : tensor<4x8x16xf32>)
-  %1 = linalg.div ins(%arg0, %arg1 : tensor<4x8x16xf32>, tensor<4x8x16xf32>) outs(%0: tensor<4x8x16xf32>) -> tensor<4x8x16xf32>
-  return %1 : tensor<4x8x16xf32>
-}
-
-// -----
-
-// CHECK-LABEL: func @div_unsigned_dynamic
-func.func @div_unsigned_dynamic(%arg0: memref<?x?x?xf32>, %arg1: memref<?x?x?xf32>, %arg2: memref<?x?x?xf32>) {
-  // CHECK: linalg.div_unsigned
-  // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref<?x?x?xf32>, memref<?x?x?xf32>)
-  // CHECK-SAME: outs(%{{.+}} : memref<?x?x?xf32>)
-  linalg.div_unsigned ins(%arg0, %arg1 : memref<?x?x?xf32>, memref<?x?x?xf32>) outs(%arg2: memref<?x?x?xf32>)
-  return
-}
-
-// -----
-
-// CHECK-LABEL: func @div_unsigned_static
-func.func @div_unsigned_static(%arg0: memref<4x8x16xf32>, %arg1: memref<4x8x16xf32>, %arg2: memref<4x8x16xf32>) {
-  // CHECK: linalg.div_unsigned
-  // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref<4x8x16xf32>, memref<4x8x16xf32>)
-  // CHECK-SAME: outs(%{{.+}} : memref<4x8x16xf32>)
-  linalg.div_unsigned ins(%arg0, %arg1 : memref<4x8x16xf32>, memref<4x8x16xf32>) outs(%arg2: memref<4x8x16xf32>)
-  return
-}
-
-// -----
-
-// CHECK-LABEL: func @div_unsigned_tensor
-func.func @div_unsigned_tensor(%arg0: tensor<4x8x16xf32>, %arg1: tensor<4x8x16xf32>) -> tensor<4x8x16xf32> {
-  %0 = tensor.empty() : tensor<4x8x16xf32>
-  // CHECK: linalg.div_unsigned
-  // CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor<4x8x16xf32>, tensor<4x8x16xf32>)
-  // CHECK-SAME: outs(%{{.+}} : tensor<4x8x16xf32>)
-  %1 = linalg.div_unsigned ins(%arg0, %arg1 : tensor<4x8x16xf32>, tensor<4x8x16xf32>) outs(%0: tensor<4x8x16xf32>) -> tensor<4x8x16xf32>
-  return %1 : tensor<4x8x16xf32>
-}


        


More information about the Mlir-commits mailing list