[Mlir-commits] [mlir] [mlir][tensor] Fold producer linalg transpose with consumer tensor pack (PR #75658)

Prathamesh Tagore llvmlistbot at llvm.org
Tue Dec 19 23:31:49 PST 2023


https://github.com/meshtag updated https://github.com/llvm/llvm-project/pull/75658

>From c7706210742e65deef4afea9a0caaf0715b152b6 Mon Sep 17 00:00:00 2001
From: meshtag <prathameshtagore at gmail.com>
Date: Fri, 15 Dec 2023 07:42:19 +0000
Subject: [PATCH 1/3] Add support for folding consumer pack with producer
 transpose

---
 .../FoldIntoPackAndUnpackPatterns.cpp         | 132 ++++++++++++++----
 .../Tensor/fold-into-pack-and-unpack.mlir     | 115 +++++++++++++++
 2 files changed, 217 insertions(+), 30 deletions(-)

diff --git a/mlir/lib/Dialect/Tensor/Transforms/FoldIntoPackAndUnpackPatterns.cpp b/mlir/lib/Dialect/Tensor/Transforms/FoldIntoPackAndUnpackPatterns.cpp
index e4509b331beeac..d9dc365c7e85cd 100644
--- a/mlir/lib/Dialect/Tensor/Transforms/FoldIntoPackAndUnpackPatterns.cpp
+++ b/mlir/lib/Dialect/Tensor/Transforms/FoldIntoPackAndUnpackPatterns.cpp
@@ -21,6 +21,57 @@ static bool areAllConstantIntValue(ArrayRef<OpFoldResult> ofrs, int64_t value) {
       ofrs, [&](OpFoldResult ofr) { return isConstantIntValue(ofr, value); });
 }
 
+/// Helper function to generate an equivalent permutation map for
+/// `linalg.transpose` and `tensor.pack` which will be used after their folding
+/// into a `tensor.pack`.
+static bool getRemappedPermutationForTransposeAndPack(
+    PackOp packOp, linalg::TransposeOp transposeOp,
+    SmallVector<int64_t> &newOuterDimsPermVec,
+    SmallVector<int64_t> &newInnerDimsPosVec,
+    SmallVector<OpFoldResult> &newMixedInnerTilesVec,
+    bool isTransposeProducer) {
+  bool foldingPossible = true;
+  auto innerDimsPos = packOp.getInnerDimsPos();
+  auto mixedInnerTiles = packOp.getMixedTiles();
+  auto outerDimsPerm = packOp.getOuterDimsPerm();
+  auto transposePerm = transposeOp.getPermutation();
+  int64_t srcRank = packOp.getSourceRank();
+
+  // Note: if isTransposeProducer = true, transposePerm.size() = srcRank, else
+  // transposePerm.size() > srcRank
+
+  // Process transpose operation for non-tiled outer dimensions
+  for (unsigned int i = 0; i < srcRank; ++i) {
+    int64_t remappedPosition =
+        isTransposeProducer ? (!outerDimsPerm.empty() ? outerDimsPerm[i] : i)
+                            : transposePerm[i];
+
+    if (remappedPosition >= srcRank) {
+      foldingPossible = false;
+      return foldingPossible;
+    }
+
+    remappedPosition =
+        isTransposeProducer
+            ? transposePerm[remappedPosition]
+            : (!outerDimsPerm.empty() ? outerDimsPerm[remappedPosition]
+                                      : remappedPosition);
+
+    newOuterDimsPermVec.push_back(remappedPosition);
+  }
+
+  // Process transpose operation for tiled inner dimensions
+  for (unsigned int i = srcRank; i < srcRank + mixedInnerTiles.size(); ++i) {
+    int64_t remappedPosition =
+        isTransposeProducer ? i - srcRank : transposePerm[i] - srcRank;
+
+    newMixedInnerTilesVec.push_back(mixedInnerTiles[remappedPosition]);
+    newInnerDimsPosVec.push_back(innerDimsPos[remappedPosition]);
+  }
+
+  return foldingPossible;
+}
+
 /// Fold a `pad` -> `pack` into `pack` if they have the same padding values and
 /// the pad op has zero low paddings, or if `pack` has no padding values.
 struct FoldPadWithPackOp : public OpRewritePattern<PackOp> {
@@ -96,39 +147,19 @@ struct FoldProducerPackWithConsumerLinalgTransposeOp
     if (!packOp)
       return failure();
 
-    auto innerDimsPos = packOp.getInnerDimsPos();
-    auto mixedInnerTiles = packOp.getMixedTiles();
-    auto outerDimsPerm = packOp.getOuterDimsPerm();
-    auto transposePerm = transposeOp.getPermutation();
     SmallVector<int64_t> newOuterDimsPermVec;
     SmallVector<int64_t> newInnerDimsPosVec;
     SmallVector<OpFoldResult> newMixedInnerTilesVec;
-    int64_t srcRank = packOp.getSourceRank();
-
-    // Process transpose operation for non-tiled outer dimensions
-    for (unsigned int i = 0; i < srcRank; ++i) {
-      int64_t remappedPosition = transposePerm[i];
-
-      // If tensor.pack has outer_dims_perm attribute, then consider it during
-      // index remapping.
-      if (!outerDimsPerm.empty()) {
-        if (transposePerm[i] >= srcRank) {
-          return rewriter.notifyMatchFailure(
-              transposeOp,
-              "Cannot fold in tensor.pack if a tile dimension was transposed "
-              "with a non-tile dimension in linalg.transpose.");
-        }
-        remappedPosition = outerDimsPerm[remappedPosition];
-      }
-
-      newOuterDimsPermVec.push_back(remappedPosition);
-    }
 
-    // Process transpose operation for tiled inner dimensions
-    for (unsigned int i = srcRank; i < transposePerm.size(); ++i) {
-      int64_t remappedPosition = transposePerm[i] - srcRank;
-      newMixedInnerTilesVec.push_back(mixedInnerTiles[remappedPosition]);
-      newInnerDimsPosVec.push_back(innerDimsPos[remappedPosition]);
+    bool foldingPossible = getRemappedPermutationForTransposeAndPack(
+        packOp, transposeOp, newOuterDimsPermVec, newInnerDimsPosVec,
+        newMixedInnerTilesVec, /*isTransposeProducer*/ false);
+
+    if (!foldingPossible) {
+      return rewriter.notifyMatchFailure(
+          transposeOp,
+          "Cannot fold in tensor.pack if a tile dimension was transposed "
+          "with a non-tile dimension in linalg.transpose.");
     }
 
     Value output = packOp.createDestinationTensor(
@@ -142,11 +173,52 @@ struct FoldProducerPackWithConsumerLinalgTransposeOp
     return success();
   }
 };
+
+/// Fold 'transpose' -> 'pack' into 'pack' since 'pack' already has transpose
+/// semantics.
+struct FoldConsumerPackWithProducerLinalgTransposeOp
+    : public OpRewritePattern<PackOp> {
+  using OpRewritePattern<PackOp>::OpRewritePattern;
+
+  LogicalResult matchAndRewrite(PackOp packOp,
+                                PatternRewriter &rewriter) const override {
+    auto transposeOp = packOp.getSource().getDefiningOp<linalg::TransposeOp>();
+
+    if (!transposeOp)
+      return failure();
+
+    SmallVector<int64_t> newOuterDimsPermVec;
+    SmallVector<int64_t> newInnerDimsPosVec;
+    SmallVector<OpFoldResult> newMixedInnerTilesVec;
+
+    bool foldingPossible = getRemappedPermutationForTransposeAndPack(
+        packOp, transposeOp, newOuterDimsPermVec, newInnerDimsPosVec,
+        newMixedInnerTilesVec, /*isTransposeProducer*/ true);
+
+    if (!foldingPossible) {
+      return rewriter.notifyMatchFailure(
+          transposeOp,
+          "Cannot fold in tensor.pack if a tile dimension was transposed "
+          "with a non-tile dimension in linalg.transpose.");
+    }
+
+    Value output = packOp.createDestinationTensor(
+        rewriter, packOp.getLoc(), transposeOp.getOperand(0),
+        newMixedInnerTilesVec, newInnerDimsPosVec, newOuterDimsPermVec);
+
+    rewriter.replaceOpWithNewOp<PackOp>(
+        packOp, transposeOp.getOperand(0), output, newInnerDimsPosVec,
+        newMixedInnerTilesVec, packOp.getPaddingValue(), newOuterDimsPermVec);
+
+    return success();
+  }
+};
 } // namespace
 
 void populateFoldIntoPackAndUnpackPatterns(RewritePatternSet &patterns) {
   patterns.insert<FoldUnpackWithExtractSliceOp, FoldPadWithPackOp,
-                  FoldProducerPackWithConsumerLinalgTransposeOp>(
+                  FoldProducerPackWithConsumerLinalgTransposeOp,
+                  FoldConsumerPackWithProducerLinalgTransposeOp>(
       patterns.getContext());
 }
 
diff --git a/mlir/test/Dialect/Tensor/fold-into-pack-and-unpack.mlir b/mlir/test/Dialect/Tensor/fold-into-pack-and-unpack.mlir
index ca4eb4ff679445..ed101883a40f9a 100644
--- a/mlir/test/Dialect/Tensor/fold-into-pack-and-unpack.mlir
+++ b/mlir/test/Dialect/Tensor/fold-into-pack-and-unpack.mlir
@@ -345,3 +345,118 @@ func.func @tensor_pack_linalg_transpose_fold_dynamic_outer_dims_tile_dims_tile_s
 //      CHECK:     %[[PACK:.+]] = tensor.pack %[[ARG0]] outer_dims_perm = [2, 1, 3, 0] inner_dims_pos = [3, 1, 2] inner_tiles = [%[[ARG3]], %[[ARG1]], %[[ARG2]]] into %[[INIT]] : tensor<?x?x?x?xf32> -> tensor<?x?x?x?x?x?x?xf32>
 //      CHECK:     return %[[PACK]] : tensor<?x?x?x?x?x?x?xf32>
 //      CHECK:   }
+
+// -----
+
+func.func @linalg_transpose_tensor_pack_fold(%arg0: tensor<56x57x1x64xf32>) -> tensor<1x57x56x2x32xf32> {
+  %0 = tensor.empty() : tensor<1x56x57x64xf32>
+  %transposed = linalg.transpose
+    ins(%arg0 : tensor<56x57x1x64xf32>)
+    outs(%0 : tensor<1x56x57x64xf32>)
+    permutation = [2, 0, 1, 3]
+
+  %1 = tensor.empty() : tensor<1x57x56x2x32xf32>
+  %pack = tensor.pack %transposed
+    outer_dims_perm = [0, 2, 1, 3]
+    inner_dims_pos = [3]
+    inner_tiles = [32]
+    into %1 : tensor<1x56x57x64xf32> -> tensor<1x57x56x2x32xf32>
+  return %pack : tensor<1x57x56x2x32xf32>
+}
+//      CHECK: func @linalg_transpose_tensor_pack_fold(
+// CHECK-SAME:     %[[ARG0:.+]]: tensor<56x57x1x64xf32>)
+//      CHECK:   %[[INIT:.+]] = tensor.empty() : tensor<1x57x56x2x32xf32>
+//      CHECK:   %[[PACK:.+]] = tensor.pack %[[ARG0]]
+// CHECK-SAME:      outer_dims_perm = [2, 1, 0, 3]
+// CHECK-SAME:      inner_dims_pos = [3] inner_tiles = [32] 
+// CHECK-SAME:       into %[[INIT]]
+//      CHECK:   return %[[PACK]]
+
+// -----
+
+func.func @linalg_transpose_tensor_pack_fold_with_padding(%arg0: tensor<56x57x1x55xf32>, %padding: f32) -> tensor<1x57x56x2x32xf32> {
+  %0 = tensor.empty() : tensor<1x56x57x55xf32>
+  %transpose = linalg.transpose
+    ins(%arg0 : tensor<56x57x1x55xf32>)
+    outs(%0 : tensor<1x56x57x55xf32>)
+    permutation = [2, 0, 1, 3]
+  
+  %1 = tensor.empty() : tensor<1x57x56x2x32xf32>
+  %pack = tensor.pack %transpose padding_value(%padding : f32)
+    outer_dims_perm = [0, 2, 1, 3]
+    inner_dims_pos = [3]
+    inner_tiles = [32]
+    into %1 : tensor<1x56x57x55xf32> -> tensor<1x57x56x2x32xf32>
+  return %pack : tensor<1x57x56x2x32xf32>
+}
+//      CHECK: func @linalg_transpose_tensor_pack_fold_with_padding(
+// CHECK-SAME:     %[[ARG0:.+]]: tensor<56x57x1x55xf32>, %[[PADDING:.+]]: f32)
+//      CHECK:   %[[INIT:.+]] = tensor.empty() : tensor<1x57x56x2x32xf32>
+//      CHECK:   %[[PACK:.+]] = tensor.pack %[[ARG0]] padding_value(%[[PADDING]] : f32)
+// CHECK-SAME:      outer_dims_perm = [2, 1, 0, 3]
+// CHECK-SAME:      inner_dims_pos = [3] inner_tiles = [32] 
+// CHECK-SAME:       into %[[INIT]]
+//      CHECK:   return %[[PACK]]
+
+// -----
+
+func.func @linalg_transpose_tensor_pack_fold_no_outer_dims_perm(%arg0: tensor<56x57x1x64xf32>) -> tensor<1x56x57x2x32xf32> {
+  %0 = tensor.empty() : tensor<1x56x57x64xf32>
+  %transposed = linalg.transpose
+    ins(%arg0 : tensor<56x57x1x64xf32>)
+    outs(%0 : tensor<1x56x57x64xf32>)
+    permutation = [2, 0, 1, 3]
+  
+  %1 = tensor.empty() : tensor<1x56x57x2x32xf32>
+  %pack = tensor.pack %transposed
+    inner_dims_pos = [3]
+    inner_tiles = [32]
+    into %1 : tensor<1x56x57x64xf32> -> tensor<1x56x57x2x32xf32>
+  return %pack : tensor<1x56x57x2x32xf32>
+}
+//      CHECK: func @linalg_transpose_tensor_pack_fold_no_outer_dims_perm(
+// CHECK-SAME:     %[[ARG0:.+]]: tensor<56x57x1x64xf32>)
+//      CHECK:   %[[INIT:.+]] = tensor.empty() : tensor<1x56x57x2x32xf32>
+//      CHECK:   %[[PACK:.+]] = tensor.pack %[[ARG0]]
+// CHECK-SAME:      outer_dims_perm = [2, 0, 1, 3]
+// CHECK-SAME:      inner_dims_pos = [3] inner_tiles = [32] 
+// CHECK-SAME:       into %[[INIT]]
+//      CHECK:   return %[[PACK]]
+
+// -----
+
+func.func @linalg_transpose_tensor_pack_fold_dynamic_outer_dims_tile_dims_tile_sizes(%arg0: tensor<?x?x?x?xf32>, %transpose_dest: tensor<?x?x?x?xf32>, %pack_dest: tensor<?x?x?x?x?x?x?xf32>, %tile_p : index, %tile_q : index, %tile_r : index) -> tensor<?x?x?x?x?x?x?xf32> {
+  %transposed = linalg.transpose
+    ins(%arg0 : tensor<?x?x?x?xf32>)
+    outs(%transpose_dest : tensor<?x?x?x?xf32>)
+    permutation = [2, 3, 0, 1]
+  
+  %pack = tensor.pack %transposed
+    outer_dims_perm = [3, 0, 2, 1]
+    inner_dims_pos = [1, 3, 2]
+    inner_tiles = [%tile_p, %tile_q, %tile_r]
+    into %pack_dest : tensor<?x?x?x?xf32> -> tensor<?x?x?x?x?x?x?xf32>
+  return %pack : tensor<?x?x?x?x?x?x?xf32>
+}
+//      CHECK: #[[map:.+]] = affine_map<()[s0, s1] -> (s0 ceildiv s1)>
+//      CHECK: module {
+//      CHECK:   func.func @linalg_transpose_tensor_pack_fold_dynamic_outer_dims_tile_dims_tile_sizes(
+// CHECK-SAME:   %[[ARG0:.+]]: tensor<?x?x?x?xf32>, %[[TRANSPOSE_DEST:.+]]: tensor<?x?x?x?xf32>,
+// CHECK-SAME:   %[[PACK_DEST:.+]]: tensor<?x?x?x?x?x?x?xf32>, 
+// CHECK-SAME:   %[[ARG1:.+]]: index, %[[ARG2:.+]]: index,
+// CHECK-SAME:   %[[ARG3:.+]]: index) 
+//      CHECK:     %[[c0:.+]] = arith.constant 0 : index
+//      CHECK:     %[[c1:.+]] = arith.constant 1 : index
+//      CHECK:     %[[c2:.+]] = arith.constant 2 : index
+//      CHECK:     %[[c3:.+]] = arith.constant 3 : index
+//      CHECK:     %[[dim:.+]] = tensor.dim %[[ARG0]], %[[c0]] : tensor<?x?x?x?xf32>
+//      CHECK:     %[[dim_0:.+]] = tensor.dim %[[ARG0]], %[[c1]] : tensor<?x?x?x?xf32>
+//      CHECK:     %[[dim_1:.+]] = tensor.dim %[[ARG0]], %[[c2]] : tensor<?x?x?x?xf32>
+//      CHECK:     %[[dim_2:.+]] = tensor.dim %[[ARG0]], %[[c3]] : tensor<?x?x?x?xf32>
+//      CHECK:     %[[mapped_dim0:.+]] = affine.apply #[[map:.+]]()[%[[dim_0]], %[[ARG1]]]
+//      CHECK:     %[[mapped_dim1:.+]] = affine.apply #[[map:.+]]()[%[[dim_2]], %[[ARG2]]]
+//      CHECK:     %[[mapped_dim2:.+]] = affine.apply #[[map:.+]]()[%[[dim_1]], %[[ARG3]]]
+//      CHECK:     %[[INIT:.+]] = tensor.empty(%[[mapped_dim0]], %[[mapped_dim2]], %[[dim]], %[[mapped_dim1]], %[[ARG1]], %[[ARG2]], %[[ARG3]]) : tensor<?x?x?x?x?x?x?xf32>
+//      CHECK:     %[[PACK:.+]] = tensor.pack %[[ARG0]] outer_dims_perm = [1, 2, 0, 3] inner_dims_pos = [1, 3, 2] inner_tiles = [%[[ARG1]], %[[ARG2]], %[[ARG3]]] into %[[INIT]] : tensor<?x?x?x?xf32> -> tensor<?x?x?x?x?x?x?xf32>
+//      CHECK:     return %[[PACK]] : tensor<?x?x?x?x?x?x?xf32>
+//      CHECK:   }

>From 9b40138f3df4adc0a9874251da026f3e61790937 Mon Sep 17 00:00:00 2001
From: meshtag <prathameshtagore at gmail.com>
Date: Fri, 15 Dec 2023 21:19:15 +0000
Subject: [PATCH 2/3] Rectify incorrect failure message

---
 .../Tensor/Transforms/FoldIntoPackAndUnpackPatterns.cpp   | 8 ++------
 1 file changed, 2 insertions(+), 6 deletions(-)

diff --git a/mlir/lib/Dialect/Tensor/Transforms/FoldIntoPackAndUnpackPatterns.cpp b/mlir/lib/Dialect/Tensor/Transforms/FoldIntoPackAndUnpackPatterns.cpp
index d9dc365c7e85cd..2c45cd3500fa94 100644
--- a/mlir/lib/Dialect/Tensor/Transforms/FoldIntoPackAndUnpackPatterns.cpp
+++ b/mlir/lib/Dialect/Tensor/Transforms/FoldIntoPackAndUnpackPatterns.cpp
@@ -195,12 +195,8 @@ struct FoldConsumerPackWithProducerLinalgTransposeOp
         packOp, transposeOp, newOuterDimsPermVec, newInnerDimsPosVec,
         newMixedInnerTilesVec, /*isTransposeProducer*/ true);
 
-    if (!foldingPossible) {
-      return rewriter.notifyMatchFailure(
-          transposeOp,
-          "Cannot fold in tensor.pack if a tile dimension was transposed "
-          "with a non-tile dimension in linalg.transpose.");
-    }
+    if (!foldingPossible)
+      return failure();
 
     Value output = packOp.createDestinationTensor(
         rewriter, packOp.getLoc(), transposeOp.getOperand(0),

>From 425ef2ae2be813707ef7b279d7802910954e0b7d Mon Sep 17 00:00:00 2001
From: meshtag <prathameshtagore at gmail.com>
Date: Wed, 20 Dec 2023 07:31:24 +0000
Subject: [PATCH 3/3] Use applyPermutationToVector utility

---
 .../FoldIntoPackAndUnpackPatterns.cpp         | 111 ++++++------------
 1 file changed, 39 insertions(+), 72 deletions(-)

diff --git a/mlir/lib/Dialect/Tensor/Transforms/FoldIntoPackAndUnpackPatterns.cpp b/mlir/lib/Dialect/Tensor/Transforms/FoldIntoPackAndUnpackPatterns.cpp
index 2c45cd3500fa94..986ae2e66b5fbc 100644
--- a/mlir/lib/Dialect/Tensor/Transforms/FoldIntoPackAndUnpackPatterns.cpp
+++ b/mlir/lib/Dialect/Tensor/Transforms/FoldIntoPackAndUnpackPatterns.cpp
@@ -9,6 +9,7 @@
 #include "mlir/Dialect/Linalg/IR/Linalg.h"
 #include "mlir/Dialect/Tensor/IR/Tensor.h"
 #include "mlir/Dialect/Tensor/Transforms/Transforms.h"
+#include "mlir/Dialect/Utils/IndexingUtils.h"
 #include "mlir/IR/PatternMatch.h"
 #include "llvm/Support/Debug.h"
 
@@ -21,57 +22,6 @@ static bool areAllConstantIntValue(ArrayRef<OpFoldResult> ofrs, int64_t value) {
       ofrs, [&](OpFoldResult ofr) { return isConstantIntValue(ofr, value); });
 }
 
-/// Helper function to generate an equivalent permutation map for
-/// `linalg.transpose` and `tensor.pack` which will be used after their folding
-/// into a `tensor.pack`.
-static bool getRemappedPermutationForTransposeAndPack(
-    PackOp packOp, linalg::TransposeOp transposeOp,
-    SmallVector<int64_t> &newOuterDimsPermVec,
-    SmallVector<int64_t> &newInnerDimsPosVec,
-    SmallVector<OpFoldResult> &newMixedInnerTilesVec,
-    bool isTransposeProducer) {
-  bool foldingPossible = true;
-  auto innerDimsPos = packOp.getInnerDimsPos();
-  auto mixedInnerTiles = packOp.getMixedTiles();
-  auto outerDimsPerm = packOp.getOuterDimsPerm();
-  auto transposePerm = transposeOp.getPermutation();
-  int64_t srcRank = packOp.getSourceRank();
-
-  // Note: if isTransposeProducer = true, transposePerm.size() = srcRank, else
-  // transposePerm.size() > srcRank
-
-  // Process transpose operation for non-tiled outer dimensions
-  for (unsigned int i = 0; i < srcRank; ++i) {
-    int64_t remappedPosition =
-        isTransposeProducer ? (!outerDimsPerm.empty() ? outerDimsPerm[i] : i)
-                            : transposePerm[i];
-
-    if (remappedPosition >= srcRank) {
-      foldingPossible = false;
-      return foldingPossible;
-    }
-
-    remappedPosition =
-        isTransposeProducer
-            ? transposePerm[remappedPosition]
-            : (!outerDimsPerm.empty() ? outerDimsPerm[remappedPosition]
-                                      : remappedPosition);
-
-    newOuterDimsPermVec.push_back(remappedPosition);
-  }
-
-  // Process transpose operation for tiled inner dimensions
-  for (unsigned int i = srcRank; i < srcRank + mixedInnerTiles.size(); ++i) {
-    int64_t remappedPosition =
-        isTransposeProducer ? i - srcRank : transposePerm[i] - srcRank;
-
-    newMixedInnerTilesVec.push_back(mixedInnerTiles[remappedPosition]);
-    newInnerDimsPosVec.push_back(innerDimsPos[remappedPosition]);
-  }
-
-  return foldingPossible;
-}
-
 /// Fold a `pad` -> `pack` into `pack` if they have the same padding values and
 /// the pad op has zero low paddings, or if `pack` has no padding values.
 struct FoldPadWithPackOp : public OpRewritePattern<PackOp> {
@@ -147,19 +97,39 @@ struct FoldProducerPackWithConsumerLinalgTransposeOp
     if (!packOp)
       return failure();
 
+    auto innerDimsPos = packOp.getInnerDimsPos();
+    auto mixedInnerTiles = packOp.getMixedTiles();
+    auto outerDimsPerm = packOp.getOuterDimsPerm();
+    auto transposePerm = transposeOp.getPermutation();
     SmallVector<int64_t> newOuterDimsPermVec;
     SmallVector<int64_t> newInnerDimsPosVec;
     SmallVector<OpFoldResult> newMixedInnerTilesVec;
+    int64_t srcRank = packOp.getSourceRank();
+
+    // Process transpose operation for non-tiled outer dimensions
+    for (unsigned int i = 0; i < srcRank; ++i) {
+      int64_t remappedPosition = transposePerm[i];
+
+      // If tensor.pack has outer_dims_perm attribute, then consider it during
+      // index remapping.
+      if (!outerDimsPerm.empty()) {
+        if (transposePerm[i] >= srcRank) {
+          return rewriter.notifyMatchFailure(
+              transposeOp,
+              "Cannot fold in tensor.pack if a tile dimension was transposed "
+              "with a non-tile dimension in linalg.transpose.");
+        }
+        remappedPosition = outerDimsPerm[remappedPosition];
+      }
+
+      newOuterDimsPermVec.push_back(remappedPosition);
+    }
 
-    bool foldingPossible = getRemappedPermutationForTransposeAndPack(
-        packOp, transposeOp, newOuterDimsPermVec, newInnerDimsPosVec,
-        newMixedInnerTilesVec, /*isTransposeProducer*/ false);
-
-    if (!foldingPossible) {
-      return rewriter.notifyMatchFailure(
-          transposeOp,
-          "Cannot fold in tensor.pack if a tile dimension was transposed "
-          "with a non-tile dimension in linalg.transpose.");
+    // Process transpose operation for tiled inner dimensions
+    for (unsigned int i = srcRank; i < transposePerm.size(); ++i) {
+      int64_t remappedPosition = transposePerm[i] - srcRank;
+      newMixedInnerTilesVec.push_back(mixedInnerTiles[remappedPosition]);
+      newInnerDimsPosVec.push_back(innerDimsPos[remappedPosition]);
     }
 
     Value output = packOp.createDestinationTensor(
@@ -187,24 +157,21 @@ struct FoldConsumerPackWithProducerLinalgTransposeOp
     if (!transposeOp)
       return failure();
 
-    SmallVector<int64_t> newOuterDimsPermVec;
-    SmallVector<int64_t> newInnerDimsPosVec;
-    SmallVector<OpFoldResult> newMixedInnerTilesVec;
-
-    bool foldingPossible = getRemappedPermutationForTransposeAndPack(
-        packOp, transposeOp, newOuterDimsPermVec, newInnerDimsPosVec,
-        newMixedInnerTilesVec, /*isTransposeProducer*/ true);
+    auto outerDimsPerm = packOp.getOuterDimsPerm();
+    SmallVector<int64_t> newOuterDimsPermVec =
+        static_cast<SmallVector<int64_t>>(transposeOp.getPermutation());
 
-    if (!foldingPossible)
-      return failure();
+    if (!outerDimsPerm.empty()) {
+      applyPermutationToVector(newOuterDimsPermVec, outerDimsPerm);
+    }
 
     Value output = packOp.createDestinationTensor(
         rewriter, packOp.getLoc(), transposeOp.getOperand(0),
-        newMixedInnerTilesVec, newInnerDimsPosVec, newOuterDimsPermVec);
+        packOp.getMixedTiles(), packOp.getInnerDimsPos(), newOuterDimsPermVec);
 
     rewriter.replaceOpWithNewOp<PackOp>(
-        packOp, transposeOp.getOperand(0), output, newInnerDimsPosVec,
-        newMixedInnerTilesVec, packOp.getPaddingValue(), newOuterDimsPermVec);
+        packOp, transposeOp.getOperand(0), output, packOp.getInnerDimsPos(),
+        packOp.getMixedTiles(), packOp.getPaddingValue(), newOuterDimsPermVec);
 
     return success();
   }



More information about the Mlir-commits mailing list