[Mlir-commits] [mlir] [mlir][python] meta region_op (PR #75673)
Maksim Levental
llvmlistbot at llvm.org
Fri Dec 15 16:34:05 PST 2023
https://github.com/makslevental updated https://github.com/llvm/llvm-project/pull/75673
>From 1673a66f178c0e759cbef20e9f5fee9724e7cf90 Mon Sep 17 00:00:00 2001
From: max <maksim.levental at gmail.com>
Date: Fri, 15 Dec 2023 18:21:31 -0600
Subject: [PATCH] [mlir][python] meta region_op
---
mlir/python/CMakeLists.txt | 9 +-
mlir/python/mlir/dialects/func.py | 3 +
mlir/python/mlir/dialects/pdl.py | 4 +
.../mlir/dialects/transform/__init__.py | 8 +-
.../extras/dialects/transform/__init__.py | 6 ++
mlir/python/mlir/extras/meta.py | 59 ++++++++++
mlir/test/python/dialects/transform_extras.py | 101 +++++++++++++++++-
7 files changed, 184 insertions(+), 6 deletions(-)
create mode 100644 mlir/python/mlir/extras/meta.py
diff --git a/mlir/python/CMakeLists.txt b/mlir/python/CMakeLists.txt
index 41d91cf6778338..016031d2a1c121 100644
--- a/mlir/python/CMakeLists.txt
+++ b/mlir/python/CMakeLists.txt
@@ -21,7 +21,6 @@ declare_mlir_python_sources(MLIRPythonSources.Core.Python
_mlir_libs/__init__.py
ir.py
passmanager.py
- extras/types.py
dialects/_ods_common.py
# The main _mlir module has submodules: include stubs from each.
@@ -30,6 +29,14 @@ declare_mlir_python_sources(MLIRPythonSources.Core.Python
_mlir_libs/_mlir/passmanager.pyi
)
+declare_mlir_python_sources(MLIRPythonSources.Core.Python.Extras
+ ROOT_DIR "${CMAKE_CURRENT_SOURCE_DIR}/mlir"
+ ADD_TO_PARENT MLIRPythonSources.Core.Python
+ SOURCES
+ extras/types.py
+ extras/meta.py
+)
+
declare_mlir_python_sources(MLIRPythonSources.ExecutionEngine
ROOT_DIR "${CMAKE_CURRENT_SOURCE_DIR}/mlir"
ADD_TO_PARENT MLIRPythonSources
diff --git a/mlir/python/mlir/dialects/func.py b/mlir/python/mlir/dialects/func.py
index 6599f67b707877..24fdcbcd85b29f 100644
--- a/mlir/python/mlir/dialects/func.py
+++ b/mlir/python/mlir/dialects/func.py
@@ -243,6 +243,9 @@ def emit_call_op(*call_args):
return decorator
+func = FuncOp.from_py_func
+
+
@_ods_cext.register_operation(_Dialect, replace=True)
class CallOp(CallOp):
"""Specialization for the call op class."""
diff --git a/mlir/python/mlir/dialects/pdl.py b/mlir/python/mlir/dialects/pdl.py
index 90d7d706238e64..de239f23d9fa96 100644
--- a/mlir/python/mlir/dialects/pdl.py
+++ b/mlir/python/mlir/dialects/pdl.py
@@ -220,3 +220,7 @@ def __init__(
constantTypes = []
result = pdl.RangeType.get(pdl.TypeType.get())
super().__init__(result, constantTypes=constantTypes, loc=loc, ip=ip)
+
+
+def op_t():
+ return OperationType.get()
diff --git a/mlir/python/mlir/dialects/transform/__init__.py b/mlir/python/mlir/dialects/transform/__init__.py
index 7ae4fefbac4121..64517d5a651877 100644
--- a/mlir/python/mlir/dialects/transform/__init__.py
+++ b/mlir/python/mlir/dialects/transform/__init__.py
@@ -174,7 +174,7 @@ def __init__(
result_types: Sequence[Type],
sym_visibility=None,
arg_attrs=None,
- res_attrs=None
+ res_attrs=None,
):
function_type = FunctionType.get(input_types, result_types)
super().__init__(
@@ -182,7 +182,7 @@ def __init__(
function_type=TypeAttr.get(function_type),
sym_visibility=sym_visibility,
arg_attrs=arg_attrs,
- res_attrs=res_attrs
+ res_attrs=res_attrs,
)
self.regions[0].blocks.append(*input_types)
@@ -211,3 +211,7 @@ def __init__(
if operands is None:
operands = []
super().__init__(_get_op_results_or_values(operands), loc=loc, ip=ip)
+
+
+def any_op_t():
+ return AnyOpType.get()
diff --git a/mlir/python/mlir/extras/dialects/transform/__init__.py b/mlir/python/mlir/extras/dialects/transform/__init__.py
index 9e313324318aa6..8dfe4cb06b34bd 100644
--- a/mlir/python/mlir/extras/dialects/transform/__init__.py
+++ b/mlir/python/mlir/extras/dialects/transform/__init__.py
@@ -3,8 +3,10 @@
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
from __future__ import annotations
+
from typing import Callable, Optional, Sequence
+from ...meta import region_op
from .... import ir
from ....dialects import transform
from ....dialects.transform import structured
@@ -146,3 +148,7 @@ def test_match_ops_single(module: OpHandle):
if dump_script:
print(named_sequence_op)
+
+
+sequence = region_op(transform.SequenceOp.__base__, terminator=transform.YieldOp)
+apply_patterns = region_op(transform.ApplyPatternsOp)
diff --git a/mlir/python/mlir/extras/meta.py b/mlir/python/mlir/extras/meta.py
new file mode 100644
index 00000000000000..dce61d80eeea60
--- /dev/null
+++ b/mlir/python/mlir/extras/meta.py
@@ -0,0 +1,59 @@
+# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+# See https://llvm.org/LICENSE.txt for license information.
+# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+
+import inspect
+from functools import wraps
+
+from ..dialects._ods_common import get_op_result_or_op_results
+from ..ir import Type, InsertionPoint
+
+
+def op_region_builder(op, op_region, terminator=None):
+ def builder_wrapper(body_builder):
+ # add a block with block args having types ...
+ if len(op_region.blocks) == 0:
+ sig = inspect.signature(body_builder)
+ types = [p.annotation for p in sig.parameters.values()]
+ if not (
+ len(types) == len(sig.parameters)
+ and all(isinstance(t, Type) for t in types)
+ ):
+ raise ValueError(
+ f"for {body_builder=} either missing a type annotation or type annotation isn't a mlir type: {sig}"
+ )
+
+ op_region.blocks.append(*types)
+
+ with InsertionPoint(op_region.blocks[0]):
+ results = body_builder(*list(op_region.blocks[0].arguments))
+
+ with InsertionPoint(list(op_region.blocks)[-1]):
+ if terminator is not None:
+ res = []
+ if isinstance(results, (tuple, list)):
+ res.extend(results)
+ elif results is not None:
+ res.append(results)
+ terminator(res)
+
+ return get_op_result_or_op_results(op)
+
+ return builder_wrapper
+
+
+def region_op(op_constructor, terminator=None):
+ def op_decorator(*args, **kwargs):
+ op = op_constructor(*args, **kwargs)
+ op_region = op.regions[0]
+
+ return op_region_builder(op, op_region, terminator)
+
+ @wraps(op_decorator)
+ def maybe_no_args(*args, **kwargs):
+ if len(args) == 1 and len(kwargs) == 0 and callable(args[0]):
+ return op_decorator()(args[0])
+ else:
+ return op_decorator(*args, **kwargs)
+
+ return maybe_no_args
diff --git a/mlir/test/python/dialects/transform_extras.py b/mlir/test/python/dialects/transform_extras.py
index dbfa8a2dc73c41..9f5a6a66d04f2f 100644
--- a/mlir/test/python/dialects/transform_extras.py
+++ b/mlir/test/python/dialects/transform_extras.py
@@ -2,9 +2,34 @@
from typing import Callable
from mlir import ir
-from mlir.dialects import scf
-from mlir.dialects.transform import structured
-from mlir.extras.dialects.transform import OpHandle, insert_transform_script
+from mlir.dialects import scf, pdl, func, arith, linalg
+from mlir.dialects.transform import (
+ structured,
+ get_parent_op,
+ apply_patterns_canonicalization,
+ apply_cse,
+ any_op_t,
+)
+from mlir.dialects.transform import FailurePropagationMode
+from mlir.dialects.transform.structured import structured_match
+from mlir.dialects.transform.loop import loop_unroll
+from mlir.extras.dialects.transform import (
+ OpHandle,
+ insert_transform_script,
+ sequence,
+ apply_patterns,
+)
+from mlir.extras import types as T
+
+
+def construct_and_print_in_module(f):
+ print("\nTEST:", f.__name__)
+ with ir.Context(), ir.Location.unknown():
+ module = ir.Module.create()
+ with ir.InsertionPoint(module.body):
+ f()
+ print(module)
+ return f
def build_transform_script(script: Callable[[OpHandle], None]):
@@ -93,3 +118,73 @@ def test_match_ops_mixed(op: OpHandle):
# CHECK-NEXT: %[[VAL_1:.*]] = transform.structured.match
# CHECK-SAME: ops{["scf.for", "linalg.matmul", "scf.forall"]} in %[[VAL_0]]
# CHECK-SAME: -> !transform.any_op
+
+
+# CHECK-LABEL: TEST: test_sequence_region
+ at construct_and_print_in_module
+def test_sequence_region():
+ # CHECK-LABEL: func.func @loop_unroll_op() {
+ # CHECK: %[[VAL_0:.*]] = arith.constant 0 : index
+ # CHECK: %[[VAL_1:.*]] = arith.constant 42 : index
+ # CHECK: %[[VAL_2:.*]] = arith.constant 5 : index
+ # CHECK: scf.for %[[VAL_3:.*]] = %[[VAL_0]] to %[[VAL_1]] step %[[VAL_2]] {
+ # CHECK: %[[VAL_4:.*]] = arith.addi %[[VAL_3]], %[[VAL_3]] : index
+ # CHECK: }
+ # CHECK: return
+ # CHECK: }
+ @func.func()
+ def loop_unroll_op():
+ for i in scf.for_(0, 42, 5):
+ v = arith.addi(i, i)
+ scf.yield_([])
+
+ # CHECK: transform.sequence failures(propagate) {
+ # CHECK: ^bb0(%[[VAL_0:.*]]: !transform.any_op):
+ # CHECK: %[[VAL_1:.*]] = transform.structured.match ops{["arith.addi"]} in %[[VAL_0]] : (!transform.any_op) -> !transform.any_op
+ # CHECK: %[[VAL_2:.*]] = get_parent_op %[[VAL_1]] {op_name = "scf.for"} : (!transform.any_op) -> !pdl.operation
+ # CHECK: transform.loop.unroll %[[VAL_2]] {factor = 4 : i64} : !pdl.operation
+ # CHECK: }
+ @sequence([], FailurePropagationMode.Propagate, [])
+ def basic(target: any_op_t()):
+ m = structured_match(any_op_t(), target, ops=["arith.addi"])
+ loop = get_parent_op(pdl.op_t(), m, op_name="scf.for")
+ loop_unroll(loop, 4)
+
+
+# CHECK-LABEL: TEST: test_apply_patterns
+ at construct_and_print_in_module
+def test_apply_patterns():
+ M, N, K = 3, 5, 3
+
+ # CHECK-LABEL: func.func @matmul(
+ # CHECK-SAME: %[[VAL_0:.*]]: tensor<3x5xf32>, %[[VAL_1:.*]]: tensor<5x3xf32>, %[[VAL_2:.*]]: tensor<3x3xf32>) -> tensor<3x3xf32> {
+ # CHECK: %[[VAL_3:.*]] = linalg.matmul {cast = #linalg.type_fn<cast_signed>} ins(%[[VAL_0]], %[[VAL_1]] : tensor<3x5xf32>, tensor<5x3xf32>) outs(%[[VAL_2]] : tensor<3x3xf32>) -> tensor<3x3xf32>
+ # CHECK: return %[[VAL_3]] : tensor<3x3xf32>
+ # CHECK: }
+ @func.func(
+ T.tensor(M, N, T.f32()), T.tensor(N, K, T.f32()), T.tensor(M, K, T.f32())
+ )
+ def matmul(A, B, C):
+ return linalg.matmul(A, B, outs=[C])
+
+ # CHECK: transform.sequence failures(propagate) {
+ # CHECK: ^bb0(%[[VAL_0:.*]]: !transform.any_op):
+ # CHECK: %[[VAL_1:.*]] = transform.structured.match ops{["linalg.matmul"]} in %[[VAL_0]] : (!transform.any_op) -> !transform.any_op
+ # CHECK: %[[VAL_2:.*]] = get_parent_op %[[VAL_1]] {op_name = "func.func"} : (!transform.any_op) -> !pdl.operation
+ # CHECK: apply_patterns to %[[VAL_2]] {
+ # CHECK: transform.apply_patterns.canonicalization
+ # CHECK: } : !pdl.operation
+ # CHECK: %[[VAL_3:.*]] = transform.structured.match ops{["func.func"]} in %[[VAL_0]] : (!transform.any_op) -> !transform.any_op
+ # CHECK: apply_cse to %[[VAL_3]] : !transform.any_op
+ # CHECK: }
+ @sequence([], FailurePropagationMode.Propagate, [])
+ def basic(variant_op: any_op_t()):
+ matmul = structured_match(any_op_t(), variant_op, ops=["linalg.matmul"])
+ top_func = get_parent_op(pdl.op_t(), matmul, op_name="func.func")
+
+ @apply_patterns(top_func)
+ def pats():
+ apply_patterns_canonicalization()
+
+ top_func = structured_match(any_op_t(), variant_op, ops=["func.func"])
+ apply_cse(top_func)
More information about the Mlir-commits
mailing list